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Bose-Einstein condensation of light in a cavity
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The paper considers Bose-Einstein condensation (BEC) of light in a cavity with a medium. In the framework
of a two-level model we show the effect of gaseous medium on the critical temperature of light condensation
in the system. Transition of the system to the state with released light condensate is illustrated in consequent
stages. Analytical expressions for a typical spatial extent of the condensed cloud of photons, as well for spectral
characteristics of the condensate peak are derived. Energy and heat capacity of photons as functions of temperature
are obtained. Finally, we demonstrate that the energy of light can be accumulated in the BEC state.
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I. INTRODUCTION

Despite the fact that Bose-Einstein distribution was first
obtained for photons [1], until recently the possibility of
experimental observation of Bose-Einstein condensation of
light seemed to be quite absurd. Reasons for such a common
position were mainly the following obvious circumstances.
First, it is difficult to imagine a situation where photons, which
are considered to be massless particles, could exist in a vacuum
in the lowest energy state, i.e., with infinite wavelength.
Second, it is difficult to implement a system with the conserved
number of photons for arbitrary description parameters of a
system. In other words, to observe Bose-Einstein condensation
it is necessary to ensure the nonvanishing chemical potential
of photons. These difficulties do not arise (or at least not in
such an extent) in other boson systems. Recent years were
marked by the series of successful experimental realizations of
Bose-Einstein condensation in a wide variety of many-particle
systems: from ultracold gases of atoms and molecules [2–6] to
exciton polaritons systems [7,8]. Therefore, despite the insu-
perable (at first glance) hindrances, physicists have been again
and again reverting to the tempting idea of condensing light.

A way to get around the first constraint (lack of photon
mass) was first proposed in Ref. [9]. In that paper, the authors
considered the behavior of photons in a cavity formed by
two parallel planes with high reflectivity (for similar ideas,
see also Refs. [10,11]). Due to the finiteness of the system’s
longitudinal size (transversal size is infinite in this model), the
longitudinal component of the electromagnetic field inside a
cavity is quantized. This in turn leads to the appearance of
an effective mass in the dispersion of photons in a cavity.
The uniqueness of a choice of the effective mass is provided
by exciting the corresponding longitudinal cavity mode by
external laser radiation from the red side of resonance. We
also note that although in that paper the authors had discussed
the Bose-Einstein condensation and superfluidity of photons,
one cannot obtain directly through this approach the critical
temperature of Bose condensation because of the logarithmic
divergence of integrals in the model of two-dimensional homo-
geneous bosonic systems. In addition, in the framework of Ref.
[9], photons occupy a vacuum cavity, without any medium,
and therefore one can hardly imagine the establishment of
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thermodynamic equilibrium in the system that is necessary to
observe Bose-Einstein condensation (BEC).

Therefore, the key issue became the question of a possible
thermalization of a quasiconstant number of photons in a
Fabry-Perrot cavity or a similar one. This issue has been
resolved rather recently [12]. In that study, the authors were
able to achieve thermodynamic equilibrium of photons in a
cavity filled with a liquid organic dye, owing to the balance
between the processes of an absorption and reemission of
photons by dye molecules. A total number of photons is
conserved on average, and possible small losses (for example,
due to imperfections of mirrors) are compensated for periodic
weak pumping. In a subsequent work [13], the authors
produced compelling arguments in favor of the experimental
observation of BEC of light.

To facilitate the localization of photons inside a microcavity
in experiments Refs. [12,13], the authors used slightly curved
mirrors. Due to the finite curvature of cavity walls, photons
tend to be stored in the geometric center of the cavity under
the effect of purely geometric pseudopotential. In addition, the
presence of this potential in photon dispersion enables us to
determine the finite critical temperature of Bose condensation.
Upon reaching the condensation point, a blurred photonic
“cloud” transforms into a bright narrow spot. As in the case
of ultracold-gas experiments, it demonstrates visually the
phenomenon of Bose condensation of light in the system
under study. Simultaneously, in the inverted space of photon
wave vectors (or their energies), one can observe a narrow
and high peak, corresponding to the amount of condensed
photons in the system.

The experiment described in Refs. [12,13] is relatively sim-
ple from the viewpoint of implementation and observation of
Bose condensation in other many-particle systems (see, for ex-
ample, [2–6]). However, the result is so intriguing that it gives
a stimulus to a substantial number of theoretical studies on the
subject [14–22]. Despite the considerable progress in this area,
the phenomenon of condensation of light needs further study.

In particular, it would be interesting to consider in full
the problem of determining the effect of medium inside a
cavity on the parameters of Bose condensation of photons in
equilibrium with the medium. In other words, it is unclear in
what way the medium that is so needed for thermal equilibrium
to be achieved is included in the final equation for determining
the critical parameters of the system in Refs. [12,13]. This
question was to some extent studied in Ref. [14], but the system
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considered therein is spatially isotropic and homogeneous,
which is rather far from current experimental conditions
[12,13]; and also in Ref. [17] from the first principles, however,
no direct answer in explicit form was obtained. So in the
present paper we propose the plane answer: The medium
can redefine a photon’s effective mass, therefore changing the
critical temperature and other parameters.

