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Temporal dynamics of spatially localized waves in quadratic nonlinear waveguide arrays
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We study experimentally and theoretically the temporal dynamics of laser pulses propagating under conditions
of spatial self-focusing in quadratic nonlinear waveguide arrays made from periodically poled lithium niobate.
We observed temporal pulse breakup and temporal pulse narrowing and studied the dynamics of these effects
in different waveguides. We investigated the influence of the frequency dependence of the mode indices as
a limiting factor for soliton formation. Our experimental results are in good agreement with the theoretical
model developed from coupled-mode theory, providing a detailed understanding of pulse dynamics and beam
distribution in waveguide arrays with quadratic nonlinearity.
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I. INTRODUCTION

Nonlinear waveguide arrays (WGA) are considered to be
important devices for all-optical circuits [1,2]. To date, many
experiments in nonlinear WGAs, including the demonstrations
of discrete solitons [3,4], have been conducted by using
continuous-wave (cw) beams. The use of pulsed-laser sources
with high peak powers strongly benefits nonlinear processes,
but even experiments with pulsed light were often interpreted
within the quasi-cw approximation [5–7]. Measurements of
the complete nonlinear spatiotemporal dynamics of short
pulses, revealing the effects of the frequency dependence of
the nonlinearity, have been hindered by difficulties in the
experimental characterization of the temporal output profiles
of short pulses. However, the practical implementation of
nonlinear waveguide devices for applications in all-optical
switching and ultrafast optical signal processing requires
a detailed characterization of the full spatial and temporal
dynamics of optical pulses in these device.

While some important experiments on spatiotemporal
nonlinear effects of short pulses have already been performed,
most of the work has concentrated on WGAs with cubic non-
linearity. Examples include nonlinear pulse reshaping [8,9],
discrete spatiotemporal X waves [10,11], and discrete light
bullets [12–15]. However, in all cubic nonlinear experiments
the required peak powers for operation remain high.

On the other hand, WGAs with quadratic nonlinear re-
sponse allow for nonlinear effects at orders-of-magnitude
lower powers [7]. This is achieved through the so-called
cascading nonlinearity [16], where the generation of a second
harmonic (SH) field and its back conversion to the fundamental
wave (FW) of twice the SH wavelength result in an overall
nonlinear phase shift similar to the one generated by a cubic
nonlinearity. Recently, the measurement of pulse spectra in
quadratic nonlinear WGAs has led to theoretical predictions
of unusual temporal pulse dynamics [17], which are awaiting
experimental verification. While temporal reshaping of pulsed
all-optical switching was already characterized in two coupled
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waveguides [18], the characterization of the full spatiotem-
poral dynamics of optical signals in quadratic WGAs has
not yet been reported. Important questions on the limiting
effects of waveguide dispersion, group-velocity mismatch
(GVM), and bandwidth of the nonlinear response remain to
be experimentally characterized. In this work, for the first
time to our knowledge, we conduct direct pulse measurements
in WGAs with quadratic nonlinearity and analyze the spa-
tiotemporal reshaping of picosecond-long pulses. We reveal
experimentally that the strongest effect on pulse reshaping
and a limitation of discrete soliton formation comes from the
frequency dependence of the effective indices of the interacting
modes yielding different phase-matching conditions within the
nonlinearly broadened pulse spectra. Our experimental results
are well explained by a theoretical model.

The remainder of this paper is organized as follows: Our
samples and experimental apparatus are introduced in Sec. II.
We then discuss the numerical experiments, revealing the
pulse reshaping mechanism in Sec. III and presenting the
experimental confirmation of these findings in Sec. IV. Finally,
we summarize the results in Sec. V.

