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Vector solitons of a Bose-Einstein condensate in a dynamical trap
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Evolution equations are presented and discussed for an atomic Bose-Einstein condensate in a dynamical trap
formed by wide oscillating barriers. Their analytical solution reveals the existence of families of bright spatial
vector solitons whose components can be in phase and antiphase.
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I. INTRODUCTION

Solitons of different physical nature fall into two broad
classes: conservative and dissipative, the latter being the result
of balance between the input and output of energy in the
region of localization [1]. The features of the solitons of
these two classes are radically different: The conservative
solitons form families with a continuous spectrum of the main
parameters, whereas for dissipative solitons this spectrum
is discrete. In nonlinear optics, the dissipative solitons are
known mainly as cavity solitons [2–5]. Using atomic Bose-
Einstein condensates (BECs) [6], conservative bright [7–9]
and dark [10–12] solitons of matter waves with nonlinear
longitudinal localization and dissipative (cavity) solitons of
light-matter waves [13] with nonlinear transverse localization
were demonstrated experimentally.

In this paper, following the approach reported in [14,15], we
consider nonlinearly localized structures (solitons) of matter
waves with a different mechanism of energy input and output:
due to collisions of atoms with oscillating cavity mirrors. In
other words, the scheme is an atomic BEC in a dynamical
trap with oscillating barriers. The barriers can be organized as
optically induced movable mirrors [16]. Such a trap provides
simultaneous localization and excitation of matter waves. Our
simulations [17] show that in a one-dimensional geometry
with linear transverse localization due to the trap potential,
the barriers do not destroy the nonlinear longitudinal local-
ization; however, oscillations of barriers can induce not only
periodic or quasiperiodic motion, but also chaotic longitudinal
motion of solitons similar to that of classical particles in
the Fermi-Ulam model [18,19]. In the simplest case, these
solitons are scalar (one component) and are Schrödinger-type
solitons [20,21]. Below, a different case of transverse nonlinear
localization under resonance conditions is considered [14,15].
Then the solitons are not of the Schrödinger type because they
are described by two coupled nonlinear partial differential
equations for amplitudes of two resonance levels; therefore,
we have the case of vector solitons. The scheme resembles that
of Faraday [22] and Unbanhowar et al. [23], where solitons
known as oscillons were observed.

As indicated above, the terms “dissipative” and “cavity”
solitons are widely used for spatial optical solitons where
they were first demonstrated in simulations for wide-aperture-
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driven nonlinear interferometers [24] and lasers with saturable
absorption [25]. However, a specific feature of BEC solitons
in a dynamical trap is that, depending on the phase of barriers’
oscillations, atoms can gain or lose their kinetic energy
and the energy is nearly conserved when averaged over the
oscillation period. Therefore, it is possible to suggest that these
solitons take an intermediate position between conservative
and dissipative ones. An additional argument in favor of
this statement is that they can be described by conservative
equations in the lowest-order approximation, as will be shown
below (see also the discussion in Sec. IV).

In Sec. II, generalizing the results of Ref. [14] to the case of
transversely distributed dynamical trap, governing equations
are presented and the general features of these equations are
discussed. In Sec. III we analyze solutions to these equations,
mainly for transversely one-dimensional bright vector solitons.
Finally, in Sec. IV the place of these localized structures among
the classes of conservative and dissipative solitons is discussed.

II. GOVERNING EQUATIONS

Consider the atomic BEC in the dynamic trap, using the
approach and results of Refs. [14,15], with the longitudinal
coordinate notation changed from x to z [see Fig. 1(a)]. Then
the BEC macroscopic wave function ψ(r⊥,z,t) obeys the
Gross-Pitaevskii equation (GPE) [6]

i�
∂ψ

∂t
= − �

2

2mp

(
∂2ψ

∂z2
+ �⊥ψ

)
+ U0|ψ |2ψ. (1)

Here � is the reduced Planck constant, t is time, r⊥ = (x,y) is
the vector of transverse coordinates x and y, �⊥ = ∂2/∂x2 +
∂2/∂y2 is the transverse Laplacian, and mp is the particle mass.
The parameter of nonlinearity U0 reflects weak interatomic
interactions; U0 can be positive or negative, depending on the
external magnetic field. The GPE describes the dynamics of
weakly nonideal diluted atomic gases at zero temperature.