One more rather important issue is the consequent deriva-
tion of statistical properties, primarily the form of the ef-
fectively two-dimensional distribution function of photons in
a cavity. Recall that the authors of Refs. [12,13] used for
numerical estimates the form which is valid for the truly two-
dimensional Bose condensates. In our opinion, to obtain using
this approach the correct expressions for Bose condensation
parameters in a consistent and noncontradictory way is rather
difficult. We give an expression for the correctly normalized
two-dimensional distribution function, which leads to the
proper definition of the critical temperature.

In this paper we mainly pay attention to the above-
mentioned issues. Section II describes one of the ways to
build a statistical description of photons in a cavity with
medium. Special attention is given to a favorable case of
thermodynamic equilibrium. At this stage, in-cavity medium
characteristics are introduced into the distribution function
of photons. This is to some extent a generalization of the
approach used previously by the authors of Ref. [14]. In
Sec. III, we demonstrate the evolution of the system to the
phase transition point; we derive consequently the statistical
and thermodynamic characteristics of the photonic component
of the system. Finally, we show explicitly that light energy can
be accumulated in Bose-condensed photons.

II. STATISTICAL DESCRIPTION OF PHOTONS IN A
CAVITY IN THE PRESENCE OF GASEOUS MEDIUM

On the kinetic stage of evolution, properties of photons,
which can be absorbed and reemitted by medium inside
a cavity, can be described with the kinetic equation for a
distribution function of photons as (quasi)particles. However,
the use of only the kinetic equation is insufficient. From
the general assumption it is clear that the behavior of the
distribution function of photons is affected by a dispersion
law of photons inside a cavity, which should include the
consideration of boundary conditions in a self-consistent way.

The dispersion relation for photons in a cavity with the
presence of medium, generally speaking, should be determined
on the basis of Maxwell’s equations supplemented by the
boundary conditions on the surfaces of mirrors. In the case
of the narrow cavity, confined on both sides by two coaxial
sections of an ideal mirror, the longitudinal modes of the
electromagnetic field in the cavity are discrete. Thus, for the
longitudinal wave number kz in a case of ideally reflecting
boundary conditions one obtains

kz = πq

l(r)
, (1)

where q is a longitudinal mode number, and l (r) is a cavity
width depending on transversal radius r (see Fig. 1). Therefore,
we actually proceed to the cylindrical system of coordinates,
where, due to the symmetry of the system under study, photon

FIG. 1. (Color online) A cavity with thermostatic gaseous
medium bordered by two spherically curved mirrors with a distance
l(r) between them. Due to the symmetry of the system, the state space
of a photon inside the cavity is characterized only by longitudinal kz

and transverse kr wave numbers.

modes are fully described by two components of wave vector,
kz and kr , respectively. In terms of these components, photon
energy can be determined as

ε∗ = �c̃k = �c̃

√
k2
z + k2

r , (2)

where c̃ is the speed of light in medium. For the sake of
simplicity, in further expressions throughout this paper the
tilde sign is omitted.

As we have already mentioned, the longitudinal wave
number is the set of discrete constants (1), and currently
one can thermalize only one of these modes in experiment
(see Refs. [12,13]). Therefore, one can treat formula (2) as
the expression for relativistic energy of quasiparticle with
some effective mass that depends on kz. Taking into account
a spherical curvature of mirrors to determine the distance
between them l (r), and considering l (r) much smaller than
a mirror size, one can expand Eq. (2) as follows (see also
paraxial approximation in Refs. [12,13,17]):

ε∗ = m∗c2 + �
2k2

r

2m∗ + 1

2
m∗�2r2, (3)

where we have introduced the photon effective mass

m∗ ≡ �kz (0)

c
, (4)

as well as the effective frequency � of the harmonical
pseudopotential:

�2 ≡ 2c2

l0R
. (5)

In the last expression, R is the curvature radius of mirrors, and
l0 ≡ l(0) is the width of the cavity on the symmetry axis.

We emphasize here that, according to Eq. (3), photons
behave themselves as if they were two-dimensional particles
with a mass m∗, moving with kinetic energy �

2k2
r /2m∗

in external harmonic potential �. It leads us to a great
analogy with the phenomenon of Bose condensation in trapped
ultracold gases. In terms of photons, Bose condensation means
the macroscopical occupation of the lowest energy level, i.e.,
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with kr = 0. Therefore, conducting experiments for spectral
density of radiation inside cavity, one would measure the peak,
corresponding to the frequency

ω0 = m∗c2

�
. (6)

In recent experiments [12,13] photons have been condensed
to the state with the frequency ω0 = 3.2 × 1015 s−1 (that
corresponds to λ0 = 584 nm).