II. EXPERIMENTAL ARRANGEMENTS

The system under investigation is described in Fig. 1. WGA
samples as shown schematically in Fig. 1(a) are fabricated by
indiffusion of 7-μm-wide and 95-nm-thick titanium stripes
at 1060 ◦C for 8.5 hours in an L = 71-mm-long Z-cut
congruent lithium niobate (LiNbO3) crystal [19]. The prop-
agation direction is along the crystallographic X axis. Highly
uniform arrays are formed by 101 waveguides with a constant
waveguide separation (center-to-center distance between the
waveguides) of d = 15 μm. For the TM polarization used, the
waveguides guide only one mode at the FW near 1550 nm
and are multimoded in the SH-wavelength regime [20,21].
Numerically calculated intensity profiles of the TM00 modes
at both wavelengths, which correspond very well to measured
profiles, are shown in Fig. 1(b). The FW modes from neigh-
boring waveguides are coupled due to their evanescent-field
overlap. In contrast, the SH TM00 mode at a wavelength near
775 nm shows a much stronger localization than the FW mode
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FIG. 1. (Color online) (a) Sketch of waveguide array with
period d . The red and yellow shading denotes the different crystal
orientations, which form the quasi-phase-matching grating with a
period �QPM. (b) FW and SH TM00 modes in an isolated array
waveguide. (c) The diffraction relation of FW (solid blue line) and
SH (red dash-dotted line) array supermodes. �β indicates the phase
mismatch between the SH band and an isolated array waveguide mode
(dotted blue line) at the FW. The black arrows emerging from the FW
band denote the bifurcation points of unstaggered (upwards) solitons
for focusing nonlinearity and staggered (downwards) solitons for the
defocusing nonlinearity.

[see Fig. 1(b)] and the linear coupling between neighboring
SH TM00 modes can be neglected [7,20]. Therefore, the
WGA dispersion relation kz(k⊥) describing the dependence
of the longitudinal wave vector kz on the transversal wave
vector k⊥ of the array supermodes is very different for FW
and SH. In Fig. 1(c), we schematically plot FW and SH
dispersion relations with the solid blue and dash-dotted red
lines, respectively. While the longitudinal wave vector of
the SH array supermode kSH

z is constant and equal to the
propagation constant of a single-waveguide mode βSH

0 , the
wave numbers of the FW supermodes form a band, as is well
known in the physics of periodic photonic structures [22,23].
In the case of weak diffraction this band is approximated by
the often-used cosine form [20,23]

kFW
z = βFW

0 + 2cFW cos(k⊥d), (1)

with the propagation constant βFW
0 of the FW TM00 mode in

a single waveguide and a coupling constant cFW = π/(2LFW
c ).

For the WGA with d = 15 μm that was used in our exper-
iments, the coupling length at a wavelength of 1557.3 nm
is measured to be LFW

c = 15.8 mm, which corresponds to a
coupling strength of cFW = 99.4/m. This coupling strength is

considered to be constant across the wavelength range used in
our experiments.

The nonlinear interaction between the FW and SH fields is
determined by the phase mismatch �β, which is defined as

�β = 2βFW
0 − βSH

0 + 2π

�QPM
. (2)

�β is also indicated in Fig. 1(c). Here, �QPM is the period of
the electric-field-poled quasi-phase-matching (QPM) grating
of the sample [24,25], which periodically switches the ori-
entation of the crystal axis along the propagation direction.
The additional wave vector introduced by the periodic sign
change of the nonlinear coefficient χ (2) can compensate the
wave vector mismatch introduced by material and waveguide
dispersion. The period of the QPM grating at room temperature
is �QPM = 16.751 μm. However, to minmize photorefraction
we heat the sample to 230 ◦C. Due to thermal expansion
�QPM increases to 16.805 μm, leading to phase matching
of second-harmonic generation (SHG) between the FW00

and the SH00 modes at an FW wavelength of 1557 nm.
Due to the temperature and wavelength dependence of the
mode-propagation constants, the normalized phase mismatch
�βL can be adjusted in our QPM-LiNbO3 waveguides by
varying the FW wavelength or the crystal’s temperature.

