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Macroscopic state interferometry over large distances using state discrimination
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The propagation of macroscopic entangled states over large distances in the presence of loss is of fundamental
interest and may have practical applications as well. Here we describe two different techniques in which state
discrimination can be used to violate Bell’s inequality with macroscopic phase-entangled coherent states. We
find that Bell’s inequality can be violated by these macroscopic states over a distance of approximately 400 km
in commercially available optical fibers.
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I. INTRODUCTION

The ability to transmit entangled states over large distances
would enable a number of important practical applications
including quantum key distribution and data transfer between
quantum computers. Entanglement is also one of the most
fundamental properties of quantum mechanics and tests of
nonlocality over large distances are of fundamental interest.
This is especially true of experiments involving macroscopic
entangled states, which can provide insight into decoherence
and the boundary between classical and quantum physics.
Here we show that state discrimination techniques [1,2] allow
macroscopic entangled states to be transmitted over distances
on the order of 400 km in conventional optical fiber while still
maintaining sufficient fidelity to violate the Clauser-Horne-
Shimony-Holt (CHSH) form of Bell’s inequality [3,4].

Our approach is based on the use of weak nonlinearities
to generate phase-entangled coherent states [5–11]. A single
photon passing through an interferometer can be used to
produce a small phase shift in one of two coherent states
(laser beams) if a suitable Kerr medium is present in each
path through the interferometer. This produces an entangled
Schrödinger cat state with anticorrelated phase shifts in the two
coherent states. Similar single-photon interferometers located
at large distances can then be used to violate the CHSH form of
Bell’s inequality as described in more detail in the following
section. A key feature of this approach is the use of state
vector discrimination [1,2] to distinguish between the various
phase-shifted coherent states, which greatly increases the
range over which Bell’s inequality can be violated as compared
to a previous approach based on homodyne detection [12].

Decoherence due to photon loss is an important considera-
tion in any approach for transmitting optical entangled states
over large distances. Here we model the effects of photon
loss by a series of beam splitters, although it can be shown that
similar results would be obtained in the presence of absorption
by two-level atoms [12,13]. A low rate of decoherence due to
photon loss can be achieved for these Schrödinger cat states
when their separation in phase space is relatively small [14].

A macroscopic nonlocal interferometer based on the use of
phase-entangled states and homodyne detection is described in
Sec. II. The increased range achievable using a straightforward
state vector discrimination technique is analyzed in Sec. III.
A further increase in the range of up to 400 km in optical
fiber using a more efficient form of state vector discrimination
is then discussed in Sec. IV. A summary and conclusion are
provided in Sec. V.

II. NONLOCAL INTERFEROMETRY

In this section we review a nonlocal interferometer based
on phase-entangled coherent states and homodyne detection
that we previously proposed [12]. The source of the phase-
entangled coherent states is illustrated in the left-hand side
of Fig. 1 [5–11]. A single photon labeled A passes through
a Mach-Zehnder interferometer containing a Kerr medium in
each path. A nonlinear phase shift of 2φ is assumed to be
generated if the single photon and a coherent state are present
in one of the Kerr media simultaneously. A bias phase shift
of −φ is added to both beams so that phase shifts of ±φ are
created in each beam depending on the path taken by photon
A. Postselection on events in which a photon was observed in
detector 1 ensures that there is a well-defined phase between
the two terms in the superposition state |ψS〉 that describes the
output of the source, which is given by

|ψS〉 = (|α+〉|β−〉 + |α−〉|β+〉)/
√

2. (1)

Here |α+〉 represents a coherent state in beam 1 with a positive
phase shift while |β−〉 represents a coherent state in beam 2
with a negative phase shift. The states |α−〉 and |β+〉 are defined
in a similar way.

This entangled state can then be probed using two distant
interferometers B and C as illustrated in the right-hand side of
Fig. 1. Both interferometers have a single Kerr medium placed
in one of the two paths, which again produces a phase shift of
2φ if both a coherent state and a single photon are present in
the same path. Bias phase shifts of −φ are added once again
so that a net phase shift of ±φ is produced depending on the
path taken by the single photons as before. In addition, fixed
(linear) phase shifts σ1 and σ2 are included in one of the two
paths of each interferometer as shown in the figure.