As in [14,15], the boundary conditions for Eq. (1) corre-
spond to the trap in the form of the infinite potential well with
oscillating barriers

ψ(z = Lleft(t),t) = 0, ψ(z = Lright(t),t) = 0. (2)

The modulation depth μ of these oscillations is small, μ �
1. The transverse size of the trap is assumed to be large
as compared with the transverse dimensions of the BEC
structures considered below. In the case of a finite depth of
the potential well, the lifetime of the BEC is also finite due to
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FIG. 1. (Color online) (a) Scheme of a dynamical trap with the
BEC between oscillating barriers B. (b)–(f) Profiles of amplitudes
An(x) [solid (red) curves] and Am(x) [dotted (blue) curves]: (b) and
(c) antiphase soliton pairs An(x) = −Am(x) and (d) and (f) in-phase
pairs An(x) = Am(x), with (b) δω = 0 and δω0 = 1.02, (c) δω = 0
and δω0 = 10, (d) δω = 0 and δω0 = 1.02, (e) δω = 0.5 and δω0 = 2,
and (f) δω = 0 and δω0 = 0.98; s = −1 and ν = −1.

its escape from the trap, so the consideration is valid for a time
period less than the lifetime.

In the zeroth-order approximation with motionless barriers
μ = 0, Lleft = 0, and Lright = L0 and noninteracting atoms
U0 = 0, the solution to the problem gives a set of discrete
states with energies E(0)

n = π2
�

2

2mpL2
0
n2, n = 1,2,3, . . . , and wave

functions

ψ (0)
n ∼ e−i(E(0)

n t/�) sin

(
πn

L0
z

)
.

The energy levels’ distribution is highly nonequidistant.
Therefore, if modulation of the barriers’ position is harmonic,
with the frequency 	 close to the frequency of the transition
between levels n and m,

�	 = E(0)
m − E(0)

n + �δ	, |δ	|/	 � 1, (3)

it is possible to achieve the resonance interaction of two
levels with energies E(0)

n and E(0)
m . Higher-order resonances are

possible only in higher orders of the perturbation theory; thus
they can be realized at very large time intervals only. Then the
BEC wave function can be approximated by a superposition of
two states with quantum numbers n and m with slowly varying

amplitudes an,m:

ψ(r⊥,z,t) ≈ an(r⊥,t)ψ (0)
n + am(r⊥,t)ψ (0)

m . (4)

The high precision of the two-level approximation under
resonance conditions is confirmed not only by estimations,
but also by comparison with the direct solution to the GPE
[14]. Then, after the replacement i� d

dt
→ i� ∂

∂t
+ �

2

2mp
�⊥ in

Eqs. (19) of Ref. [14], we get the governing equations for the
case of a transversely distributed trap:(

i�
∂

∂t
+ �

2

2mp

�⊥

)
an + sμnmE

(0)
1 am

−U0

(
3

4
|an|2 + |am|2

)
an = 0,

(5)(
i�

∂

∂t
+ �

2

2mp

�⊥

)
am + sμnmE

(0)
1 an

+
[
�δ	 − U0

(
3

4
|am|2 + |an|2

)]
am = 0.

