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Addendum to “Quantum theory of the stability region of an ion in a Paul trap”
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The authors call attention to a previous work [Kelin Wang, Mang Feng, and Juhao Wu, Phys. Rev. A 52,
1419 (1995)] for quantum-mechanically studying the stability region of the Paul trap, where the calculation
does not work for the case of zero dc voltage. But the ions can be confined experimentally at zero dc voltage
which is understandable via the Mathieu equation. We present a quantum-mechanical study for such a case as a
supplement.
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The Paul trap [1], since its invention, has become an
important setup in the exploration of nonlinear physics and
quantum physics. The charged particles confined in the trap can
demonstrate nonlinearity, such as chaos-order transition [2,3],
the Duffing oscillator [4], and configuration phase transition
[5]. Moreover, we may encode qubits into the electronic
states of the confined charged atoms for quantum information
storage. If the charged atoms are laser-cooled down to low
temperature of the order of micro-Kelvins, their vibrational
modes can be employed as a data bus for quantum information
processing [6–8].

The time-dependent potential is essential to the confinement
of the charged particles in the Paul trap [9]. Besides the
requirement from the Earnshaw theorem [10], whether the
particles can be confined or not depends on the stability region
of the trap, which is determined by the Mathieu equation.
However, in terms of quantum mechanics, any cold particle
behaves as a wave function, whose characteristic can be fully
described by the Schrödinger equation. So it is of great interest
to see what happens for a cold particle in a Paul trap by a purely
quantum-mechanical treatment, rather than by the classical
Mathieu equation.

A previous work [11] published by some of the authors
focused on the quantum-mechanical understanding of the
stable confinement of a single Paul-trapped ion, in which the
stability region is related to the convergence of a nonlinear
equation [11,12] and a larger stability region has been found
than by using the Mathieu equation. However, this treatment
does not work for the case of zero dc voltage of the external
electric field, i.e., U = 0 (defined later), which is a singularity
of the treatment. Nevertheless, the case of U = 0 does belong
to the stability region solved by the Mathieu equation, and,
as far as we know, the condition U = 0 is usually employed
experimentally for stably trapping ions [13].

The present work focuses on the case of zero dc voltage
by the Schrödinger equation for the condition to confine
ions. Like in Ref. [11], we still relate the stability region to
the convergence of the nonlinear equation deduced from the
reduction of a time-dependent Schrödinger equation into a
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time-independent one. To avoid that singularity, we solve the
nonlinear equation by an alternative method, from which we
show a condition between the ac voltage and the ac frequency
for stably confining the ion, and, more interestingly, this
stability condition is less stringent than that determined either
by the Mathieu equation or by the quantum-mechanical way
in Ref. [11].

In terms of Ref. [1], the Paul-trapped ion behaves the same
in both x and y directions with the secular frequency �2

x(y)(t) =
q

mr2
0
[U + V cos(ωt)], with the charge q and the mass m of the

trapped ion, the radius r0 of the trap, the dc voltage U , and the
ac voltage V owning the frequency ω. The motion of the ion in
the z direction is slightly different, whose secular frequency is
�2

z(t) = q

mr2
0
[U − V cos(ωt)]. Usually, the trap axis is defined

along the z direction, and x and y directions are called radial
directions.

In the case of U = 0, we may consider three identical
Schrödinger equations for the trapped particle in three di-
mensions if we mathematically omit the π phase difference
in the micromotion between the x-y plane and the z axis. As
a result, the one-dimensional motion of a Paul-trapped ion is
described as

i�
∂

∂t
�(x,t) = − �

2

2m

∂2

∂x2
�(x,t) + m

2
�2(t)x2�(x,t), (1)

with �2(t) = q

mr2
0
V cos(ωt). Using the same transformations

as in Refs. [11,12], we may have a new Schrödinger equation,

i�
∂

∂s
�(ξ,s) = − �

2

2m

∂2

∂ξ 2
�(ξ,s) + m

2
F (t)ξ 2�(ξ,s), (2)

where we have F (t) = 1
2 ϕ̈ϕ − 1

4 ϕ̇2 + �2(t)ϕ2, and

�(x,t) = �(ξ,s)eiβ(t)x2− �

m

∫ t

0 β(τ )dτ , (3)

with β(t) = mϕ̇(t)
4�ϕ(t) , ξ = 1√

ϕ(t)
x, and s = ∫ t

0 ϕ−1(τ ) dτ . In the
previous treatments [11,12], we have F (t) as a constant, which
reduces the solution of Eq. (2) to a simple harmonic oscillator
since the constant related to the dc voltage U is nonzero.
Moreover, U = 0 is a singularity in that treatment.