Homodyne measurements are then used to determine the fi-
nal phases of the coherent states after they have passed through
both sets of interferometers. Postselection is performed in
which we only accept those events in which detectors 1, 3,
and 5 were triggered and in which both coherent states were
measured to have a net phase shift of zero. It can be seen
that an outcome of that kind can only occur if both photons B
and C took the left path or if both of them took the right
path. This gives rise to quantum interference between the
corresponding probability amplitudes, with a relative phase
that depends on the values of σ1 and σ2. This interference
between the left-left and right-right probability amplitudes
is analogous to the more familiar long-long and short-short
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FIG. 1. A nonlocal interferometer based on the use of weak
nonlinearities to produce a small phase shift in a coherent state [12].
The phase shift of the final state can be measured using a homodyne
detector as in Ref. [12], while the range over which Bell’s inequality
can be violated can be greatly increased using state discrimination
techniques instead.

interference that is responsible for the two-photon nonlocal
interferometer proposed previously by one of the authors [15].

The state of the system after the photons have passed
through the interferometers but before any measurements have
been made can be written as

|�〉 = 1
23 [eiσ2 |α++〉|β−−〉 − |α++〉|β−+〉
− ei(σ1+σ2)|α+−〉|β−−〉 + eiσ1 |α+−〉|β−+〉
− eiσ2 |α−+〉|β+−〉 + |α−+〉|β++〉
+ ei(σ1+σ2)|α−−〉|β+−〉 − eiσ1 |α−−〉|β++〉]
× |1〉1|0〉2|1〉3|0〉4|1〉5|0〉6 + |ψ⊥〉. (2)

Here the subscripts on the coherent state amplitudes represent
the positive and negative phase shifts produced by the Kerr
media, and a π/2 phase shift has been added upon reflection
by a beam splitter. The state of the fields in the output ports
of the single-photon interferometers are designated by |1〉i if a
photon is present in that path and |0〉i if no photons are present
(the vacuum state), where i labels the output ports shown in
Fig. 1. Only those terms where single photons are present in
paths 1, 3, and 5 are explicitly included in Eq. (2), with the
remaining orthogonal terms contained in ψ⊥.

If the homodyne measurements are capable of completely
distinguishing between these phase-shifted states, then the
measurement process can be modeled as a projection onto
the states of interest [12]. The corresponding projection for
the case in which a photon was detected in detectors 1, 3, and
5 while zero net phase shifts were observed for both coherent
states can be written as

|p〉 = 1
23 [eiσ1 |α+−〉|β−+〉 − eiσ2 |α−+〉|β+−〉]
× |1〉1|0〉2|1〉3|0〉4|1〉5|0〉6. (3)

The probability of such an outcome is given by

〈p|p〉 = 1

26
|eiσ1 − eiσ2 |2 = 1

24
sin2

(
σ1 − σ2

2

)
. (4)

(a) (b)

FIG. 2. Phase-space diagrams (Wigner distributions) illustrating
two coherent states with different phases. Here x and p represent
the two quadratures of the field in dimensionless units. (a) Increased
overlap of two coherent states as their amplitude is reduced by photon
loss and they approach the vacuum state. (b) Use of displacement
operations to transform one of two partially overlapping coherent
states to the vacuum, which allows single-photon detection to
distinguish between the two states.

In the absence of any photon loss or measurement noise,
this corresponds to an interference pattern with a visibility
of 100%, which can be used to violate the CHSH form of the
Bell inequality [3,4].

Photon loss reduces the visibility of the interference pattern
for two reasons. The first problem is decoherence produced by
which-path information left in the environment when a photon
is absorbed or scattered out of an optical fiber. The second
problem is the increasing overlap of the coherent states as
their amplitudes are reduced by loss and they approach the
vacuum as illustrated in Fig. 2(a). This makes it more difficult
to distinguish between the various phase-shifted states.