In the nonlinear experiments, the FW is converted to
SH. However, for nonzero phase mismatch the SH is back
converted to the FW after the phase-coherence length lpc =
π/|�β| due to the different phase velocities of FW and SH.
The subsequent generation and back mixing of the SH leads to
a phase shift of the FW [26–29]. The physical consequences of
the phase shift induced by the back-converted SH are similar
to those of the nonlinear refractive phase shift induced by
the Kerr nonlinearity. The “cascaded” process of simultaneous
SHG and back conversion is called cascaded second-order non-
linearity [30] and mimics an effective Kerr nonlinearity. The
cascaded nonlinearity is more flexible than a Kerr nonlinearity
because its sign and strength can be adjusted by changing the
phase mismatch. For a positive phase mismatch the effective
cascading nonlinearity acting on the FW is positive and
focusing, whereas it is negative or defocusing for a negative
phase mismatch. Discrete spatial solitons can be excited in
both scenarios [7,31,32]. In the first case they bifurcate from
the top of the bands with a transverse wave number of k⊥ = 0.
In the second case they are generated from the bottom of
the band at k⊥ = ±π/d. Both situations are indicated by the
black arrows in Fig. 1(c). However, due to the dependence
of the cascaded nonlinearity on the wavelength-dependent
phase mismatch, the nonlinearity becomes strongly frequency
dependent and no longer acts instantaneous. The consequences
for ultrashort pulse propagation are carefully discussed in
Refs. [33,34] and related works. The aim of this contribution
is to experimentally explore the spatiotemporal dynamics
of discrete spatial solitons in the case of pulsed excitation,
when the noninstantaneous character of the nonlinearity starts
to influence the dynamics. Experiments were carried out
with pulse lengths of a few ps. The corresponding spectral
width allows us to observe spatial soliton formation close
to the phase-matching wavelength but already enables the
investigation of effects induced by varying phase mismatch
across the spectrum.
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FIG. 2. (Color online) (a) Scheme of experimental setup showing
the laser and beam shaping, the coupling to and from the sample
with microscope objectives (MO), and the pulse-analysis setup.
(b) Intensity (solid lines) and phase (dashed lines) of the input pulses
at λ = 1552.5 nm and λ = 1560.8 nm.

The spatiotemporal intensity distribution of the FW part
of the signal transmitted through the WGA is characterized
using the experimental setup shown in Fig. 2(a). Optical pulses
with a pulse length of 7.4 ps full width at half maximum
(FWHM) were generated with an erbium-doped fiber laser
and amplifier system from Pritel at a repetition rate of 5 MHz.
The waveguide input is monitored by splitting off a small
fraction of the input beam and measuring the power with
an indium-gallium-arsenide (InGaAs) photodiode. To excite
several waveguides of the WGA simultaneously, the input
beam is shaped with a 300-mm–focal-length cylindrical lens.
Together with a 10× coupling objective this forms a telescope
for only the horizontal beam axis, leading to an elliptic input
beam spot with a horizontal (vertical) FWHM of 42 μm
(4 μm). The output of the WGA is filtered with an RG1000
filter to suppress the generated SH. The FW is partly routed to
an InGaAs camera which captures the time-integrated spatial
intensity distribution of the output of the WGA. To measure
the absolute output power, the camera can be replaced by an
InGaAs photodiode. The FW output is spatially filtered by a
pinhole which is placed in the image plane of the coupling
objective. By this aperture one waveguide is selected for
further characterization. The light from the selected waveguide
is coupled to a single-mode fiber and routed either to an optical
spectrum analyzer (OSA) or a frequency-resolved optical
gating (FROG) pulse-measurement device based on SHG [35].
The temporal profile of the pulse is numerically retrieved
from the FROG trace [36]. For double checking the measured
FROG traces, their frequency marginals were compared with
independently measured spectra [37]. The amplitude and the
phase distribution of the input pulses were also measured with

the FROG and used as input conditions in the simulations.
These are shown in Fig. 2(b) for the wavelengths used in the
experiments reported here. The pulse shape shows a single
intensity maximum with a slightly asymmetric tail and does
not show a dependence on wavelength. The small positive chirp
of the pulse changes with wavelength. The time direction and
the sign of the pulse’s phase, which are not uniquely defined
by SHG-FROG measurements, are determined by simulations
showing either spectral broadening or narrowing as explained
below in Sec. IV.