We define the distribution function of photons fγ (r,k,t) as
the total amount of photons (both free particles and absorbed
during atomic transitions quanta of field), localized at time t in
the unit phase volume {r,k}. The behavior of the distribution
function of photons in cavity on the kinetic stage of evolution
obeys the kinetic equation

d

dt
fγ (r,k,t) = Icoll σ (r). (7)

One should consider the derivative in the left side of Eq. (7) as
a so-called substantial derivative (see Refs. [23,24]). Function
σ (r) takes into account the finite size of the system. In a
simplified case, one can consider that σ (r) = 1 if r points
inside the cavity with medium, and σ (r) = ∞ in other cases.
A rate of gaining thermodynamic equilibrium between photons
and medium, if it is possible for given parameters of a system,
is determined by collision integral Icoll, introduced into the
right-hand side of Eq. (7). The collision integral Icoll must
take into account not only those processes that lead to the
establishment of thermodynamic equilibrium, but also the
possibility of absorption and reemission of photons by medium
even in equilibrium state of system. In other words, the balance
between the processes of creation and annihilation of photons
should be also included in the distribution function fγ (r,k,t).

From general considerations, however, it is clear that
the limiting case of thermodynamic equilibrium should be
described in a much simpler way than processes that result
this state. For time periods to be much more than relaxation
time, the correlations between free and bound photons disap-
pear almost entirely. Thereafter, one naturally considers the
distribution function of photons, thermalized with medium
inside a cavity, to be written as

fγ (r,k) = f (r,k) + f̃ (r,k) , (8)

where f (r,k) corresponds to the equilibrium Bose distribution
function of free photons with dispersion law (3) and the
chemical potential of photons μ∗,

f (r,k) = g∗
{

exp

(
ε∗ − μ∗

T

)
− 1

}−1

, (9)

where T is the temperature of the system in energy units, and
the quantity g∗ takes into account the possible degeneracy
in photon energy (see Ref. [14]). The degeneracy of the
photon modes, which, in principle, could depend on the photon
energy ε∗, throughout the present paper can be considered
as some effective degeneracy g∗ ≈ 2 (see the discussion in
the Conclusion section). Distribution function (9) should be
normalized on the total amount of free photons N in the system

under study,

∫∫
dkdr

(2π )3 f (r,k) = N. (10)

Correspondingly, the physical quantity f̃ (r,k) demonstrates
the portion of photons that are bounded with structural units
of gaseous medium (atoms or molecules) to create the excited
states of these units. Similarly, this distribution function is
normalized to the total amount of bounded photons Ñ in the
system under study,

∫∫
dkdr

(2π )3 f̃ (r,k) = Ñ . (11)

As a consequence of Eq. (8), the total number Nγ of pumped
photons conserves:

Nγ = N + Ñ . (12)

We emphasize here that only the mean occupation numbers of
photons in the system have an effect on the expectation values
of measurable quantities, and therefore throughout the paper
we do not take into account their fluctuations. For the effect of
fluctuations in light BEC, see, e.g., Ref. [17].

We emphasize that the quantities f (r,k) and f̃ (r,k)
in expression (8) and therefore in kinetic equation (7) are
purely three-dimensional. Reduction to the effectively two-
dimensional problem should be introduced by consequent
procedure, taking into account the geometry of the cavity.
The formal way to do it is to integrate three-dimensional
distribution function with respect to z and then sum for
all possible values of kz. For example, a two-dimensional
distribution function of free photons is obtained following this
procedure and taking into account Eqs. (9) and (3) and also that
only one longitudinal mode q survives (see the Appendix):

f (r,kr )|2D =
∑
kz

∫
z

dz

2π
f (r,k)

= g∗q
2

{
exp

(
�

2k2
r

2m∗T
+ m∗�2r2

2T
+ m∗c2 − μ∗

T

)
− 1

}−1

.

(13)

As one can see from Eq. (13), the two-dimensional distribution
function of free photons f (r,kr ) depends on longitudinal mode
number q. Consequently, the critical number of photons to
observe Bose condensation also depends on q (see Sec. III).

