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Efficient shortcuts to adiabatic passage for fast population transfer in multiparticle systems
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Achieving fast population transfer (FPT) in multiparticle systems based on the cavity quantum electronic
dynamics is an outstanding challenge. In this paper, motivated by the quantum Zeno dynamics, a shortcut for
performing the FPT of ground states in multiparticle systems with the invariant-based inverse engineering is
proposed. Numerical simulation demonstrates that a perfect population transfer of ground states in multiparticle
systems can be rapidly achieved in one step, and the FPT is robust to both the cavity decay and atomic spontaneous
emission. Additionally, this scheme is not only implemented without requiring extra complex conditions, but
also insensitive to variations of the parameters.
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I. INTRODUCTION

Reliable population transfer of a quantum system with
time-dependent interacting fields has become a significant
ingredient in the quantum information processing for vari-
ous applications ranging from quantum storage to quantum
communication [1–4]. It has already drawn great attention in
recent years [5,6]. Several approaches have been proposed
for attaining complete population transfers with different
methods, including π pulses, composite pulses, rapid adi-
abatic passage (RAP), stimulated Raman adiabatic passage
(STIRAP), and their variants [2–4]. However, most of them
have some shortcomings, say, π pulses is fast yet highly
sensitive to variations in the pulse area, and to inhomogeneities
in the sample [7], the adiabatic passage technique is robust
versus variations in the experimental parameters while it
usually needs a relatively long interaction time. If the required
evolution time is too long, the scheme may be useless, because
decoherence would spoil the intended dynamics. Therefore,
accelerating the dynamics towards the perfect final outcome is
a good idea and perhaps the most reasonable way to actually
fight against the decoherence that is accumulated during a long
operation time.

Recently, a lot of work has been done in finding shortcuts to
adiabaticity for the two- or three-level atomic system [8–18].
By means of resonant laser pulses, Chen and Muga have
successfully performed fast population transfer (FPT) in three-
level systems via invariant-based inverse engineering [13].
A quantum computation network has long been thought to
partition into a sequence of one-qubit rotations and two-qubit
gates [19]. Nevertheless, it is too large to construct a quantum
computation network to perform computation by decomposing
into one-qubit rotations and two-qubit gates. So, the FPT in
a multiparticle system is a fundamental operation for scalable
quantum information processors. However, it is a pity that
most of the previous studies based on the invariant-based
inverse engineering for achieving FPTs are in two- or three-
level single-atom systems, and it is very hard to directly
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design a model for the FPT in multiparticle systems. Until
recently, Lu et al. have proposed a scheme to implement
the quantum state transfer between two three-level atoms
based on the invariant-based inverse engineering in the cavity
quantum electronic dynamics (QED) system [20]. They sent
two atoms through the cavity with a short time interval, and
the atoms suffered the oppositive variation tendency in the
time-dependent laser pulse and atom-cavity coupling. Through
designing related parameters and controlling the time interval
between the two atoms sent through the cavity, they effectively
implemented ultrafast quantum state transfer between two �-
type atoms. Reference [20] successfully introduced shortcuts
to adiabatic passage into cavity QED systems. However,
Ref. [20] is limited by the following: (i) Only quantum state
transfer in a two-atom system could be realized. When it comes
to more complex systems, for example, multiparticle systems,
cavity coupling systems, and cavity-fiber-atom combined
systems, this scheme is useless; new designs are required in a
different situation. (ii) Sequential operations were needed in a
two-atom system; this may eliminate the possibility of success
in experiment.

On the other hand, the quantum Zeno effect which has
been tested in many experiments is the inhibition of transitions
between quantum states by frequent measurements [21–24].
The system can actually evolve away from its initial state
while it still remains in the so-called Zeno subspace de-
termined by the measurement when frequently projected
onto a multidimensional subspace. This was called “quantum
Zeno dynamics” by Facchi and Pascazio in 2002 [25].
And quantum Zeno dynamics (QZD) can be achieved via
continuous coupling between the system and an external
system instead of discontinuous measurements. In general,
we assume that a dynamical evolution process is governed
by the Hamiltonian HK = Hobs + KHmeas, where Hobs is
the Hamiltonian of the quantum system investigated, K is
a coupling constant, and Hmeas is viewed as an additional
interaction Hamiltonian performing the measurement. In the
limit K → ∞ the system will remain in the same Zeno
subspace as that of its initial state. The evolution operator is
described as U (t) = exp(−it

∑
n KηnPn + PnHobsPn), with

Pn being the eigenvalue projection of Hmeas with eigenvalues
ηn (Hmeas = ∑

n ηnPn).
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To more widely generalize the efficiency and application
of the FPT in multiparticle systems based on shortcuts to
adiabatic passage in cavity QED systems, motivated by the
space division of QZD, we propose an effective method by
invariant-based inverse engineering. Compared with previous
works, this protocol has the following advantages. First, the
fast population transfer in a multiparticle system can be
achieved in one step. Secondly, the shortcut to the adiabatic
passage is reliable for dealing with much more complex
situations, for example, multiparticle systems. The paper is
structured as follows. In Sec. II, we construct a shortcut
passage for FPT in a system with two �-type atoms trapped in
a cavity. A resonant time-dependent laser pulse and a resonant
ordinary atom-cavity coupling are applied to each atom. In
Sec. III, we analyze the feasibility of the FPT in multiparticle
systems based on the shortcut proposed in Sec. II. Section IV
is the conclusion.