III. NUMERICAL SIMULATION

For a complete understanding of the experimental results
and to obtain information about the pulse dynamics inside
the sample, we conduct numerical simulations of the pulse
propagation. Nonlinear propagation in the WGA is described
by the coupled mode equations(

i
∂

∂z
− DFW

2

∂2

∂t2
+ βFW (z) + i

αFW

2

)
uFW

n

+ cFW
[
uFW

n+1 + uFW
n−1

] = −ωFWχeffu
FW∗
n uSH

n , (3)

(
i

∂

∂z
+ iδ

∂

∂t
− DSH

2

∂2

∂t2
+ βSH (z) + i

αSH

2

)
uSH

n

= −ωFWχeff
[
uFW

n

]2
. (4)

Here the um
n are the complex amplitudes of FW and SH in

the nth waveguide, with the index m denoting either FW or
SH. The dispersive characteristics of the WGA are taken into
account through the group-velocity dispersion (GVD) coef-
ficients DFW = 0.0015 ps2/cm and DSH = 0.0044 ps2/cm.
The GVM coefficient is defined as δ = 1/vSH

g − 1/vFW
g =

3.32 ps/cm with the group velocities vm
g . αFW = 0.047/cm

and αSH = 0.092/cm are the linear loss coefficients. The z

dependence of βm(z) describes the linear inhomogeneity of the
waveguides along the propagation direction due to temperature
variations in the crystal oven and crystal inhomogeneities.
Finally, the nonlinear interaction is accounted for by the
effective nonlinearity χeff containing the mode overlap and
the applicable second-order nonlinear susceptibility element
χ (2)

zzz = 20.6 pm/V [38]. The coefficients describing the disper-
sion in the WGA are determined by wavelength-dependent nu-
merical calculations of the mode-propagation constants based
on a precise description of the WGA index profile [39,40]
and measured values for the refractive index of lithium
niobate [41]. The system of Eqs. (3) and (4) is solved with
the well-known split-step algorithm [42].

To identify the effect of dispersion on the nonlinearity we
first compare numerical simulations of pulse propagation in an
idealized system without GVM and GVD, and in the real WGA
taking all experimental conditions into account. Both cases are
compared in Fig. 3 (upper and bottom rows, respectively) for
a positive phase mismatch resulting in an effective focusing
nonlinearity. We consider a Gaussian spatial input distribution
with a FWHM of 2.8 periods d, corresponding to the
experimental beam width. The phase mismatch �βL = 51π ,
which is also used in the experiments, is large enough such
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FIG. 3. (Color online) (a)–(c) Pulse propagation in a homoge-
neous WGA without GVM and GVD, with Gaussian pulse excitation
of 100 ps FWHM pulse length, and a phase mismatch �βL = 51π .
Normalized power in (a) the central waveguide and (b) in the fourth
waveguide from the center at the output of the WGA. (c) Normalized
time-integrated power in all waveguides at the output of the WGA.
(d), (e) Same as (a)–(c) in the WGA of our experiment with the
experimental input pulse taking into account all experimental details,
e.g., nonuniformities and dispersion.

that FW depletion is small and cascading is the dominant
mechanism. On the other hand it is small enough to observe the
sought-after effects for the experimentally available powers.
In Fig. 3 we plot the normalized output powers vs the input
peak power in the central waveguide [Figs. 3(a) and 3(d)] and,
to represent pulse evolution in the spatial wings of the power
distribution, in the fourth waveguide [Figs. 3(b) and 3(e)]. The
evolution in other waveguides outside the central waveguide
is qualitatively similar to the depicted one. Furthermore, we
show the time-integrated output powers of all waveguides in
Figs. 3(c) and 3(f). In Fig. 3, the plotted quantities for each
input peak power are normalized to the corresponding pulse
energy in the central [Figs. 3(a) and 3(d)], fourth [Figs. 3(b)
and 3(e)], and all [Figs. 3(c) and 3(f)] waveguides, respectively.
In the idealized system [Figs. 3(a)–3(c)] a Gaussian pulse
with a length of 100 ps ensures that GVD can definitely
be neglected. Setting the GVM to zero ensures a constant
nonlinearity and especially prevents phase matching within the
pulse spectrum. The resulting cascaded nonlinearity acts quasi-
instantaneous. The waveguides are assumed to be uniform
along the whole sample. The FW depletion is small with less
than a total of 4% generated SH at the maximum power. A
perfect symmetric picture indicates that the pulses in the array
behave exactly according to their momentary power, like in the
cw case. At the soliton power of 250 to 300 W the powerful
pulse center is concentrated in the central waveguides, forming
a spatial soliton, as seen in Figs. 3(a) and 3(c), respectively. The
pulse here is shortened because, due to discrete diffraction, the