Note also the following circumstance. In the large range of
gaseous medium parameters, the amount of bounded photons
can be relatively weak, f̃ (r,k) � f (r,k). Therefore, from
a mathematical point of view one can treat f̃ (r,k) as the
a perturbation of f (r,k) in Eq. (8). Taking into account
Eqs. (9) and (3) one may state that the perturbation parameter
is proportional to the photon effective mass (4) for other
parameters of the system (temperature, chemical potential of
photons, etc.) to be constant. In this sense, one can contend that
interactions between photons and matter redefine the photon
effective mass.
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III. STATISTICAL AND THERMODYNAMICAL
PROPERTIES OF BOSE-EINSTEIN CONDENSATION

OF PHOTONS IN A CAVITY

To define a transition temperature for the BEC of photons
in matter, one needs to introduce a condition for the chemical
potential of photons similar to those ones in the theory of
atomic BEC (for details see Ref. [14]):

μ∗ (T � Tc) = m∗c2. (14)

This condition ensures the distribution function of free photons
(9) to be positive. Before determining critical parameters,
we examine the process of gaining the phase transition. We
introduce a two-dimensional density of free photons in a cavity
normalized on the total number of free photons N :

n (r) = 1

(2π )3

∑
kz

∫
z

dz

∫
kr

dkrf (r,k). (15)

Calculating the integrals in the expression (15) and using
definition (9), one can easily manifest an explicit expression
for the upside of the critical point in the system under study:

n(r) = g∗q
4π

m∗T
�2

× ln

{
1 − exp

[
1

T

(
μ∗ − m∗c2 − 1

2
m∗�2r2

)]}−1

.

(16)

According to the definition of the critical point (14) and the
density of free photons (9), the chemical potential of photons
cannot overflow the value of m∗c2. Consequently, one can
plot a spatial distribution of light intensity in the cavity, using
the expression (16) for the photon density profile n (r) with
different chemical potential μ∗, and it will correspond to the
different temperatures above the critical one.

Figure 2 shows the three-dimensional plots showing the
spatial dependence for the density of free photons n (r)
for three different chemical potentials: In panels (a) and
(b), before the criticality (where μ∗ < m∗c2), and in panel
(c), at the critical point (where μ∗ = m∗c2). Figure 2 was
plotted for parameters of the system, similar to parameters
of experimental setup [13]: the longitudinal mode number
q = 7 and the effective potential � ≈ 3 × 1011 s−1, photon’s

effective mass m∗ on order of 10−35 kg, and room temperature
T = 300 K ≈ 2.6 × 10−2 eV. Note that the peak on plot (c),
where the BEC starts, is actually infinite but cut due to our
restricted visualization possibilities. For these reasons we do
not introduce the vertical scale for n(r).

We can define luminosity of light radiation inside cavity
as an energy transferred through the unit surface [25]. This
quantity can be calculated as the function of radial coordinate
by summing all the energies of thermalized photons inside
cavity with corresponding weight given by the Bose-Einstein
distribution function,

I (r) = 1

(2π )3

∑
kz

∫
z

dz

∫ ∞

0

g∗ ε∗ (kr ,r) d
(
πk2

r

)
exp

{
1
T

[ε∗ (kr ,r) − μ∗]
} − 1

,

(17)

where ε∗ (kr ,r) is given by the expression (3). Taking now
into account expression (16), and introducing a dimensionless
quantity ξ = �

2k2
r /2m∗T , one can rewrite (17) in a more

convenient form,

I (r) =
(

m∗c2 + 1

2
m∗�2r2

)
n(r)

+ g∗q
4π

m∗T 2

�2

∫ ∞

0

ξ dξ

eξ+u(r) − 1
, (18)

where u(r) is also a dimensionless quantity that refers to
“potential” energy:

u(r) = m∗�2

2T
r2 + m∗c2 − μ∗

T
. (19)

Unfortunately, the improper integral in (18) can be expressed
only in terms of special functions. However, one can always
calculate it numerically in order to compare with experimental
observations.

Figure 3 shows the spatial distribution of the light luminos-
ity I (r) for two cases: (a) before the criticality (μ∗ < m∗c2);
(b) at the critical point (μ∗ = m∗c2). These figures were plotted
for the parameters of the system, similar to the parameters of
experimental setup [13], which were mentioned above. One
can easily see the appearance of the bright spot in the center
of a cavity at the BEC transition point (the position of the
spot corresponds to the minimum of potential energy). This

FIG. 2. (Color online) Consequent stages of evolution of the system towards the critical point of BEC of photons: (a),(b) before the
condensation starts and (c) at the BEC phase transition point. The height of every three-dimensional plot corresponds to the spatial density of
free photons n(r) (in arbitrary units) plotted as a function of Cartesian coordinates {x,y} (in μm) for different chemical potentials of photons
μ∗. Note that in panel (c) the height of the peak, n(0), is actually infinite. Naturally, the condensation of light starts at the geometrical center of
the cavity, r = 0.
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FIG. 3. Spatial distribution of light luminosity, defined by expres-
sion (17), inside a cavity: (a) before the Bose condensation; (b) as
Bose condensation of photons starts. One can detect the BEC state by
observation of the bright spot in the geometrical center of a cavity.

completely coincides with the results of the visual part of
experimental observation of BEC of photons in a microcavity
[13], where the same bright spot is observed as the system
evolves to the state with Bose-Einstein-condensed light.