The effects of photon loss can be included by assuming that
beam splitters have been inserted into the long paths between
the interferometers. First consider the effects of inserting a
single beam splitter with a small reflectivity into the paths
to interferometers A and B. If we let |γ±〉 and |δ±〉 denote
the coherent states in the output ports of the beam splitters in
the paths to interferometers A and B, respectively, then the
projection |pL〉 onto the state of interest is given by

|pL〉 = 1
23 [eiσ1 |α′

+−〉|β ′
−+〉|γ+〉|δ−〉

− eiσ2 |α′
−+〉|β ′

+−〉|γ−〉|δ+〉]|1〉1|0〉2|1〉3|0〉4|1〉5|0〉6,

(5)

instead of by Eq. (3). Here the primes in the coherent states
|α′

+−〉, |α′
−+〉, |β ′

−+〉, and |β ′
+−〉 represent the fact that their

amplitudes have been reduced by the beam splitters.
The interference cross terms in 〈pL|pL〉 will be reduced to

the extent that there is limited overlap between the states |γ−〉
and |γ+〉, for example. As a result, it can be shown that the
visibility v of the interference pattern will be reduced to

v = |〈γ+|γ−〉|2 = exp[−|γ+ − γ−|2]. (6)

For simplicity, we have assumed that both beams experience
the same loss and the square in Eq. (6) reflects the contributions
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from both beam splitters. We can write |γ±〉 in the form

|γ±〉 = |rαe±iφ〉, (7)

where r is the reflectivity of the beam splitter inserted into
the path to interferometer A and α is the initial coherent state
amplitude. Then e±iφ terms can be expanded in a Taylor series
for small values of φ, which reduces Eq. (6) to

v = exp[−4(rαφ)2] = exp[−4NLφ2]. (8)

Here we have defined NL = (rα)2 as the average number of
photons lost in each path.

This reduction in the visibility can be interpreted as being
due to information left in the output ports of the beam splitters.
The same results are obtained if a large number of beam
splitters produce a total loss of NL photons in each path.

If homodyne measurements are used to measure the final
phase shift of the coherent states, then the increasing overlap of
the various phase-shifted states in the presence of loss makes
it increasingly difficult to accurately distinguish between them
as illustrated in Fig. 2(a). This introduces errors into the
measured correlations and further reduces the visibility of
the interference pattern. That effect was analyzed in detail in
Ref. [12], where it was found that the maximum distance over
which the CHSH form of Bell’s inequality can be violated is
limited to roughly 8 km in optical fibers with 0.15 dB/km
loss. That analysis will not be described in more detail
here because the problem can be avoided by replacing the
homodyne measurements with state discrimination techniques
as described in the next section.

III. UNAMBIGUOUS STATE DISCRIMINATION

A simple example of unambiguous state discrimination is
illustrated in Fig. 2(b) [1,2]. Here two partially overlapping
coherent states are displaced [16] in such a way that one
of them is transformed into the vacuum state. Displacement
operations of this kind can be implemented by combining
the coherent state of interest with an external laser at a beam
splitter in the limit in which the reflectivity of the beam splitter
is very small, as illustrated in Fig. 3 [17]. Once one of the
coherent states has been displaced to the vacuum in this way,
the detection of one or more photons indicates that the other

FIG. 3. Implementation of a coherent state displacement opera-
tion using a strong reference coherent state (laser beam) combined
with the much weaker input coherent state on a beam splitter with a
small reflectivity [16,17].

FIG. 4. Use of state discrimination techniques to determine
whether or not the coherent state from laser 1 has undergone a net
phase shift of zero. A 50:50 beam splitter divides the signal into two
identical coherent states. Displacement operations performed on the
coherent states in the two output ports of the beam splitter are then
used to rule out states with phase shifts of ±φ. If one or more photons
are detected in both output ports, then the coherent state must have
had a net phase shift of zero as desired.

coherent state must have been present. Ignoring the effects
of detector noise for the moment, this process allows the two
coherent states to be distinguished with certainty some fraction
of the time.

Unambiguous state discrimination of this kind has been
extensively studied both theoretically [1,2,18–26] and ex-
perimentally [27–34]. The usual goal of unambiguous state
discrimination is to determine which of two or more phase-
shifted coherent states is present. Our application is somewhat
less demanding in the sense that we only need to determine
whether or not one particular state was present without
necessarily distinguishing between the two remaining coherent
states. This results in a success rate that is somewhat higher
than would otherwise be the case.