lower-intensity pulse wings spread into the waveguides away
from the center. A resulting pulse breakup in these waveguides
is evident with the missing pulse center and the two remains
of the pulse wings, as seen in Fig. 3(b). This situation is
similar to the X waves reported in Ref. [10]; however, in our
idealized simulation dispersion is neglected and the evolution
is determined by discrete diffraction and nonlinearity only.
Note that each pulse in the figures is normalized to its energy,
and that the remains of the pulse wings in the outer waveguide
have a much lower peak power than the narrow pulse in the
center. When the input peak power exceeds the soliton power
we observe a back switching of energy in Fig. 3(b), which
has also been observed in two-core couplers [18]. However,
in the output powers of the WGA in Fig. 3(c) the beam stays
focused also for powers above the soliton power, indicating
the formation of spatial solitons.

The simulation of the pulse propagation in the WGA sample
with its realistic and nonideal properties uses the measured
7.4-ps-long pulses as input. Figures 3(d)–3(f) present the cal-
culated dependencies where a different behavior is observed.
The simulation was conducted for the same relatively large
phase mismatch of �βL = 51π as above, and not more than
7% of the input energy is converted to SH at the highest input
power. The most noticeable feature in Figs. 3(d) and 3(e)
is the lack of temporal symmetry. The pulse in the center
waveguide [Fig. 3(d)] becomes increasingly asymmetric and
develops a sharply peaked and very powerful tail. This is due
to cascaded SHG, which is generated more efficiently in the
small wavelength wings of the broadened pulse spectrum.
Because of the wavelength dependence (dispersion) of the
effective mode indices, there always exists a wavelength
where phase matching for SHG or sum-frequency generation
occurs. Even when the cascaded nonlinearity is operated far
from that phase-matching wavelength, for decreasing pulse
length or for spectral broadening due to self-phase modulation,
some spectral components are always driven towards phase
matching, where SH is generated more efficiently. In the time
domain the phase-matched SHG corresponds to a growing SH
pulse that propagates with its slower group velocity behind the
FW pulse and withdraws energy from the FW pulse [43]. This
results in asymmetric depletion at the beginning of the FW
pulse and back conversion at the pulse end, yielding a strongly
asymmetric FW pulse, as seen in Fig. 3(d).

The pulses in waveguide 4, plotted in Fig. 3(e), show
the pulse breakup. Furthermore, a more pronounced back
switching with respect to the idealized case discussed above
is observed. As seen in Fig. 3(f) these perturbations dis-
turb the discrete spatial soliton, since for powers above
the soliton power the beam width increases again and the
energy fraction in the central waveguide decreases. For such
powers the cascaded nonlinearity definitely deviates from
an instantaneous cubic nonlinearity due to GVM. Here the
cascaded nonlinearity becomes strongly frequency dependent
and disturbed by significant energy transfer from FW to SH.

IV. EXPERIMENTAL RESULTS

A. Focusing nonlinearity

To experimentally verify the characteristics of a nonin-
stantaneous nonlinearity on the temporal pulse dynamics we
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FIG. 4. (Color online) Results for effective focusing nonlinearity. (a) Power dependence of time-averaged spatial FW output of WGA.
(b) Comparison of spatial outputs of measurement (blue solid line), corresponding to a cut trough data plotted in (a), and simulation (red circles)
for input peak power of 360 W. (c) Measured output spatiotemporal power distribution for FW pulse with 360 W input peak power. (d), (e)
Comparison of the measured (blue dotted line) and simulated (red solid line) (d) temporal and (e) spectral powers in the different waveguides
(waveguide number is indicated in each plot). The power of the input pulse is plotted in the center waveguide as a gray area for comparison.