II. SHORTCUTS TO ADIABATIC PASSAGE FOR THE FAST
POPULATION TRANSFER IN TWO-ATOM SYSTEM

As shown in Fig. 1, we consider that two �-type atoms 1
and 2 are trapped in a cavity c. Each atom has an excited state
|e〉 and two ground states |f 〉 and |g〉. The atomic transition
|f 〉 ↔ |e〉 is resonantly driven through a time-dependent laser
pulse with Rabi frequency �(t), and the transition |g〉 ↔ |e〉 is
resonantly coupled to the cavity mode with coupling constant
λ. The whole Hamiltonian in the interaction picture is written
as

HI = Hal + Hac,

Hal =
∑
k=1,2

�k(t)|e〉k〈f | + H.c., (1)

Hac =
∑
k=1,2

λk|e〉k〈g|a + H.c.,

where subscript k denotes the kth atom, and a is the
annihilation operator for the cavity. If the initial state is |ψ0〉 =
−|f 〉1|g〉2|0〉c, the whole system evolves in the subspace
spanned by

|ψ1〉 = |f 〉1|g〉2|0〉c,
|ψ2〉 = |e〉1|g〉2|0〉c,
|ψ3〉 = |g〉1|g〉2|1〉c, (2)

|ψ4〉 = |g〉1|e〉2|0〉c,
|ψ5〉 = |g〉1|f 〉2|0〉c.

λ

e

g
f

(b)(a)

(tΩ )

FIG. 1. (Color online) (a) Cavity-atom combined system. (b)
Atomic level configuration.

In light of QZD, we rewrite the Hamiltonian in Eq. (1) with
the eigenvectors of Hac (we set λ1 = λ2 = λ),

|φ1〉 = 1√
2

(−|ψ2〉 + |ψ4〉),

|φ2〉 = 1

2
(|ψ2〉 +

√
2|ψ3〉 + |ψ4〉), (3)

|φ3〉 = 1

2
(|ψ2〉 −

√
2|ψ3〉 + |ψ4〉),

with eigenvalues E1 = 0, E2 = √
2λ, and E3 = −√

2λ. We
obtain

H ′
I = H ′

al + H ′
ac,

H ′
ac =

3∑
n=1

En|φn〉〈φn|,

H ′
al = �1(t)√

2
(−|φ1〉〈ψ1|) + �1(t)

2
|φ2〉〈ψ1|

+ �1(t)

2
|φ3〉〈ψ1| + �2(t)√

2
|φ1〉〈ψ5|

+ �2(t)

2
|φ2〉〈ψ5| + �2(t)

2
|φ3〉〈ψ5| + H.c.. (4)

It is obvious that there are four nonzero energy eigenvalues
±�1(t) and ±�2(t) (±�k(t)) for the Hamiltonian H ′

al .
Therefore, setting

√
2λ 	 �k(t), the condition H ′

ac 	 H ′
al

and the Zeno condition K → ∞ are satisfied (H ′
al and H ′

ac

correspond to Hobs and KHmeas in Sec. I, respectively).
Performing the unitary transformation U = e−iH ′

act under
condition H ′

ac 	 H ′
al , we obtain

H eff
al = �1(t)√

2
(−|φ1〉〈ψ1|) + �1(t)

2
(ei

√
2λt |φ2〉〈ψ1|)

+ �1(t)

2
(e−i

√
2λt |φ3〉〈ψ1|) + �2(t)√

2
(|φ1〉〈ψ5|)

+ �2(t)

2
(ei

√
2λt |φ2〉〈ψ5|) + �2(t)

2
(e−i

√
2λt |φ3〉〈ψ5|)

+ H.c.. (5)

The terms with the oscillating frequency
√

2λ are possible to
be ignored in the present case. And the Hilbert subspace is split
into three invariant Zeno subspaces Hp0 = {|ψ1〉,|ψ5〉,|φ1〉},
Hp1 = {|φ2〉}, and Hp2 = {|φ3〉}.

The above analysis provides a classical space division via
QZD. Nevertheless, it is easily found from Eq. (5) that the
transition |ψ1〉 ↔ |φ2〉(|φ3〉) ↔ |ψ5〉 is still difficult to realize
even when �k(t) is very close to λ. Therefore, we assume√

2λ is slightly larger than �k and divide the system into three
subsystems,

S1 = {|ψ1〉, |φ2〉,|ψ5〉}, S2 = {|ψ1〉, |φ1〉, |ψ5〉},
(6)

S3 = {|ψ1〉, |φ3〉, |ψ5〉}.
We neglect the interaction between the states in each of the
subsystems S1 and S3 for the moment since the interaction is
far weaker than that in subsystem S2. Then the system can
be considered as a three-level single-atom system with two
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ground states |ψ1〉 and |ψ5〉 and an excited state |φ1〉. If we
replace |ψ1〉 as |ψ0〉, the Hamiltonian for STIRAP reads

HS2 (t) = 1√
2

⎛
⎜⎝

0 �1(t) 0

�1(t) 0 �2(t)

0 �2(t) 0

⎞
⎟⎠ . (7)

The corresponding instantaneous eigenstates |	n〉, with eigen-
values η0 = 0 and η± = ±χ/

√
2, with χ =

√
�2

1(t) + �2
2(t)

and θ = arctan[�1(t)/�2(t)], are

|	0(t)〉 =

⎛
⎜⎝

cos θ

0

− sin θ

⎞
⎟⎠ , |	±(t)〉 = 1√

2

⎛
⎜⎝

sin θ

±1

cos θ

⎞
⎟⎠ . (8)

Population transfer from the initial state |ψ0〉 to the state
|ψ5〉 is achieved adiabatically along the dark state |	0〉
when the adiabatic condition |θ̇ | 
 | 1√