A straightforward state discrimination technique that can be
used to postselect those events in which the coherent state from
laser 1 has undergone a net phase shift of zero is illustrated
in Fig. 4. The interferometers of Fig. 1 will have produced
a net phase shift of either ±2φ or 0 depending on the paths
taken by the single photons. The coherent state at the output of
interferometer B is first passed through a 50:50 beam splitter.
A displacement operation is then performed on the coherent
state in one of the output ports of the beam splitter in such a
way as to displace a state with phase shift 2φ to the vacuum.
The detection of one or more photons after that displacement
operation indicates that a state with phase shift 2φ was not
present. The coherent state in the other output port of the beam
splitter is then displaced in such a way that a state with phase
shift −2φ will be displaced to the vacuum, and the detection
of one or more photons there indicates that a state with that
phase was not present. We postselect on those events where
one or more photons were detected in both output ports of the
beam splitter, which can only occur when the coherent state
had zero net phase shift as desired.

A similar state discrimination technique is also applied to
the coherent state from laser 2. A successful outcome for
both measurements can then be used to postselect the two
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states shown in Eq. (3) as required for quantum interference
to occur. This requires two successful detection events for the
coherent state from laser 1 and two more detection events for
the coherent state from laser 2. This dependence on fourfold
detection events gives a relatively low success rate when both
signals have been highly attenuated by the losses in an optical
fiber. A more efficient state discrimination technique will be
described in the following section, but we will first analyze the
straightforward approach described above.

Let operator B̂(λ) denote the effect of a beam splitter with
reflectivity λ acting on two incident coherent states |μ〉 and
|ν〉 in input ports 1 and 2, respectively [26]:

B̂(λ)|μ〉1|ν〉2

= |√1 − λμ+
√

λν〉3 ⊗ |−
√

λμ+ √
1 − λν〉4. (9)

For the case of a vacuum state in port 1 and a 50:50 beam
splitter (λ = 1/2), this simplifies to

B̂(1/2)|0〉1|ν〉2 =
∣∣∣∣ 1√

2
ν

〉
3

⊗
∣∣∣∣ 1√

2
ν

〉
4

. (10)

A displacement operator D̂(τ ) acting on a coherent state |ν〉 is
defined by [16]

D̂(τ )|ν〉 = |ν + τ 〉, (11)

where both ν and τ are, in general, complex
numbers.

The state of the system before the measurements shown in
Fig. 4 can be written as in Eq. (2), but including the loss terms
|γ±〉 and |δ±〉 discussed in Sec. II gives

|� ′〉 = 1
23 [eiσ2 |α′

++〉|β ′
−−〉|γ+〉|δ−〉 − |α′

++〉|β ′
−+〉|γ+〉|δ−〉

− ei(σ1+σ2)|α′
+−〉|β ′

−−〉|γ+〉|δ−〉
+ eiσ1 |α′

+−〉|β ′
−+〉|γ+〉|δ−〉 − eiσ2 |α′

−+〉|β ′
+−〉|γ−〉|δ+〉

+ |α′
−+〉|β ′

++〉|γ−〉|δ+〉 + ei(σ1+σ2)|α′
−−〉|β ′

+−〉|γ−〉|δ+〉
− eiσ1 |α′

−−〉|β ′
++〉|γ−〉|δ+〉]. (12)

Here the single photon and orthogonal terms have been
dropped for convenience.

The amplitudes α̃±± of the coherent states in the out-
put ports of the beam splitter shown in Fig. 4 will
correspond to the amplitudes of Eq. (12) reduced by
a factor of 1/

√
2. Using exp(2iφ) = cos(2φ) + i sin(2φ)

gives

α̃+− = α̃−+ = i
|α′|√

2
,

α̃++ = −|α′|√
2

sin(2φ) + i
|α′|√

2
cos(2φ), (13)

α̃−− = |α′|√
2

sin(2φ) + i
|α′|√

2
cos(2φ).

Here we have defined α′ ≡ α′
+− = α′

−+. Similar results apply
to the coherent state from laser 2.

We will denote the two displacement operations shown
in Fig. 4 by D̂(L) and D̂(R). The desired effects of these
displacement operations on the coherent states from beam 1
will be denoted as follows:

D̂(L)|α̃++〉 = |L′
+〉, D̂(R)|α̃++〉 = |0〉,

D̂(L)|α̃±∓〉 = |L′
0〉, D̂(R)|α̃±∓〉 = |R′

0〉, (14)

D̂(L)|α̃−−〉 = |0〉, D̂(R)|α̃−−〉 = |R′
−〉.