So that is the reason why we need the curved mirrors: We
can observe Bose-condensed photons visually.

We calculate the critical total number of photons Nc

necessary to be pumped into a cavity to ensure the phase
transition. According to the definition of the critical point (14),
the critical number of photons is determined by the expression

Nc =
∫∫

dkdr

(2π )3 fγ (r,k)

∣∣∣∣
μ∗=m∗c2

. (20)

Performing the integration and taking into account Eqs. (8)–
(11), for the cavity with photonic modes (3) one obtains

Nc = g∗ π2

12
q

(
Tc

��

)2

+ Ñ (Tc) , (21)

where Tc is the critical temperature of Bose-Einstein con-
densation in the system consisting of Nc photons in total,
among which Ñ (Tc) are bounded with atoms at current
temperature. In general, Eq. (21) is an intricate equation that
should be solved in a self-consistent way, taking into account,
for example, the kinetic equation for distribution function.
However, for the sake of simplification we use the expression
for the amount of photons bounded with noninteracting two-
level atomic gas in the system with chemical potential of
photons to be conserved (see Ref. [14]),

Ñ (T )

Na

=
(

1 + gα1

gα2

e�/T

)−1

, (22)

where Na is the number of two-level atoms, gα1 ,gα2 are degen-
eracies of the ground and excited atomic levels with energies
εα1 ,εα2 , correspondingly, and � is resonance detuning,

� = εα2 − εα1 − �ω0, (23)

with ω0 given by formula (6). Therefore, substituting (22) into
(21), one obtains the expression to determine the necessary
amount of photons, which were pumped into the system to
observe BEC:

Nc = g∗ π2

12
q

(
Tc

��

)2

+ Na

(
1 + gα1

gα2

e�/Tc

)−1

. (24)

Now we can estimate an effective number of photons to start
Bose condensation inside cavity. For photons with longitudinal
mode q = 7 thermalized at room temperature T = 300 K
inside the cavity with similar parameters as in Ref. [13], we
need around Nc ≈ 3 × 105 particles.

The number of photons in BEC state beneath the critical
point (T < Tc) is given by the expression

Nkr=0(T ) = Nγ − π2

12
g∗q

(
T

��

)2

−Na

(
1 + gα1

gα2

e�/T

)−1

,

(25)

where Nγ is a total amount of photons pumped in the system
[see (12)]. In the limiting case of zero temperature the number
of condensed photons is

Nkr=0 (T = 0) =
{
Nγ , if � > 0,

Nγ − Na, if � < 0.
(26)

To facilitate experimental implementation of photonic BEC,
it is desirable to make favorable conditions for increasing the
number of condensed photons. According to expression (26)
one should choose the case of � > 0, or, in other words, the
red side of resonance �ω0 < εα2 − εα1 . It is possible to do it
because one can manage the geometry of a cavity with photons
and therefore take ω0 under the control.

It is instructive to show how the critical temperature Tc

of the light condensation depends on the total number Nγ of
photons in the system, and to compare this dependence with
traditional fractional-power laws in alkali-metal-atom BEC
experiments (see, e.g., Ref. [26]). Unfortunately, Eq. (24),
which also determines the functional dependence Tc(Nγ ≡
Nc), cannot be solved analytically in elementary functions of
Nγ . Therefore, the only possibility is to solve it numerically,
for the system parameters to be close to experimental ones.
However, the behavior of a solution depends crucially on
the detuning parameter �, given by Eq. (23), and reveals
different condensation regimes. The existence of such regimes
in three-dimensional systems was first studied in Ref. [14].
Figure 4 shows a few of these regimes that are possible for a
constant number Na of a gaseous medium’s structural units.
Plotting Fig. 4, we took into consideration that 0 < � � �ω0:
It is desirable, as we mentioned above, to have the positive
detuning, but, on the other hand, this detuning should be rather
small for thermalization of light on the gaseous medium to be
possible. The traditional fractional-power law regime (a curve
labeled as �3 on Fig. 4) is thereby only one of few possible
regimes of condensation of photons (see also Ref. [14]).

We now put into consideration the spectral density of free
photons νkr

in the phase space of transversal wave vectors kr ,
defined by a normalization condition,∫

νkr
dkr = N, (27)
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FIG. 4. Critical temperature Tc as a function of the total number
of photons Nγ in the system, plotted according to Eq. (24) for
different values of detuning parameter �. The phenomenon of BEC
of light demonstrates different regimes of condensation. The resonant
regime (�0 ≈ 0) is desirable from the viewpoint of photon gas
thermalization.

where N is the total number of free photons in the system that
are in thermodynamical equilibrium with the components of
the system. In the case of two-level atomic gas, as we have
already mentioned, this quantity can be expressed explicitly:

N = Nγ − Na

(
1 + gα1

gα2

e�/T

)−1

. (28)