2
χ | is satisfied. To

speed up the transfer by using the dynamics of invariant-
based inverse engineering, we need to introduce an invari-
ant Hermitian operator IS2 (t), which satisfies i∂IS2 (t)/∂t =
[HS2 (t),IS2 (t)] [10,13,14,26,27], for HS2 (t) possesses the
SU(2) dynamical symmetry. And IS2 (t) is given by

IS2 (t) = 1√
2
χ

⎛
⎜⎝

0 cos γ sin β −i sin γ

cos γ sin β 0 cos γ cos β

i sin γ cos γ cos β 0

⎞
⎟⎠ ;

(9)

the time-dependent auxiliary parameters γ and β satisfy the
equations,

γ̇ = 1√
2

(�1 cos β − �2 sin β),

(10)

β̇ = 1√
2

tan γ (�2 cos β + �1 sin β),

where the dot represents a time derivative. By inversely
deriving from Eq. (10), the explicit expressions of �1(t) and
�2(t) are as follows:

�1(t) =
√

2(β̇ cot γ sin β + γ̇ cos β),
(11)

�2(t) =
√

2(β̇ cot γ cos β − γ̇ sin β).

The eigenstates |�n〉 of the invariant IS2 (t), with eigenvalues
ε0 = 0 and ε± = ±1, are

|�0(t)〉 =

⎛
⎜⎝

cos γ cos β

−i sin γ

− cos γ sin β

⎞
⎟⎠ ,

(12)

|�±(t)〉 = 1√
2

⎛
⎜⎝

sin γ cos β ± i sin β

i cos γ

− sin γ sin β ± i cos β

⎞
⎟⎠ .

The general solution of the Schrödinger equation with respect
to the instantaneous eigenstates of IS2 (t) are written as

|�(t)〉 =
∑

m=0,±
Cmeiαm |�m(t)〉, (13)

where Cm is a time-independent amplitude and αm is the Lewis-
Riesenfeld phase according to Lewis Riesenfeld theory [28],
and the form of αm is

αm(tf ) =
∫ tf

0
dt〈�m(t)|

[
i

∂

∂t
− HS2 (t)

]
|�m(t)〉, (14)

where tf is the total interaction time. Similarly, in our case
α0 = 0, and

α± = ∓
∫ tf

0
dt

[
β̇ sin γ + 1√

2
(�1 sin β + �2 cos β) cos γ

]
.

(15)

In order to get the target state |ψ5〉 along the invariant eigenstate
|�0(t)〉, we suitably choose the feasible parameters γ (t) and
β(t),

γ (t) = ε, β(t) = πt/2tf , (16)

where ε is a small value, which satisfies (sin ε)−1 = 4N

(N = 1,2,3, . . .) for a high fidelity of the target state [13].
And we obtain

�1(t) = (π/
√

2tf ) cot ε sin(πt/2tf ),
(17)

�2(t) = (π/
√

2tf ) cot ε cos(πt/2tf ).

Once the Rabi frequencies are specially designed, the FPT
of the states in subsystem S2 will be implemented. Afterwards,
we analyze the population transfer of the states in subsystems
S1 and S3. Analyzing the population transfer in these two
subsystems, by contrast, the whole system must be taken into
consideration rather than only the subsystem. We consequently
introduce two vectors |μ1〉 = 1√

2
(|φ2〉 − |φ3〉) = |ψ3〉 and

|μ2〉 = 1√
2
(|φ2〉 + |φ3〉) = 1√

2
(|ψ2〉 + |ψ4〉) for rewriting the

Hamiltonian in Eq. (4). We have

Hre = 1√
2
�1(t)(−|ψ1〉〈φ1|) + 1√

2
�2(t)|ψ5〉〈φ1|

+ 1√
2
�1(t)|ψ1〉〈μ2|

+ 1√
2
�2(t)|ψ5〉〈μ2| +

√
2λ|ψ3〉〈μ2| + H.c.. (18)

We find that there is a dark state for the Hamiltonian Hre, and
the dark state is

|Dark〉 = 1

N2

(
�2(t)|ψ1〉 − �1(t)�2(t)

λ
|ψ3〉 + �1(t)|ψ5〉

)

= 1

N2

[
�2(t)|ψ1〉 − �1(t)�2(t)√

2λ
(|φ2〉 − |φ3〉)

+�1(t)|ψ5〉
]
, (19)

with N2 =
√

�2
1 + �2

2 + (�1�2/λ)2. The result shows that,
based on STIRAP, the states |φ1〉 and |μ2〉 are neglected when
the adiabatic condition for the whole system is satisfied. How-
ever, the adiabatic condition for the whole system cannot be
satisfied since we have designed two special Rabi frequencies
�1 and �2, and we learn from Ref. [13] that the state |φ1〉 is
absolutely populated to a relatively large extent for speeding up
the population transfer. Hence, it is very necessary to analyze
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whether the state |μ2〉 can still be neglected or not with these
two special Rabi frequencies. And the effect of the state |μ2〉
during the evolution of the whole system is worth studying. By
solving the characteristic equation of Hre, we conclude that the
smallest difference between an arbitrary eigenvalue and 0 is

|�E| = ϑ/
√

2 =
√

�2
1 + �2

2 + 2λ2 − �

2
, (20)

with � =
√

(�2
1 − �2

2)2 + 4λ4 and ϑ =√
�2

1 + �2
2 + 2λ2 − � , the corresponding eigenstates are

|�+〉 = 1

Ne

{
�1

ς

[
ϑ2

2
− (

�2
2 + 2λ2

)]|ψ1〉

− �2

ς

[
ϑ2

2
− (

�2
1 + 2λ2

)]|ψ5〉

− ϑ(2λ2 + � )