Here we have used |L′
+〉 to denote the state of the positively

phase-shifted state after the displacement operation, with a
similar notation for the other states.

Combining Eqs. (11), (13), and (14) gives the required
values of the displacement amplitudes L and R:

L = −|α′|√
2

sin(2φ) − i
|α′|√

2
cos(2φ),

(15)

R = |α′|√
2

sin(2φ) − i
|α′|√

2
cos(2φ).

The L′
0 and R′

0 amplitudes will play an essential role in what
follows. Applying Eq. (15) to the amplitudes of Eq. (13) gives
their values as

L′
0 = −|α′|√

2
sin(2φ) + i

|α′|√
2

[1 − cos(2φ)],

(16)

R′
0 = |α′|√

2
sin(2φ) + i

|α′|√
2

[1 − cos(2φ)].

The state of the system just before the single-photon
detectors can be found by applying the relevant beam splitter
and displacement operators given above to the state of the
system in Eq. (12). The beam splitter operators for beams 1
and 2 will be denoted B̂a(1/2) and B̂b(1/2), respectively, where
the subscripts a and b refer to the output of interferometers
A and B. The combined result of all of the beam splitter and
displacement operations is then given by

D̂a3b3 (L)D̂a4b4 (R)B̂a(1/2)B̂b(1/2)|� ′〉
= 1

23

[
eiσ2

(|L′
+〉a3 ⊗ |0〉a4

)(|0〉b3 ⊗ |R′
−〉b4

)|γ+〉|δ−〉 − (|L′
+〉a3 ⊗ |0〉a4

)(|L′
0〉b3 ⊗ |R′

0〉b4

)|γ+〉|δ−〉

− ei(σ1+σ2)(|L′
0〉a3 ⊗ |R′

0〉a4

)(|0〉b3 ⊗ |R′
−〉b4

)|γ+〉|δ−〉 + eiσ1
(|L′

0〉a3 ⊗ |R′
0〉a4

)(|L′
0〉b3 ⊗ |R′

0〉b4

)|γ+〉|δ−〉

− eiσ2
(|L′

0〉a3 ⊗ |R′
0〉a4

)(|L′
0〉b3 ⊗ |R′

0〉b4

)|γ−〉|δ+〉 + (|L′
0〉a3 ⊗ |R′

0〉a4

)(|L′
+〉b3 ⊗ |0〉b4

)|γ−〉|δ+〉

+ ei(σ1+σ2)
(|0〉a3 ⊗ |R′

−〉a4

)(|L′
0〉b3 ⊗ |R′

0〉b4

)|γ−〉|δ+〉 − eiσ1
(|0〉a3 ⊗ |R′

−〉a4

)(|L′
+〉b3 ⊗ |0〉b4

)|γ−〉|δ+〉], (17)

where it was assumed that α = β for convenience.
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We will consider the case in which the coherent states have
been attenuated to the point that there is a negligible probability
of detecting more than one photon in any of the single-photon
detectors shown in Fig. 4. The projection of Eq. (17) onto
a state in which there is a single photon in each of the four
detectors gives

〈1,1,1,1|D̂a3b3 (L)D̂a4b4 (R)B̂a(1/2)B̂b(1/2)|� ′〉
= 1

23 [eiσ1〈1|L′
0〉〈1|R′

0〉〈1|L′
0〉〈1|R′

0〉|γ+〉|δ−〉
− eiσ2〈1|L′

0〉〈1|R′
0〉〈1|L′

0〉〈1|R′
0〉|γ−〉|δ+〉]. (18)

Here the state |1,1,1,1〉 corresponds to having a single photon
in each of the detectors while the state |1〉 denotes the presence
of a photon in the individual detectors.