first investigate the case of focusing nonlinearity. This is
the case when the input wavelength λFW = 1561.8 nm is
above the phase-matching wavelength and the normalized
phase mismatch is positive; �βL = 51π . The results of
measurements and simulations for this case are summarized in
Fig. 4. The time-averaged FW spatial output power distribution
of the WGA vs the input peak power is shown in Fig. 4(a). For
low input powers the beam diffracts, forming a wide Gaussian
pattern at the WGA output. With the increase of the input
power, the output beam is narrowing due to the increasing
cascading nonlinearity, eventually forming a discrete spatial
solitary wave at powers around 300 W [7]. The output field is
analyzed in detail for the input peak power of 360 W, which
is 20% larger than the power required for soliton generation.
Such power is sufficient to observe the effects discussed above,
including the asymmetric pulse reshaping and pulse breakup
in the outer waveguides. For this power the measured spatial
profile of the output beam is compared to the simulated spatial
output profile in Fig. 4(b), showing good agreement between
experimental and numerical results.

The spatiotemporal structure of the FW field is determined
by measuring FROG traces of nine waveguides centered
around the beam maximum. The time-dependent power
retrieved numerically from the measured FROG traces is
shown in Fig. 4(c). Here, the transverse spatial structure of the
waveguide modes is approximated by Gaussian distributions.
In general the measured pulse behavior is similar to the pulse
breakup in the simulations discussed in view of Figs. 3(a)–3(c).

At higher momentary powers, close to the temporal center
of the pulse, the fields are spatially more localized than
in the wings. Here, the beam focuses down to a slightly
narrower spatial distribution than the input beam, confirming
that the peak power is larger than the soliton power. This
leads to temporal splitting of the pulses in the waveguides
away from the beam center and to pulse compression in the
central waveguide. A similar phenomenon was first described
theoretically two decades ago [44] and recently confirmed
experimentally [18] in two-core couplers. We note that such
pulse splitting was also used in WGAs with Kerr nonlinearity
to excite X-shaped waves [10,11,45]. Similar effects were also
observed in bulk media with quadratic nonlinearity [46,47];
however, our work represents the first direct observation in
quadratic nonlinear WGAs.

The measured and simulated temporal power distributions
are directly compared in Fig. 4(d), and we find qualitative
agreement between experiment (blue) and theory (red). We
plot the input pulse in the central waveguide as a gray shading
for comparison. The pulse splitting in the outer waveguides
is clearly visible in both theoretical and experimental traces.
Additionally, the pulse in the central waveguide is narrowed
and skewed towards the trailing edge, as a signature of the
cascaded nonlinearity limitations discussed above in Fig. 3(d).
The back-switching of the pulse in the edge waveguide is
visible; however, it is not as pronounced as in the simulations.
The similarity between the pulses in the waveguides to the
right and to the left of the beam center proves the reliability
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of our measurement approach and confirms that only small
transverse inhomogeneities are present in the WGA.

The measured (red) and simulated (blue) spectra of the
pulses in different waveguides are shown in Fig. 4(e). The
plotted experimental spectra are measured with an OSA
and agree well with the spectra retrieved from the FROG
(not shown). Again we plot the spectrum of the input pulse
(gray shading) for comparison. The measured and simulated
output spectra are split into several peaks as known from the
well-understood process of self-phase modulation [48]. The
resulting considerable spectral broadening with respect to
the input spectrum is obvious.

Although the deviations between the simulation and ex-
periment are relatively small, they still need to be addressed.
The origin of this mismatch is likely related to a small crystal
nonuniformity. This nonuniformity has been measured with
tuning curves of diffractionless propagating beams in the array
and was included into the theory by variable propagation
constants βm(z). However, small-scale inhomogeneities and
defects of the waveguides as well as fluctuations of the cou-
pling between the waveguides in the array are not measurable
and hence cannot be included in the simulations. A potentially
more serious reason for uncertainties in the coupling was the
remaining photorefraction in the sample. Despite the high
operation temperature of 230 ◦C, the relatively strong SH
wave induces small photorefractive effects. Thus, it influences
the phase matching and the coupling between waveguides,

hindering a perfect theoretical description of the system.
Additionally, the measured average intensities in the outer
waveguides are not very high, leading to an operation of the
FROG with long integration times, resulting in noisy FROG
traces. This affects the FROG retrieval algorithm, and therefore
fine details of the pulses may not be completely retrieved.