2ς
|φ1〉 − ϑ

2λ
|μ2〉 + |ψ3〉

}
,

|�−〉 = 1

Ne

{
�1

ς

[
ϑ2

2
− (

�2
2 + 2λ2)]|ψ1〉

− �2

ς

[
ϑ2

2
− (

�2
1 + 2λ2

)]|ψ5〉

+ ϑ(2λ2 + � )

2ς
|φ1〉 + ϑ

2λ
|μ2〉 + |ψ3〉

}
, (21)

with ς = λ(�2
1 − �2

2), and Ne is the corresponding
normalization coefficient. Whereas the adiabatic condition for
the whole system is not always satisfied, the eigenstates |�+〉
and |�−〉 will be populated and participate in the evolution
of the whole system. On account of a wide disparity between
the corresponding eigenvalues of the rest eigenstates and
0, these states can be adiabatically eliminated. The states
|�+〉 and |�−〉 are similar to each other, thus we take |�+〉
for an example in the following analysis. The ratio τ of the
coefficients for states |φ1〉 and |μ2〉 is

τ =
∣∣∣∣ϑς

[
ϑ2

2
−

(
�2

1 + �2
2

2
+ 2λ2

)]/(
− ϑ

2λ

)∣∣∣∣
=

∣∣∣∣ − λ
[
ϑ2 − (

�2
1 + �2

2 + 4λ2
)]

ς

∣∣∣∣
=

∣∣∣∣2λ2 + �

�2
1 − �2

2

∣∣∣∣. (22)

If we set �1(t) = ζλ sin (π/2tf ) and �2(t) = ζλ cos (π/2tf ),
where ζλ denotes the amplitude of the laser pulse,

τ =
∣∣∣∣2 +

√
ζ 4(sin2 β − cos2 β)2 + 4

ζ 2(sin2 β − cos2 β)

∣∣∣∣. (23)

It is evident there is a minimum value and a maximum value
of τ , namely, τmin = |(2 +

√
ζ 4 + 4)/ζ 2| and τmax = ∞. From

the conditions described above, ζ <
√

2 should be satisfied.
When ζ = √

2, τmin = 1 + √
2, and the corresponding ratio of

the populations for the states |φ1〉 and |μ2〉 is τ 2 = 3 + 2
√

2.
The result reveals that, with the limits to the parameters of
τmin, the population of the state |μ2〉 is still much less than that
of the state |φ1〉. And the population of the state |φ1〉 keeps in a

small value during the evolution of the whole system (this will
be analyzed in detail later). Afterwards, we deduce that the
population for the state |μ2〉 can be neglected all the time dur-
ing the evolution. From Eq. (18), we find that the state |ψ3〉 can
only be transformed from the state |μ2〉. Since the population
for the state |μ2〉 is neglected all the time, |ψ3〉 is considered as
an independent state of the whole system. That is, the whole
system is regarded as a three-level single-atom system even
when the Zeno condition is not well met. However, as the result
of strong coupling between the states |μ2〉 and |ψ3〉, very little
population for the state |μ2〉 can lead to a rapid increase in the
population for the state |ψ3〉. The effects of the subsystems
S1 and S3 in the population transfer of the whole system are
embodied by the dark state |Dark〉. And the intermediate state
|ψ3〉 will become the key point of the combined effect of the
subsystems S1 and S3 for assisting the population transfer.
The population of the intermediate state |ψ3〉 is mainly
dominated by the ratio r = �1(t)�2(t)/(N2λ) according to
Eq. (21). For simplicity, we set t = tf /2 (the population of the
state |ψ3〉 is the maximum when t = tf /2) such that

r = π cot ε√
(2

√
2λtf )2 + (π cot ε)2

, (24)

i.e., when ε is a constant value, the larger the interaction time
λtf is, and the less the population of the intermediate state |ψ3〉
is. From Refs. [10,13,20], the essence of FPT in the invariant-
based inverse engineering is increasing the populations of
some intermediate states under certain conditions. Now, if we
suitably increase the population of the intermediate state |ψ3〉
(actually, the population of the state |ψ3〉 is increased by very
slightly increasing the population of |μ2〉) with very slightly
destroying the conditions for the perfect FPT in the main
subsystem S2, the transfer will be much faster for the relation
between the population of the state |ψ3〉 and the interaction
time is inversely proportional when ε is a constant value.

The validity of the above theoretical analysis will be numer-
ically proved in the following. First, the population transfer of
the whole system is an ideal FPT when the Zeno condition is
greatly satisfied. Figure 2(a) shows the comparison between
the population transfer governed by the total Hamiltonian HI