For definiteness, we assume Lleft = 0 and Lright = L0[1 +
μ cos(	t)]; here s = (−1)m−n. Below we use dimensionless
units

t̃ = t
μnmE

(0)
1

�
, (x̃,ỹ) =

√
2mp

�
(x,y), δω = �δ	

μnmE
(0)
1

,

ãn,m = an,m

√
V0

2N3
, ν = U0N3

2V0μnmE
(0)
1

= sgnU0, (6)

where E
(0)
1 is the energy of the first eigenstate, V0 = S0L0 is the

volume of trap with transverse section S0, and N3 is the total
number of particles. Then the governing equations take the
form of linearly (coherently) and nonlinearly (incoherently)
coupled nonlinear Schrödinger equations

i
∂ãn

∂t̃
+ �̃⊥ãn + sãm − ν(3|ãn|2 + 4|ãm|2)ãn = 0,

i
∂ãm

∂t̃
+ �̃⊥ãm + sãn + [δω − ν(3|ãm|2 + 4|ãn|2)ãm = 0.

(7)

In the following we will omit the tilde. It follows from Eqs. (7)
that the total number of particles is conserved for localized
structures: ∫

dr⊥(|an|2 + |am|2) = const. (8)

Equations (7) have Galilean symmetry. This means that if
functions An,m(x,y,t) give a solution to Eqs. (7), then there is
a family of solutions with an arbitrary transverse velocity V :

an,m = exp

(
i
V

2
x − i

V 2

4
t

)
An,m(x − V t,y,t). (9)

Evidently, Eqs. (7) are invariant to a phase shift of both
amplitudes an,m → an,meiδ
 and δ
 = const and to shifts
of coordinates (x,y) → (x + δx,y + δy). In the case of an
exact resonance δω = 0, Eqs. (7) are also invariant to the
replacement n ↔ m.
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III. SOLUTIONS TO THE GOVERNING EQUATIONS

For the exact resonance δω = 0, there are solutions of
Eqs. (7) with equal populations of the two resonance levels
am = ±an ≡ a. Then for a we have the equation

i
∂a

∂t
+ �⊥a ± sa − 7ν|a|2a = 0. (10)

After replacement a = be±ist it takes the form of the standard
(transversely two-dimensional) nonlinear Schrödinger equa-
tion

i
∂b

∂t
+ �⊥b − 7ν|b|2b = 0. (11)

In the opposite case, when mainly one level is populated
|am|2 � |an|2, one gets also the nonlinear Schrödinger equa-
tion

i
∂an

∂t
+ �⊥an − 3ν|an|2an = 0 (12)

in the lowest order and an inhomogeneous linear equation
for am in the first order of perturbation theory. Corre-
spondingly, these equations describe such phenomena as
modulation instability, one-dimensional conservative bright
(ν = −1) and dark (ν = 1) solitons, breathers, and cnoidal
waves [1,20,21].

Transversely two-dimensional equations (7) are effectively
reduced to one-dimensional equations if the system is linearly
confined by the trap in the y direction. This confinement
provides a way to avoid modulation instability and get
a single-mode regime in this direction. A wide class of
transversely one-dimensional solutions can be found in the
form

an,m = An,m(x)eiδω0t , (13)

with real amplitudes An,m(x) (see also [26]). Then it follows
from Eqs. (7) that

d2An

dx2
= − ∂U

∂An

,
d2Am

dx2
= − ∂U

∂Am

, (14)

where

U (An,Am) = U2(An,Am) − 3
4ν

(
A4

n + A4
m

) − 2νA2
nA

2
m, (15)

U2(An,Am) = sAnAm − δω0

2
A2

n − δω0 − δω

2
A2

m. (16)

Equations (14) can be interpreted mechanically as equations
of the two-dimensional motion of a particle with the unit mass
under the action of force with the potential U (An,Am), with the
transverse coordinate x for the BEC playing the role of time
t for the mechanical particle. The corresponding Hamiltonian
is

H = 1

2

(
dAn

dx

)2

+ 1

2

(
dAm

dx

)2

+ U (An,Am). (17)

Because the Hamiltonian does not depend on x explicitly, it is
conserved: H = const, or dH/dx = 0 (the law of mechanical
energy conservation).