Factoring out the common terms reduces Eq. (18) to

〈1,1,1,1|D̂a3,b3 (L)D̂a4,b4 (R)B̂a

(
1

2

)
B̂b

(
1

2

)
|� ′〉

= (〈1|L′
0〉〈1|R′

0〉)2

23
[eiσ1 |γ+〉|δ−〉 − eiσ2 |γ−〉|δ+〉], (19)

which is similar in form to Eqs. (3) and (5). The probability
Ps of a successful detection event is given by

Ps =
∣∣∣∣〈1,1,1,1|D̂a3b3 (L)D̂a4b4 (R)B̂a

(
1

2

)
B̂b

(
1

2

)
|� ′〉

∣∣∣∣
2

= |〈1|L′
0〉〈1|R′

0〉|4
25

[1 − |〈γ+|γ−〉|2 cos(σ1 − σ2)], (20)

where it was assumed once again that the same loss is
experienced by both beams (|γ | = |δ|). This corresponds to
a visibility of v = |〈γ+|γ−〉|2 = exp[−4NLφ2] which is the
same as that in Eq. (8). The factors of 〈1|L′

0〉 and 〈1|R′
0〉 only

affect the counting rate and not the visibility. This represents
a major advantage over the use of homodyne measurements,
where the overlap of the coherent states in the presence of loss
produces a further decrease in the visibility.

The 〈1|L′
0〉 and 〈1|R′

0〉 factors in Eq. (20) can be evaluated
using Eq. (16), which gives

〈1|L′
0〉 = |α′|√

2
{− sin(2φ) + i[1 − cos(2φ)]}e−|α′ |2 sin2(φ),

(21)

〈1|R′
0〉 = |α′|√

2
{sin(2φ) + i[1 − cos(2φ)]}e−|α′ |2 sin2(φ).

Inserting this into Eq. (20) gives

Ps = |α′|8 sin8(φ)e−8|α′ |2 sin2(φ)

2

[
1 − e−4NLφ2

cos(σ1 − σ2)
]
.

(22)

As an example, consider the case in which α = 100, φ =
0.0028, there is a loss of 0.15 dB/km in the optical fibers, and
there is a total distance of 140 km between interferometers B
and C (70 km from the source to each interferometer). Then |α′|
can be found from the relation |α′|2 = |α|2 × 10−0.15×70/10 =
891.251. After the coherent states in each arm have traveled
70 km the number of photons lost in each of the beams is
given by |α|2 − |α′|2 = 9108.75 = NL. Inserting these values
into Eq. (22) with σ1 and σ2 chosen to give the maximum Rmax

or minimum Rmin counting rates gives

Rmax = 1.97 × 10−9(σ1 − σ2 = π ),
(23)

Rmin = 0.28 × 10−9(σ1 − σ2 = 0).

Assuming a source that operates at a rate of 1 GHz, we can
expect approximately 2 coincidence counts per second at the
maximum of the interference pattern and 0.3 counts per second
when at the minimum. This corresponds to a visibility of 75%,
which is in agreement with Eq. (8) and above the 70.7% value
needed to violate the CHSH form of Bell’s inequality [3,4].

IV. ENHANCED APPROACH

The state discrimination approach described above has the
advantage that the visibility of the interference pattern is not
affected by the increased overlap between the phase-shifted
coherent states due to photon loss, but the success rate is
relatively low due to its dependence on the detection of a
total of four photons from the displaced coherent states. Here
we describe an enhanced approach that only requires the
detection of two photons in the displaced coherent states,
which substantially increases the useful range of the system.

The enhanced state discrimination approach is illustrated
in Fig. 5. As before, each of the two coherent states will
have been shifted in phase by ±2φ or 0 and we need to be
able to distinguish between the various phase-shifted states.
Here each of the coherent states is displaced in such a way
that the states with zero net phase shift are displaced to the
vacuum. No additional beam splitters of the kind shown in
Fig. 4 are required. A detection of one or more photons in
the displaced coherent states from both laser 1 and laser 2
eliminates the probability amplitude for the terms in Eq. (12)
that correspond to zero net phase shift. The only two terms
that remain in the postselected state now involve |α++〉|β−−〉
and |α−−〉|β++〉, whereas the original approach involved
|α+−〉|β−+〉 and |α−+〉|β+−〉 instead. Quantum interference
between the corresponding probability amplitudes can once

FIG. 5. Enhanced state discrimination technique in which the
coherent states from each of the laser beams are displaced in such a
way that the states with zero net phase shift are transformed into the
vacuum state. The detection of one or more photons from both of the
displaced coherent states rules out the possibility of all but two terms
in the postselected state, and those terms can then interfere to violate
Bell’s inequality.
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again violate the CSHS form of Bell’s inequality as described
in more detail below.