according to Eq. (1) and that governed by the Hamiltonian
of subsystem S2 according to Eq. (7) when λtf = 50 and
ε = arcsin 0.25 [the Zeno condition λ 	 �k(t) can be satisfied
very well], where the markers with different styles and colors
represent the time evolution of the populations governed by the
subsystem Hamiltonian HS2 for the states |ψ0〉, |ψ5〉, and |φ1〉,
respectively, and the curves with different styles and colors
represent the time evolution of the populations governed by
the total Hamiltonian HI for the states |ψ0〉, |ψ5〉, |φ1〉, and |φ2〉
(|φ3〉), respectively, and the superscripts S and W represent the
Hamiltonian of the subsystem S2 and the total Hamiltonian HI ,
respectively. The population for a state |ψ〉 is given through the
relation P = |〈ψ |ρ(t)|ψ〉|, where ρ(t) is the density operator
of the system at any time t . All the time, the populations of the
states |φ2〉 and |φ3〉 remain negligible, and the time evolution
of the system governed by the total Hamiltonian HI is exactly
the same with the time evolution of the system governed by
the subsystem Hamiltonian HS2 if we neglect the states |φ2〉
and |φ3〉, that is, we quote Chen et al. as saying that the whole
system evolves along the dark state |�0(t)〉 and an FPT of the
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FIG. 2. (Color online) (a) The comparison between the population transfer governed by the total Hamiltonian HI and that governed by the
Hamiltonian HS2 when λtf = 50 and ε = arcsin 1/4. (b) The comparison between the population transfer governed by the total Hamiltonian
HI and that governed by the dark state |Dark〉 when λtf = 300 and ε = arcsin 1/100.

whole system can be perfectly achieved. In fact, the dark state
|�0(t)〉 can’t faultlessly explain the evolution of the system;
the system evolves along a special way which is very similar
to a dark state, and we name it “darklike state” for short.
This special state has the form |Dlike(t)〉 = 1

Nlike
[α1(t)|ψ1〉 +

α2(t)|ψ5〉 + α3|φ1〉 + α4(t)|μ1〉]. In the present case, as the
Zeno condition is satisfied, the state |μ1〉 is negligible
and the “darklike state” can be simplified as |D′

like(t)〉 =
1

N ′
like

[α1(t)|ψ1〉 + α2(t)|ψ5〉 + α3(t)|φ1〉].
We confirm that the evolution of the whole system is com-

pletely governed by the dark state |Dark〉 with completely de-
stroying the conditions for the FPT in the subsystem S2 [when
sin γ is very close to zero, the invariant Hermitian operator IS2

according to Eq. (9) equals to the Hamiltonian HS2 , and the sys-
tem is just an ordinary system based on STIRAP]. Figure 2(b)
shows the comparison between the population transfer gov-
erned by the total Hamiltonian HI according to Eq. (1) and that
governed by the dark state |Dark〉 according to Eq. (19) when
λtf = 300 and ε = arcsin 1/100 (the condition for STIRAP
can be satisfied), where the markers with different styles and
colors represent the time evolution of the populations governed
by the dark state |Dark〉 for the states |ψ0〉, |φ2〉 (|φ3〉), and
|ψ5〉, respectively, and the curves with different styles and
colors represent the time evolution of the populations governed
by the total Hamiltonian HI for the states |ψ0〉, |ψ5〉, |φ1〉,
and |φ2〉 (|φ3〉), respectively, and superscript D represents the
dark state |Dark〉. Similar to Fig. 2(a), the time evolution of
the whole system is almost absolutely governed by the dark
state |Dark〉 when the dark state |�0(t)〉 is inoperative for the
evolution of the whole system (the conditions for the FPT in the
subsystem S2 are completely ungratified). Contrast Fig. 2(a)
with Fig. 2(b); the interaction time needed for the FPT in the
invariant-based inverse engineering satisfying the Zeno condi-
tion is much shorter than the population transfer in an ordinary
STIRAP, that is, we have speeded up the population transfer of
ground states in a two-atom system with a composed system in-
cluding the QZD and the invariant-based inverse engineering.

Moreover, we further shorten the interaction time by
combining the effect of the subsystem S2 with the effect of

the dark state |Dark〉 (the combined effect of the subsystems
S1 and S3). Figure 3(a) shows the time evolution of the
populations governed by the Hamiltonian HS2 for the states
|ψ0〉, |φ1〉, and |ψ5〉; Fig. 3(b) shows the time evolution
of the populations governed by the dark state |Dark〉 for
the states |ψ0〉, |φ2〉 (|φ3〉), and |ψ5〉, and Fig. 3(c) shows
the time evolution of the populations governed by the total
Hamiltonian HI for the states |ψ0〉, |φ1〉, |φ2〉 (|φ3〉), and |ψ5〉.
Figs. 3(a)–3(c) are plotted with ε = arcsin 0.25 (N = 1) and
λtf = 10. Contrast Fig. 3(c) with Figs. 3(a) and 3(b); the time
evolution of the whole system governed by the combined effect
of the subsystem S2 and the dark state |Dark〉 is a little more
complex than that governed by the effect of directly adding
these two effects together. It can be seen from Fig. 3(c) that
the population of the target state |ψ5〉 is only 99.35% when
t = tf . The reason for these results can be understood by the
conditions (the Zeno condition, the condition for STIRAP, etc.)
for whether an ideal FPT governed by the subsystem S2 or an
ideal population transfer governed by the dark state |Dark〉
cannot be satisfied very well; actually the population transfer
from the initial state to the target state along a virtual dark
state |Dark〉vir which will be discussed in detail elsewhere.
Due to the slightly populated intermediate state |μ2〉, the
whole system cannot be faultlessly considered as a three-level
single-atom system, and the optimal value of ε for the whole
system will not faultlessly satisfy the condition (sin ε)−1 = 4N