It is convenient to give the spectral density of free photons
νkr

beneath the phase transition point in the form

νkr
= Nkr=0 δ (kr ) + νkr �=0, (29)

where δ (kr ) is the two-dimensional (2D) Dirac δ function. The
quantity νkr �=0 describes the spectral density of photons with
nonzero transverse momenta kr , obtained from distribution
function f (r,k):

νkr �=0 = g∗ ∑
kz

∫
V

dV

(2π )3

{
exp

(
�

2k2
r

2m∗T
+ m∗�2r2

2T

)
− 1

}−1

= g∗q
4π

T

m∗�2
ln

[
1 − exp

(
− �

2k2
r

2m∗T

)]−1

. (30)

For the convenience of subsequent discussion, we introduce
also the quantity Nkr �=0, showing the amount of noncondensed
particles below the BEC transition point,

Nkr �=0 = lim
δ→+0

∫ ∞

δ

2πkr νkr �=0 dkr

= π2

12
g∗q

(
T

��

)2

, (31)

so the total number of free photons in the system under
study is given as the sum of the condensed and noncondensed
contributions, N = Nkr=0 + Nkr �=0.

In the case when all the particles are Bose condensed, the
spectral density of photons νkr

, according to Eq. (29), is a
δ-peaked function. Of course, in the real experiment, when

one measures the spectrum of photons in a cavity, the spectral
width is limited due to the finite resolution of a measuring
device. Recall that the phenomenon of light condensation
in a microcavity is recognized in essence only due to the
appearance of a sharp peak in a vicinity of the cutoff frequency
ω0 (see Ref. [13]). However, even before the resolution limit is
gained, the peak has a finite width “blurred” due to the thermal
fluctuations of noncondensed particles, and consequently the
spectral width of measured signal, generally speaking, will
depend on the temperature of the system. The thermal blur of
the Bose-condensed signal can be characterized by the quantity

�〈ω − ω0〉 � �
2

2m∗
〈
k2
r

〉
. (32)

The mean value of the squared transverse wave vector 〈k2
r 〉 can

be found with the help of averaging the quantity k2
r over the

state space with the photon spectral function νkr
:

〈
k2
r

〉 = 1

N

∫
νkr

k2
r dkr

= g∗q
4N

T

m∗�2

∫ ∞

0
ln

[
1 − exp

(
− �

2k2
r

2m∗T

)]−1

k2
r d

(
k2
r

)
.

(33)

After some hackneyed algebra, one can obtain an expression
for the mean value of the transverse wave vector squared,

〈
k2
r

〉 = ζ (3)g∗q
m∗T 3

N�4�2
, (34)

where ζ (3) ≈ 1.2 refers to Riemann ζ function. By substitut-
ing Eq. (34) into Eq. (32), one obtains the blur of the condensed
light signal:

�〈ω − ω0〉 = ζ (3)g∗q
2N

T 3

(��)2 . (35)

Taking into account Eq. (31), formula (35) can be also written
in the form

� 〈ω − ω0〉 = 6π−2ζ (3)

(
Nkr �=0

N

)
T . (36)

Expression (36) shows that for the fixed relative amount
of condensed photons Nkr �=0/N , the blur caused by thermal
fluctuations of noncondensed photons is linear on the system’s
temperature T .

One can also calculate the higher moments of spectral
density νkr

in the center of the condensed cloud, r ≈ 0. Similar
to the expression (33), the quantity �

2〈(ω − ω0)2〉, which is the
variance in mathematical point of view, can be found as

�
2〈(ω − ω0)2〉 =

(
�

3

2m∗

)2 〈
k4
r

〉 = π4

90

g∗q
N

T 4

(��)2 . (37)

Therefore, one can estimate the standard deviation as

�

√
〈(ω − ω0)2〉 ∼

(
Nkr �=0

N

)1/2

T . (38)

According to expressions (36)–(38), the effects caused by the
thermal blur are suppressed when the number of condensed
photons Nkr=0 increases. As a consequence, the observed
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spectral peak becomes sharper if the amount of condensed
photons grows.

To compare with the current experimental results on BEC
of photons in a microcavity (see Refs. [12,13]), we make here
the following numerical estimate. For the parameters of the
system, similar to the parameters of experimental setup, and
the relative amount of condensed photons Nkr �=0/N ≈ 50%,
formula (36) gives us the value � 〈ω − ω0〉 ∼ 10−2 eV. Note
that a similar thermal blur is observed in experiment [13].