The amplitudes of the three possible coherent states from
laser 1 before the displacement operations are a factor of

√
2

larger than those given by Eq. (13) due to the absence of the

beam splitter in Fig. 4 in this enhanced approach. It can be
seen that the displacement operation needed to transform the
state with zero net phase shift into the vacuum state is given
by D̂(−i|α′|). The effect of this displacement on the states
produced by laser 1 is then

D̂(−i|α′|)|α′〉 = |0〉, D̂(−i|α′|)|α′
−−〉 = ||α′| sin(2φ) + i|α′|(cos(2φ) − 1)〉 = |α′

D−〉,
(24)

D̂(−i|α′|)|α′
++〉 = |−|α′| sin(2φ) + i|α′|(cos(2φ) − 1)〉 = |α′

D+〉,
with similar results for beam 2.

Applying these displacement operators to both beams 1 and 2 in Eq. (12) results in

D̂1(−i|α′|)D̂2(−i|β ′|)|� ′〉 = 1
23 [eiσ2 |α′

D+〉|β ′
D−〉|γ+〉|δ−〉 − |α′

D+〉|0〉|γ+〉|δ−〉 − ei(σ1+σ2)|0〉|β ′
D−〉|γ+〉|δ−〉 + eiσ1 |0〉|0〉|γ+〉|δ−〉

− eiσ2 |0〉|0〉|γ−〉|δ+〉 + |0〉|β ′
D+〉|γ−〉|δ+〉 + ei(σ1+σ2)|α′

D−〉|0〉|γ−〉|δ+〉 − eiσ1 |α′
D−〉|β ′

D+〉|γ−〉|δ+〉].
(25)

Here we have defined the displaced states |αD±〉 and |βD±〉 as indicated in Eq. (24). The probability of detecting a single photon
in both beam 1 and beam 2 after the displacements of Fig. 5 can be found by projecting Eq. (25) onto single-photon states, where
we have assumed once again that the coherent states are sufficiently weak that we can neglect the probability of there being more
than one photon in either detector. This gives

〈1,1|D̂1(−i|α′|)D̂2(−i|β ′|)|� ′〉 = 1
23 [eiσ2〈1|α′

D+〉〈1|β ′
D−〉|γ+〉|δ−〉 − eiσ1〈1|α′

D−〉〈1|β ′
D+〉|γ−〉|δ+〉], (26)

where the notation is analogous to that in Eq. (18).
The detection probability PD is then given by

PD = |〈1,1|D̂1(−i|α′|)D̂2(−i|β ′|)|�〉|2 = 1
26 [〈α′

D+|1〉〈1|α′
D+〉〈β ′

D−|1〉〈1|β ′
D−〉 + 〈α′

D−|1〉〈1|α′
D−〉〈β ′

D+|1〉〈1|β ′
D+〉

− e−i(σ1−σ2)〈1|α′
D+〉〈1|β ′

D−〉〈α′
D−|1〉〈β ′

D+|1〉〈γ−|γ+〉〈δ+|δ−〉
− ei(σ1−σ2)〈α′

D+|1〉〈β ′
D−|1〉〈1|α′

D−〉〈1|β ′
D+〉〈γ+|γ−〉〈δ−|δ+〉]. (27)

Assuming once again that both lasers have the same initial
amplitude (α = β) and experience the same loss (γ = δ), this
reduces to

PD = |〈1|α′
D+〉|2|〈1|α′

D−〉|2
25

[1 − |〈γ−|γ+〉|2 cos(σ1 − σ2)].

(28)

The amplitudes α′
D+ and α′

D− are displaced by equal
amounts so that |〈1|α′

D+〉|2 = |〈1|α′
D−〉|2. The single-

photon term in the usual expression for a coherent states
gives

|〈1|α′
D−〉|2 = 4|α′|2 sin2(φ)e−4|α′ |2 sin2(φ). (29)

This can be inserted into Eq. (28) to give

PD = |〈1|α′
D−〉|4

25
[1 − |〈γ−|γ+〉|2 cos(σ1 − σ2)]

= |α′|4 sin4(φ)e−8|α′|2 sin2(φ)

2

[
1 − e−4NLφ2

cos(σ1 − σ2)
]
.