(N = 1,2,3, . . .). Reselecting the optimal value of ε becomes
a necessity. We plot the fidelity F of the target state |ψ5〉 versus
the value of ε and the interaction time λtf in Fig. 3(d). The
fidelity F for the target state |ψ5〉 is given through the relation
F = |〈ψ5|ρ(tf )|ψ5〉|, where ρ(tf ) is the density operator of
the system at the time tf by solving the differential equation
ρ̇ = i[ρ,HI ]. When λtf = 10, the optimal value of ε for the
highest fidelity (F = 1) of the state |ψ5〉 is about 0.2636;
meanwhile, the minimum value of λtf is only about 7.3 for
a perfect FPT (F = 1 for the target state when t = tf ), even
when λtf = 6.4 and ε ≈ 0.26, the fidelity of the target state
is higher than 99% (when λtf < 6, the whole system cannot
be considered as a three-level single-atom system since the
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FIG. 3. (Color online) (a) The time evolution of populations governed by the Hamiltonian HS2 for the states |ψ0〉, |φ1〉, and |ψ5〉 when
λtf = 10 and ε = arcsin 0.25. (b) The time evolution of populations governed by the dark |Dark〉 for the states |ψ0〉, |φ2〉 (|φ3), and |ψ5〉 when
λtf = 10 and ε = arcsin 0.25. (c) The time evolution of populations governed by the total Hamiltonian HI for the states |ψ0〉, |ψ5〉, |φ1〉, and
|φ2〉 (|φ3) when λtf = 10 and ε = arcsin 0.25. (d) The fidelity F of the target state |ψ5〉 versus the value of ε and the interaction time λtf .

state |μ2〉 is populated too much and cannot be neglected).
What is more, this method is insensitive to the fluctuations
of ε and the interaction time λtf , and is also insensitive to
the amplitude of the laser pulses and the coupling constant λ.
For convenient discussion, we suitably choose three sets of
parameters {ε = 0.2636, λtf = 10}, {ε = 0.1196, λtf = 20},
and {ε = 0.0810, λtf = 40}, corresponding N = 1, N = 2,
and N = 3, respectively. Figure 4(a) shows the time depen-
dence of the Rabi frequencies for the atoms when ε = 0.2636
and λtf = 10. The ratio �max

k /λ (here the superscript max
denotes the maximum value of �k) is 0.8232 which meets
the conditions mentioned above. And Fig. 4(b) shows the
time evolution of the populations for states |ψ0〉, |ψ2〉, |ψ3〉,
|ψ4〉, and |ψ5〉. After reselecting the optimal value of ε,
a perfect population transfer from the initial state |ψ0〉 to
the target state |ψ5〉 (the population of the target state |ψ5〉
is 1 when t = tf ) can be achieved. Figure 5(a) shows the
time evolution of the populations for the states |φ1〉 (|μ1〉),
|ψ3〉, and |μ2〉. The population of |μ2〉 remains negligible all
the time even with ζ = 0.8232. Actually, Fig. 5(a) explains
the essence of FPT. The intermediate states |φ1〉, |ψ3〉, and
|μ2〉 are usually neglected in the schemes in the view of

STIRAP and QZD. However, these states are necessary for
the transfer from the initial state |ψ0〉 to the target state
|ψ5〉. They link the whole system together just like brittle
strings; the evolution of the system is interdictory without
the participation of these intermediate states. By increasing the
populations of intermediate states in a certain period of time,
just like broadening the channels for the transition between
|ψ0〉 ↔ |ψ5〉 in a certain period of time, the transition could
be much faster. Figures 4 and 5(a) are plotted when λtf = 10
and ε = 0.2636. Figure 5(b) shows the populations for the
states |ψ0〉, |ψ2〉, |ψ3〉, |ψ4〉, and |ψ5〉 when λtf = 20 and
ε = 0.1196. Contrast Fig. 4(b) with Fig. 5(b); it turns out that
a longer interaction time is required, i.e., tf = 20/λ, when
ε = 0.1196 for achieving the target state, and the population
of |ψ3〉 only changes a little while the populations of |ψ2〉 and
|ψ4〉 change a lot. The reason for needing a longer interaction
time is that a smaller ε causes larger amplitudes of the laser
pulses, and a relatively larger λtf should be chosen to satisfy
the conditions above. As narrated above, the population of
|ψ3〉 is only governed by the combined effect of subsystems
S1 and S3. The ratio r governs the population of the state |ψ3〉
according to Eq. (24). We obviously have to have the ratio
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FIG. 4. (Color online) (a) The time dependence of the laser fields �1(t) and �2(t) when ε = 0.2636 and λtf = 10. (b) Time evolution of
the populations for the states |ψ0〉, |ψ2〉, |ψ3〉, |ψ4〉, and |ψ5〉 when ε = 0.2636 and λtf = 10.

r = 0.4195 when λtf = 20 and ε = 0.1196, and r = 0.3806
when λtf = 10 and ε = 0.2636. This immediately implies, by
varying λtf and ε at a similar rate, the corresponding ratio r

shifts only a little bit. That is the reason why the population of
|ψ3〉 almost keeps unchanging when λtf and cot ε are changing
similarly.

In particular, we contrast this method with an ordinary
method based on QZD with the similar model. When the
Zeno condition λ 	 �k is satisfied and the laser pulses
are independent of time, based on the QZD, an effective
Hamiltonian of the system is

Heff = �1√
2
|ψ0〉〈φ1| + �2√

2
|ψ5〉〈φ1| + H.c., (25)

and the general evolution form of Eq. (25) at time t is

|ψ(t)〉 = 1

2χ2

(
�2

1 cos χt + �2
2

)|ψ0〉 − i sin χt |φ1〉

+ 1

2χ2
(�1�2 cos χt − �1�2)|ψ5〉, (26)

with χ =
√

(�2
1 + �2

2)/2. When we choose t = tf = π/χ and
�Z = �1 = �2, the target state |ψ5〉 is obtained. For λtf =
π/�Z , if �Z = 0.1λ (almost the limitation of the value of �Z

for satisfying the Zeno condition), tf  31.416λ. The maximal
population of the intermediate |φ1〉 during the evolution of the
whole system is 50% when t = 0.5tf ; that means the influence
of decoherence caused by the spontaneous emission is very
great. The minimum effective interaction time λtf as men-
tioned above, however, is only about 7.2. As noted earlier, the
QZD is sensitive to variations in some parameters, especially
the interaction time, whereas this method is insensitive to varia-
tions in most of the parameters. Compared to the method based
on STRIRAP and QZD, this method has superiority to some
extent.