We now proceed to the description of spatial parameters of
the observed phenomenon. By analogy with a trapped BEC
of ultracold alkali-metal gases, we call a spatially localized
thickening of condensed particles a “cloud.” The average
spatial extent of a cloud of the condensed photons can be
estimated as

〈r〉 = 1

N

∫ ∞

0
r
[
nkr=0(r) + nkr �=0(r)

]
d(πr2). (39)

Recall that the exact spatial dependence of the density of
condensed photons nkr=0(r) is unknown. Therefore, one
cannot perform explicitly the averaging in (39). So we go
the following way. Apparently, one can rewrite the expression
(39) in the form

〈r〉 = Nkr=0

N
〈r〉T =0 + Nkr �=0

N
〈r〉T �=0, (40)

where 〈r〉T =0 is a typical radius of the condensed cloud if
the thermal blur is absent, and 〈r〉T �=0 is the contribution
of noncondensed photons to the smearing of the condensed
cloud. For the first quantity, the following estimate in order of
magnitude is legitimate:

〈r〉T =0 ∼ a, (41)

where a is a typical spatial extent of a trapped BEC with
negligibly small interactions between composing bosons (for
details see for example Ref. [26]),

a =
√

�

m∗�
. (42)

The quantity 〈r〉T �=0, appearing in formula (40), depends on the
spatial distribution of noncondensed photons nkr �=0(r), which
is known even beneath the BEC transition point. It can be easily
obtained from the Eq. (15) taking into account expression
(14). Therefore, taking into account Eq. (31), the “thermal”
contribution to the smearing of a cloud can be calculated as

〈r〉T �=0 = 3
√

2

π3/2
ζ (5/2)

√
T

m∗�2
. (43)

Note that the quantity
√

T/m∗�2 defines a typical distance
where the effective “potential” energy [the third term on the
right-hand side of the expression (3)] becomes in the order
of the system’s temperature T . We also note here that the
ratio between the two spatial parameters depends only on the
amount of noncondensed photons:

〈r〉T �=0

〈r〉T =0
∼

√
T

��
∼ 4

√
Nkr �=0 .

Therefore, according to the formulas (40)–(43), by lowering
the temperature of the system T , or increasing the relative

amount of condensed photons for the fixed temperature, the
radius of the condensed cloud is reduced.

It is appropriate to make here the following numerical
estimates. Using expressions (42) and (43) for the parameters
of the system, similar to the parameters of experimental setup
in Ref. [13], one obtains numerical values a ∼ 10−5 m and
〈r〉T �=0 ≈ 10−5 m. Therefore, one can conclude that both of
the spatial extents 〈r〉T =0, 〈r〉T �=0 give approximately equal
contributions and thus none of them can be neglected in the
present system. Note also that our calculations are in a good
agreement with experimental observations: In the experiments
[13], the spatial extent of the cloud in an intermediate case
(i.e., when there is a condensate, but not all of the photons
have been condensed) is approximately 4 × 10−5 m.

Finally, we calculate thermodynamic properties of the
photon gas with condensate. First, it is interesting to calculate
the total energy of the photons after they have been thermalized
with medium inside cavity. The easiest way to do it is to add
the energy of condensed photons to the energy of photons with
nonzero transverse momentum:

E = Nkr=0 �ω0 + g∗

(2π )3

∑
kz

∫
z

dz

∫ ∞

0
d
(
πk2

r

) ∫ ∞

0
d(πr2)

× �ω0 + �
2k2

r /2m∗ + m∗�2r2/2

exp
[

�2k2
r

2m∗T + m∗�2r2

2T

] − 1
. (44)

Calculating the integrals in (44), one can obtain the
following temperature dependence of the light total energy
beneath the BEC transition point:

E = N�ω0 + ζ (3) g∗q
T 3

(��)2 . (45)

We emphasize here that photons in the BEC state possess the
total energy of amount

Ekr=0 = Nkr=0 �ω0. (46)

We can also introduce the heat capacity of the photonic system
in a conventional way, C ≡ dE/dT . One should keep in mind
that the number of the photons thermalized with medium in the
general case depends on the temperature of the medium, N =
N (T ). If this dependence is relatively weak, dN/dT ≈ 0, we
can define the heat capacity of the photonic gas, thermalized
with in-cavity medium beneath the phase transition point as
follows:

C ≈ 3ζ (3) g∗q
T 2

(��)2 . (47)

Closer to the critical point one should also take into account
the discontinuity in specific heat caused by the singularity in
the behavior of the chemical potential of photons (see, e.g.,
Ref. [26]),

�C ∝ N
∂μ∗ (T )

∂T

∣∣∣∣
T =Tc+

,

where Tc+ = Tc + 0 denotes the upper side of the transition
point Tc. In the general case, the dependence μ∗(T ) for T > Tc

can be calculated numerically or estimated analytically in the
symmetric phase (see, e.g., Ref. [14]).
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The expression (45) can be also formulated in a more
traditional appearance by using the definition for the total
number of noncondensed photons (31):

E = N �ω0 + 12ζ (3)

π2
Nkr �=0 T . (48)

Note that 12ζ (3)/π2 ≈ 1.46 is not far from the factor 3
2 for the

energy of an ideal 3D gas of classical particles with the fixed
total number Nkr �=0.