In the present treatment, to avoid the divergence due to
the singularity, we solve the nonlinear equation F (t) by an
alternative method. We still suppose F (t) to be a constant C,
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which is a very small number in comparison with ω2, but
nonzero. However, in the present case of U = 0, the solution
strongly depends on the initial state of the trapped ion. For
convenience of our description, we below replace cos(ωt) in
the potential by cos(ωt + π

2 ), which shifts the time-dependent
potential by a π/2 phase but does not change the physical
essence of the solution.

As a result, Eq. (2) is reduced to be a simple harmonic
oscillator equation, whose solution can be found in the
textbook and whose validity depends on the convergence of
the following equation:

2ϕ(t)ϕ̈(t) − ϕ̇2(t) + 4qV

mr2
0

cos

(
ωt + π

2

)
ϕ2(t) = 4C. (4)

By defining ϕ(t) = ∑∞
n=0 φn cosn(ωt + π

2 ), we obtain follow-
ing recurrence equation:

φn+2 = −T n+2
1 − T n

2 + 4vT n−1
3

2(n + 1)(n + 2)φ0ω2
, (5)

with φ0φ2 = 1
4φ2

1 + C
ω2 , v = qV

mr2
0
, and

T n
1 =

∑
l+k=n

φlφk[2k(k − 1) − lk]ω2 − φ0φn[2n(n − 1)]ω2,

T n
2 =

∑
l+k=n

φlφk(2k2 − lk)ω2,

T n
3 =

∑
l+k=n

φlφk.

Once the recurrence in Eq. (5) is convergent, we may find the
solution to Eq. (2) and thereby we know that the ion is stably
confined in the trap. On the contrary, the divergence of Eq. (5)
means instability of the ion in the trap.

To solve Eq. (5), we must determine the first two terms φ0

and φ1, whose values depend on the initial wave function of
the trapped ion. As an example, we consider that the ion is
initially confined in the vibrational ground state of the simple

harmonic oscillator [14]

ψ(x,0) =
(

2σ

π

) 1
4

e−σx2
. (6)

In comparison to the solution of Eq. (2) [11,12], i.e.,

�n(x,t) = Dn

(
1

ϕ(t)

) 1
4

Hn(Ax)eiβ(t)x2− A2x2

2 e
−i En

�

∫ t

t0
dσ

ϕ(σ ) , (7)

where Dn =
√

m
√

C

�
√

π2nn! , A =
√

m
√

C
�ϕ(t) , and En = (n + 1

2 )
√

C�,

we have ψ(x,0) = �0(x,0), implying σ = A2

2 and β(0) = 0. If
we take ϕ(0) = 1, we may obtain φ0 = 1 and φ1 = 0. We find
numerically that the convergence of Eq. (5) is strongly relevant
to v/w2 and C/w2, where the convergence occurs only within
the regime 0 < v/w2 < R, with R the critical value, and R

decreases for smaller C/w2, as shown in Table I, where the
minimum value of R is 2.35 in the case of C/w2 → 0. This
implies that the ion is always stably trapped if v/w2 ∈ (0,2.35)
is satisfied. This is a condition for the stability region of a
Paul-trapped ion, different from that associated with the dc
and ac voltages. In comparison, the Mathieu equation gives
v/ω2 ∈ (0,0.46) [1] with no dc voltage, and the rough estimate
by quantum treatment in Fig. 2 in Ref. [11] is v/ω2 ∈ (0,0.8)
for U → 0. So our solved restriction is less stringent, implying
a bigger stability region. This result reflects from another angle
the fact that the trapped ion under the government of quantum
mechanics is more stable than the classical counterpart.

We have to mention that the condition in Eq. (5) for
convergence is somewhat general because φ0 = 1 and φ1 = 0
come from β(0) = 0 and ϕ(0) = 1, which are reasonable
assumptions based on ψ(x,0) = �n(x,0). This implies that
if the trapped ion is initially in a higher eigenstate or even
in a superposition of the eigenstates of the simple harmonic
oscillator, rather than in the ground state, φ0 = 1 and φ1 = 0
remain unchanged and the treatment above still works. In other
words, the initial states of the trapped ion only change the wave
packet of the ion in the time evolution, but not the condition
for convergence.