In the above discussion, the dissipation has not been taken
into account. However, the system will interact with the
environment inevitably which effects the availability of this
method. Thus, we investigate the influence of spontaneous
emission and photon leakage on this method. Once considered,
the evolution of the system can be modeled by a master
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FIG. 5. (Color online) (a) Time evolution of the populations for the intermediate states |φ1〉, |ψ3〉, and |μ2〉 when ε = 0.2636 and λtf = 10.
(b) Time evolution of the populations for the states |ψ0〉, |ψ2〉, |ψ3〉, |ψ4〉, and |ψ5〉 when ε = 0.1196 and λtf = 20.
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FIG. 6. (Color online) (a) The influence of spontaneous emission �/λ on the fidelity F of the target state |ψ5〉 under different conditions
when the decay of cavity κ = 0. (b) The influence of decay of cavity κ/λ on the fidelity F of the target state |ψ5〉 under different conditions
when the spontaneous emission � = 0.

equation in Lindblad form,

ρ̇ = i[ρ,Htot] +
∑

k

[
LkρL

†
k − 1

2
(L†

kLkρ + ρL
†
kLk)

]
, (27)

where the Lk’s are the so-called Lindblad operators [29]. The
five Lindblad operators governing dissipation in the two-atom
model are

Lκ
1 = √

κa, L�
2 =

√
�1|f 〉1〈e|, L�

3 =
√

�2|f 〉2〈e|,
(28)

L�
4 =

√
�3|g〉1〈e|, L�

5 =
√

�4|g〉2〈e|,
where κ is the decay of the cavity and �i (i = 1,2,3,4) are the
spontaneous emissions of atoms. Without loss of generality,
we set �i = �/2. The fidelity F for the target state |ψ5〉 is
given through the relation F = |〈ψ5|ρ(tf )|ψ5〉|, where ρ(tf )
is the density operator of the system at the time tf . In Fig. 6(a)
we plot the fidelity F of the target state |ψ5〉 versus the decay
of spontaneous emission �/λ with different values of ε and
λtf when the decay of cavity κ/λ = 0. The result shows that
the larger the value of ε is, the more sensitive to the decay
of spontaneous emission the system is. The reason for this

result is that the populations of effective intermediate states
|ψ2〉 and |ψ4〉 decrease as ε gets smaller. Figure 6(b) shows
the fidelity F of the target state |ψ5〉 versus the decay of cavity
κ/λ with different values of ε and λtf when the decay of
spontaneous emission �/λ = 0. The sensitivity of the system
to the decay of cavity seemingly decreases with the decreasing
of ε. Because the population of the effective intermediate
state |ψ3〉 is mainly dominated by the ratio r , and the Zeno
condition (λ 	 �k) could be satisfied very well when the ratio
r is small enough, that is, the intermediate state |ψ3〉 can be
effectively neglected with an adequately small ratio r . Thus
r = 0.3806 when ε = 0.2636 and λtf = 10, r = 0.4195 when
ε = 0.1196 and λtf = 20, and r = 0.3273 when ε = 0.0810
and λtf = 40. The population of |ψ3〉 is the smallest when
ε = 0.0810 for the three sets of parameters in Fig. 6. As it is
known, the interaction time λtf also governs the decoherence
of the system. Considering both the population of the state |ψ3〉
and the interaction time, the most insensitive to the decay of
cavity is at ε = 0.2636 and λtf = 10. Contrast Fig. 6(a) with
Fig. 6(b); an increase in the decay rate κ reduces the stationary
state fidelity more rapidly than an increase in the decay
rate �.
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FIG. 7. (Color online) (a) The fidelity F of the target state |ψ5〉 versus the ratios �/λ and κ/λ in the two-atom system. (b) The fidelity F

of the target state |ϕ7〉 versus the ratios �/λ and κ/λ in the three-atom system.

033856-8



EFFICIENT SHORTCUTS TO ADIABATIC PASSAGE FOR . . . PHYSICAL REVIEW A 89, 033856 (2014)

The relationship of the fidelity F of the target state
|ψ5〉 versus the ratios κ/λ and �/λ by solving the master
equation numerically is shown in Fig. 7(a) when ε = 0.2636
and λtf = 10. The fidelity F decreases slowly with the
increasing of cavity decay and atomic spontaneous emission
and it is robust against cavity decay and atomic sponta-
neous emission since it is still about 87.03% when κ/λ =
�/λ = 0.1. Therefore, our scheme is robust against the two
error sources and could acquire a better result in realistic
conditions.