(30)

It can be seen that the visibility of the interference pattern
from this approach is the same as that from the previous
approach as given in Eq. (8). But the success rate is propor-
tional to |α′φ|4 rather than |α′φ|8, which is a considerable
improvement given that |α′φ| is typically much less than
1. As an example, consider a situation in which α = 100,

φ = 0.0028, there is a loss of 0.15 dB/km in optical fiber, and
there is a total separation of 400 km between interferometers
B and C. Then |α′| can be found using |α′|2 = |α|2 ×
10−0.15×200/10 = 10. After the coherent states in each path have
propagated 200 km, the number of photons lost in each beam is
|α|2 − |α′|2 = 9990 = NL. Inserting these values into Eq. (30)
gives maximum and minimum coincidence rates of

Rmax = 5.3 × 10−9(σ1 − σ2 = π ),
(31)

Rmin = 0.83 × 10−9(σ1 − σ2 = 0).

A source operating at a rate of 1 GHz would thus produce
5.3 coincidence counts per second when the phase shifts
σ1 and σ2 are set to give a maximum and 0.8 counts per
second when set to give a minimum. This corresponds to
a visibility of ν = exp[−4NLφ2] = 73%, which is above
the 70.7% value needed to violate the CHSH form of Bell’s
inequality [3,4].

This enhanced state discrimination technique essentially
doubles the range over which the same coincidence counting
rate can be obtained as compared to the previous approach
described in Sec. III. In both cases, the range over which
Bell’s inequality can be violated is limited only by the desired
coincidence rate, which must be sufficiently large compared to
the accidental rate in the detectors. The accidental coincidence
counting rate due to dark counts is negligible for most
single-photon detectors compared to the rates expected from
the example considered above. Detector dark counts as low as
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0.0008 counts/s [35] have been observed in silicon avalanche
photodiodes, for example, with an even lower rate of accidental
coincidences.

V. SUMMARY AND DISCUSSION

We have described two ways in which quantum state
discrimination can be used to violate the CHSH form of Bell’s
inequality over large distances using macroscopic phase-
entangled coherent states [5–11]. A single photon in an inter-
ferometer containing a small Kerr nonlinearity can produce an-
ticorrelated phase shifts in two coherent states. The entangle-
ment between the two coherent states can be probed using two
separated single-photon interferometers containing additional
Kerr media. Bell’s inequality can then be violated by using
state discrimination techniques [1,2] to postselect those events
in which the coherent states had a specific net phase shift.

The most straightforward state discrimination approach
displaces the coherent states in such a way that we can
postselect on events in which there was zero net phase shift.
This produces quantum interference between the probability
amplitudes for the two ways in which that may have occurred.
The use of state discrimination techniques in this way greatly
increases the range over which Bell’s inequality can be violated
as compared to the use of homodyne detection, but it does
require the detection of a total of four photons from the
displaced coherent states.

A more efficient state discrimination technique is based on
postselection of those events in which there was a nonzero

phase shift in both coherent states. This only requires the
detection of two photons from the displaced coherent states,
which increases the rate of success. Once again, quantum
interference between the ways in which this can occur allows
violations of Bell’s inequality. Using this approach, Bell’s
inequality can be violated over a distance of approximately
400 km in optical fibers using macroscopic phase-entangled
states. As is the case for the nonlocal interferometer previously
proposed by one of the authors [15], this approach is relatively
insensitive to polarization changes during propagation through
the optical fibers.

The observation of nonlocal macroscopic quantum effects
is of fundamental importance. The approach described here
allows the nonlocal nature of entangled Schrödinger cat states
to be observed over large distances as a violation of the
CHSH form of Bell’s inequality. Experiments of this kind may
provide additional information regarding possible decoherence
mechanisms for entangled macroscopic states propagating
over large distances.

These techniques may also have applications in quantum
key distribution and quantum communications. The security
of quantum key distribution based on this approach will be
described in a subsequent paper.
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