One can introduce the quantity η showing the ratio of the
energy of condensed photons to the total light energy in the
system under study:

η = Ekr=0

E
= Nkr=0

N

[
1 + 12ζ (3)

π2

(
1 − Nkr=0

N

)
T

�ω0

]−1

.

(49)

Obviously, there are conditions when η ≈ 1 and therefore all
the in-cavity light radiation energy will be accumulated in
the Bose-condensed state of light. According to Eq. (49),
one can control and manipulate the efficiency of the energy
conversion η to maximize the amount of light energy stored
in the monoenergetic BEC state. It could be done by varying
both the geometrical and the thermodynamical parameters of
a cavity with a medium.

IV. CONCLUSION

The purpose of the present paper was to examine the influ-
ence of intracavity medium on the parameters of the BEC of
photons, and also to derive consequently all the statistical prop-
erties, which can explain and describe the observable quantities
numerically. In the assumption of gaseous (i.e., weakly inter-
acting) medium, we show that the critical number of photons to
create the BEC state, as well as all other statistical characteris-
tics, indeed depend on the description parameters of matter. In
this sense we eliminate the disagreement over why the thermo-
static medium, which is so necessary to thermalize photons,
has not been involved into the critical parameters of the BEC
transition. Talking here about a gaseous medium we actually
do not restrict ourselves to the case of an atomic gas: In point
of fact, one can consider an ensemble of organic dye molecules
as a weakly interacting gas in a solvent (see also [13]).

One of the basic assumptions in our model, and in the
models of other studies (see Refs. [13,14,17,22]), was a
so-called two-level model of gaseous medium. In this model all
the structural units of a gaseous medium (atoms or molecules)
can be only either in the ground state or in the first excited state,
and the transition between these two states is caused uniquely
by an absorption or reemission of a photon. Nevertheless, it
is not a fundamental restriction, and our theory, of course,
can be generalized to the case with an arbitrary number
of excited states. However, in fact, for the current state of
experiments there is no need to do it: Apparently, the number
of elementary excitations in the system under study is relatively
small, and the probability to excite the higher molecular states
is vanishing. This fact was also used in Ref. [14] to calculate
the properties of a possible 3D photon condensate in ideal
gases (including some types of plasma). Of course, in a more
general case, the degeneracy of a photon state may depend

on its energy. From the general considerations it is clear
that the numerous and repeated processes of absorption and
reemission which thermalize light radiation inside cavity and
also the boundary conditions on cavity walls should influence
the photon degeneracy in the system under study (see also
[14]). This is a separate and nontrivial problem that is beyond
the scope of our paper. However, we recall that in the current
experiments [13] all the pumped photons have approximately
the same energy, which is very close to �ω0. Therefore, one
can actually introduce an effective degeneracy g∗ for all the
thermalized photons. For numerical estimates in the present
paper we used g∗ ≈ 2 (see also [14]). This assumption is
possible because the average thermal fluctuation of the photon
energy is relatively small. One should also keep in mind
that the neighborhood of the critical point should be treated
more carefully (see, e.g., [17,27–29]). However, the mentioned
limitations are not principal and the present theory can be
expanded and improved for a better accuracy.

Despite the use of a relatively simple model, we have been
able to represent the crucial characteristics of photon BEC and
therefore explain the experiments. It is worth emphasizing
the very good correlation between the physical quantities
estimated in the present paper (such as the thermal blur width
and the special extent of condensed cloud of photons) and
those ones observed in experiment [13]. Such an excellent
agreement one more time justifies the used simplifications of
our model.

In conclusion, we also want to mark the importance of
the direct demonstration of the fact that light energy can
be accumulated in the BEC state. We also showed that the
energy conversion factor η can be maximized by manipulating
the cavity parameters or the temperature of the system or
by changing the amount of photons. This gives a good per-
spective to implement the phenomenon of light condensation
as the working principle of different solar cells. In this
sense the question rises as to whether it is possible to condense
more than one light mode in the same cavity. The possibility
of a multilevel photon condensation is still an open question.

APPENDIX

Despite the fact that the system described in the present
paper reveals effectively two-dimensional properties, it nev-
ertheless remains purely three-dimensional. Therefore, one
should carefully approach to the derivation of the effective 2D
density of photons and calculation of all the average quantities.

The reduction to the 2D distribution function can be done
by the procedure of integration over longitudinal coordinate z

with subsequent summing over all the possible longitudinal
wave vectors kz. Current experiments are conducted just
for the one mode of electromagnetic field inside a cavity
(for example, it is q = 7 or q = 11 in the experiments of
Ref. [13]). Consequently, the mentioned procedure comes to
multiplication on the constant factor,

∑
kz

∫
z

dz(· · · ) =πq(· · · ).

This procedure allows us to calculate correctly statistical
averages, for example, the total light energy inside a cavity.
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