Considering the realistic parameter values in a single 40Ca+
ion in a Paul trap, such as V = 300 V, ω/2π = 16 MHz, and

TABLE I. Convergence of Eq. (5) under different values of C/ω2 and v/ω2, where n∗ is defined as the critical number of the series
expansion terms of ϕ(t) at which (φn+2/φn − 1) changes suddenly from negative to positive, meaning divergence. The divergence occurs at
n∗ → ∞ when R = v/ω2 = 2.75, 2.45, and 2.35 for C/ω2 = 0.04, 0.01, and approaching 0, respectively. Therefore, if 0 < v/ω2 < R, we
consider ϕ(t) to be always convergent.

C

ω2 = 0.04 v/ω2 6 5 4 3.8 3.6 3.4 3.2 3.1 3.08 3.06 3.04 3.02 3 2.98 2.96
n∗ 352 492 954 1111 1400 1821 2907 3865 4000 4441 4589 5057 5270 5946 6499

v/ω2 2.94 2.92 2.9 2.89 2.88 2.87 2.86 2.85 2.84 2.83 2.82 2.81 2.80 2.79 2.78
n∗ 7196 8064 9500 9924 10773 11777 13011 14151 16016 17798 19806 22744 28037 35370 47575

C

ω2 = 0.01 v/ω2 6 5 4 3.8 3.6 3.4 3.2 3 2.9 2.8 2.78 2.76 2.74 2.72 2.7
n∗ 362 475 847 1018 1236 1562 2165 3323 4120 5792 6543 6895 7540 8483 8960

v/ω2 2.68 2.67 2.66 2.65 2.64 2.63 2.62 2.61 2.6 2.59 2.58 2.57 2.56 2.55 2.54
n∗ 10155 10991 11598 12742 13395 14505 15386 17174 18384 19782 20330 21020 22985 25930 29684

C

ω2 → 0 v/ω2 6 5 4 3.8 3.6 3.4 3.2 3 2.9 2.8 2.78 2.76 2.7400 2.72 2.7
n∗ 335 445 815 905 1087 1403 1883 2585 3161 3911 4322 4733 5189 5304 5806

v/ω2 2.68 2.66 2.64 2.62 2.6 2.58 2.56 2.54 2.52 2.5 2.48 2.46 2.44 2.42 2.4
n∗ 6521 6643 7212 7573 8946 9331 10492 11562 12766 14995 18285 22599 24450 33610 37343
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r0 = 1.2 mm, we define the radial pseudopotential frequency
ωr = qV/(

√
2mr2

0 ω) [15]. In our case, the constant C is the
effective frequency of the simple harmonic oscillator potential,
and thereby we may suppose C = ω2

r . The straightforward
calculation results in v/ω2 = 0.05 and C/ω2 = 1.3 × 10−3,
completely satisfying the conditions required above for the
stability region.

Before ending the discussion, we should emphasize the
following points. The results obtained can be also applied to
many ions confined in the Paul trap provided they are vibrating
in center-of-mass mode. In addition, it is necessary to keep
the cooling lasers always on in the ion-trapping experiments,
in which the laser cooling plays the role of damping in the
model. Our solution in the absence of the damping term should
still work when the damping is introduced into the model.
Moreover, due to fabrication imperfection, the realistic trap
potential is not perfectly quadratic, but also includes additional
hexapole or octopole potentials. The modified potential in the

trap will definitely change the stability regime we solved.
Besides, the nonlinearity due to those multipolar potentials
will spoil the stability region by heating the trapped ion if the
ion deviates from the equilibrium position. However, this case
is beyond the scope of the present paper. The detailed study in
this aspect is based on the Duffing oscillator model [4,16].

In conclusion, for the Paul-trapped ion at U = 0, we
have still considered that the stability region is related to
the convergence of the nonlinear equation obtained from the
solution to the time-dependent Schrödinger equation. Solving
the nonlinear equation by an alternative method, we have
found a restriction that is a helpful complement for the
previously studied stability regions in Refs. [1,11] and also
helps our further understanding of the problem of interest from
a quantum-mechanical viewpoint.

This work is supported by National Natural Science
Foundation of China under Grant No. 11274352.
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