For localized structures with a finite number of particles
the amplitudes An,m should vanish at infinity An,m(x) → 0 for
x → ±∞. Therefore, H = 0 for these structures and in the

vicinity of the point An = Am = 0 the surface U (An,Am) is
given by the quadratic form U2(An,Am) [Eq. (16)]. It can be
reduced to the canonic form U2 = λ1B

2
1 + λ2B

2
2 by a unitary

transformation (An,Am) → (B1,B2) with real characteristic
numbers

λ1,2 = 1

2

⎡
⎣δω

2
− δω0 ±

√
1 +

(
δω

2

)2
⎤
⎦ . (18)

If both characteristic numbers are negative λ1,2 < 0, then
the point An = Am = 0 corresponds to a local maximum of
function U (An,Am) and the field in the vicinity of this point
has the form

An = c1e
p1x + c2e

p2x,
(19)

Am = −s
[
c1

(
p2

1 − δω0
)
ep1x + c2

(
p2

2 − δω0
)
ep2x

]
,

where p2
1,2 = −2λ1,2 > 0. Evidently, for p1,2 > 0 these am-

plitudes vanish at x → −∞ for any values of c1,2. Below
we fix the parameter of nonlinearity ν = −1 and then the
potential U → +∞ for large amplitudes An,m → ∞. Under
these conditions, one can find a family of solitons with
a continuously varying parameter δω0 (we ignore here the
possibility of variation of a phase shift δ
, a shift of transverse
coordinate δx, and a transverse velocity V ). This means that
for a fixed value of δω0 it is possible to find the value c2/c1 that
ensures the field vanishing for x → +∞. This case is realized
under the conditions δω0 > 0 and δω < δω0 − 1

δω0
.

Some examples are given in Fig. 1. For the exact resonance
δω = 0, in accordance with Eq. (11), in-phase and antiphase
soliton pairs with equal moduli of distributions |An(x)| =
|Am(x)| can be found for the same value of δω0, taking c1 = 0
or c2 = 0 [see Figs. 1(b)–1(d)]. For nonzero detuning δω 
= 0,
the components of the soliton pairs have different amplitudes
[see Fig. 1(e)].

In another variant λ1λ2 < 0, the point An = Am = 0
corresponds to a saddle. Then only one constant, either c1

or c2 (corresponding to the negative characteristic value) in
Eqs. (19), is nonzero. Nevertheless, even in this case there
is a family of soliton pairs, but only of one type [see Fig.
1(f)]. For cases when λ1,2 > 0 with the point An = Am = 0
corresponding to a local minimum, no bright structures are
possible.

IV. DISCUSSION

The localized structures discussed herein present a type of
vector spatial solitons with in-phase or antiphase components,
transversely motionless or moving, with continuously varying
carrier frequency. This is a signature of conservative solitons.
On the other hand, they can be classified as cavity solitons
due to the scheme of a trap with two barriers. Additionally,
a BEC in the dynamical trap belongs to the class of open
systems because collisions of particles (atoms) with moving
barriers can result in an increase or a decrease of their kinetic
energy. The possibility of describing this type of soliton by
conservative equations is probably connected to their averaged
description in terms of envelope solitons. In fact, the particle
kinetic energy does not change practically due to collisions
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with barriers when averaged over an oscillation period. In
a sense, these cavity oscillons form an intermediate class
between conservative and dissipative solitons.

Due to the mathematical equivalence, the scheme con-
sidered could also be interpreted as an optical waveguide
with a medium possessing the Kerr nonlinearity of refrac-
tive index; the oscillating barriers can be realized in this
case by modulation of the transverse profile of electric
voltage in an electro-optical medium. The governing equations
presented have a general form, thus allowing the study of the
interaction of vector solitons and features of two-dimensional

vector structures. These interesting venues can be the subject
of separate research.
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