B. Defocusing nonlinearity

Measurements equivalent to those in the case of focusing
nonlinearity are also conducted for defocusing nonlinearity at a
wavelength of 1553 nm, below the phase-matching wavelength
with a normalized phase mismatch of �βL = −53π . To
obtain spatial focusing, staggered states at the edge of the
Brillouin zone with transverse wave numbers of k⊥d = ±π

are excited by tilting the excitation beam [7]. For excitation
at the edge of the Brillouin zone, the action of the effective
defocusing nonlinearity leads to spatial localization inside the
Bragg-reflection gap, resulting in the formation of a spatial
gap soliton. Due to the lower coupling efficiency with tilted
excitation, the highest peak power coupled to the WGA is
lower than in the case of normal excitation. The input-power
dependence of the WGA output-power distribution is shown
in Fig. 5(a). Again we find spatial narrowing of the beam with
increasing input power. For the highest measured peak power
a spatial gap soliton is formed whose spatial structure agrees
well with the simulation results, as shown in Fig. 5(b). The

FIG. 5. (Color online) Result for effective defocusing nonlinearity. (a) Power dependence of spatial FW output of WGA. (b) Comparison of
spatial outputs of measurement (blue solid line), corresponding to cut trough the data plotted in panel (a), and simulation (red circles) for input
peak power of 300 W. (c) Measured output spatiotemporal power distribution for FW pulse with 300 W input peak power. (d), (e) Comparison
of the measured (blue dotted line) and simulated (red solid line) (d) temporal and (e) spectral powers in the different waveguides (waveguide
number is indicated in each plot). The power of the input pulse is plotted in the center waveguide as a gray area for comparison.
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maxima in the wings of the spatial distribution, which are lo-
calized between the waveguides, stem from higher-order linear
FW bands excited by the tilted input beam. This is an artefact
of the lower-excitation quality with the tilted input beam.

Figure 5(c) shows the measured spatiotemporal intensity
distribution of the FW output field at an input power of 300 W.
Due to the lower input power, the FROG measurements only
produced meaningful results for the seven central waveguides.
Similar to the focusing case, we again observe pulse narrowing
in the central waveguide. However, the splitting of the pulses
is not as pronounced and can only be clearly observed in
waveguides −2 and −3. The same observation is made when
comparing the measurement (blue) and the simulation results
(red) for each waveguide in Fig. 5(d). Both experiment and
simulation show a small dip between the two subpulses in the
outer waveguides. In comparison with the focusing case, the
measured output pulse shapes are much closer to the input
pulse shape (gray shading).

Being very narrow and similar to the input spectra, the
measured and simulated spectral distributions in Fig. 5(e) are
distinctively different from the ones obtained in the focusing
case. For increase of the input power the positive chirp of the
input pulse is mitigated by the negative phase shifts of the
self-phase modulation, leading to spectral narrowing. A peak
power of 300 W is large enough to compensate the chirp from
the input pulse, but does not overcompensate it, which again
would yield spectral broadening [49,50].

Due to the missing spectral broadening, only negligible
FW spectral components are shifted towards phase matching,
and the strong temporal asymmetry of the output pulses [see
Figs. 3 and 5(d)] is prevented. In this case the nonlinearity
acts more as quasi-instantaneous. However, as we tested in

simulations, for powers noticeably above the soliton power,
spectral broadening occurs. Similar effects as for focusing
nonlinearity are observed.

V. SUMMARY

In conclusion, we have investigated the spatiotemporal
dynamics of ultrashort pulse propagation in WGAs with
quadratic nonlinearity in the regimes of focusing and defo-
cusing effective nonlinearity. We have revealed the physics
of such effects as pulse breakup and solitary-wave decay
for spatiotemporal pulse evolution. We have found that the
cascaded nonlinearity is limited by the frequency dependence
of the mode indices and by nonlinear induced phase matching,
yielding FW losses due to SHG and degrading nonlinear
refraction. These effects act as perturbations, limiting the
formation of spatial solitary waves in quadratic nonlinear
WGAs for powers above the soliton power. Similar effects
are known for WGAs with an instantaneous Kerr nonlinearity
where, upon propagation irregularities, spatial solitons will
broaden, decay, or break up into several solitary entities [51].
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