III. FAST POPULATION TRANSFER
IN THE MULTIPARTICLE SYSTEMS

Actually, this method can be effectively applied to a multi-
particle system for achieving the FPTs, generating entangled
states, implementing phase gates, etc. Assume that all of the
atoms are trapped in one cavity; in the interaction picture,
the Hamiltonian of a cavity-atom combined system can be
described as

Hi = Hac + Hal + Haa, (29)

where Hac is the Hamiltonian for the interaction between
the atoms and the cavity, Hal is the Hamiltonian for the
interaction between the atoms and the time-dependent laser
pulses, and Haa is the Hamiltonian for the direct interaction
between the atoms. In a typical setup with neutral atoms at
least several microns apart, direct interactions are negligible;
Haa = 0. Just as QZD, with the eigenvectors of Hac, we
rewrite the Hamiltonian Hal and Hac as H ′

al and H ′
ac,

respectively. By solving the characteristic equation of Hac,
a set of eigenvalues ξn = ∑

Cn,mλm is gained. Here λm is the
mth coupling constant between the atoms and cavity. Setting
λm = λ for simplicity, we get a set of eigenvalues ξn = C ′

nλ.
The Hamiltonians are given by

Hi = H ′
ac + H ′

al,

H ′
ac =

∑
n

ξn|	n〉〈	n|, (30)

H ′
al =

∑
n,m,l

bn,m,l�m(t)|	n〉〈ϕl| + H.c.,

where |	n〉 is the nth eigenvector for the Hamiltonian Hac,
�m(t) is the mth Rabi frequency for the whole system, |ϕl〉
is the lth basis vector for the whole system, and bn,m,l is
the corresponding {n,m,l}th coefficient. Almost the same as
the transition between Eq. (4) and Eq. (5), we perform a
unitary transformation U = e−iH ′

act on H ′
al under the con-

dition H ′
al 
 H ′

ac. We find that the Hamiltonian becomes
H eff

al ,

H eff
al =

∑
n,m,l

bn,m,l�m(t)eiξnt |	n〉〈ϕl| + H.c.. (31)

Suppose that there are M different eigenvalues for the
Hamiltonian Hac, and the corresponding eigenvalues are
0,±λ,±√

2λ,±√
3λ, . . . . By utilizing the analysis in Sec. II,

we consider the terms with ξn = 0 as the main subsystem
S1 for the whole system, and the terms with eigenvalues ±λ

as the secondary subsystems S+
2 and S−

2 , and so on. First,

we design, by invariant-based inverse engineering, resonant
laser pulses to perform a FPT in the main subsystem S1.
Secondly, by setting some simple conditions, a part of the
subsystems can be neglected since the interaction between
the states in each of these subsystems is far weaker than that
in the main subsystem. Introducing some special vectors (a
part of these vectors can be neglected all the time during the
evolution of the whole system and the rest of the vectors only
have direct interaction with the vectors which are neglected),
we rewrite the total Hamiltonian and find out the dark
state.

Next, the most important work is how to design and perform
the FPT in the subsystem S1. From Refs. [10,13,20], we know
that it is very hard to directly design and perform the FPT in a
system which is more complicated than the three-level single-
atom system. It is best to perform an equivalent transformation
to make the subsystem S1 become a system which can be
considered as a two-level or three-level single-atom system.
And the part of these operations for achieving the “excited
state” of the “two-level or three-level single-atom system” can
be finished based on the superposition principle and Gram-
Schmidt orthonormalization since all of the states |	n〉 in this
subsystem have the same eigenvalue ξ = 0. We cipher out
the conditions for neglecting the special vectors. The whole
system is similar to the two-atom system mentioned in Sec. II,
and then the FPT in a multiparticle system can be effectively
achieved.

We now consider three atoms are trapped in a bimodal-
mode cavity. Each atom has one excited state |e〉 and three
ground states |f 〉, |g+〉, and |g−〉. The transition |f 〉 ↔ |e〉
is resonantly driven through a time-dependent laser pulse
with Rabi frequency �(t), and the transition |g+〉(|g−〉) ↔ |e〉
is resonantly coupled to the left-circularly (right-circularly)
polarized cavity mode with coupling constant λ+(λ−). The
transition |g+〉1(|g−〉3) ↔ |e〉 and |f 〉 ↔ |e〉 is supposed to
be closed for atom a1(a3) and atom a2, respectively. As a
consequence, the total Hamiltonian in the interaction picture
is given by

HI = Hal + Hac,

Hal =
∑
k=1,3

�k(t)|e〉k〈f | + H.c.,

Hac = λ1,+|e〉1〈g+|a+ + λ2,+|e〉2〈g+|a+ + λ2,−|e〉2〈g−|a−
+ λ3,−|e〉3〈g−|a− + H.c., (32)

where the subscripts 1, 2, and 3 represent the atoms a1, a2, and
a3, respectively. a± are the annihilation operators for the cavity
modes. We assume the initial state is |f 〉1|g+〉2|g−〉3|0〉c and
λk,± = λ (k = 1,2,3). The basis vectors for the whole system
are

|ϕ1〉 = |f 〉1|g+〉2|g−〉3|0〉c,
|ϕ2〉 = |e〉1|g+〉2|g−〉3|0〉c,
|ϕ3〉 = |g+〉1|g+〉2|g−〉3|1〉c,
|ϕ4〉 = |g+〉1|e〉2|g−〉3|0〉c,
|ϕ5〉 = |g+〉1|g−〉2|g−〉3|1〉c,
|ϕ6〉 = |g+〉1|g−〉2|e〉3|0〉c,
|ϕ7〉 = |g+〉1|g−〉2|f 〉3|0〉c, (33)
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and the eigenvectors for the Hamiltonian Hac are

|	1〉 = 1√
3

(|ϕ2〉 − |ϕ4〉 + |ϕ6〉),

|	2〉 = 1

2
(−|ϕ2〉 − |ϕ3〉 + |ϕ5〉 + |ϕ6〉),

|	3〉 = 1

2
(−|ϕ2〉 + |ϕ3〉 − |ϕ5〉 + |ϕ6〉), (34)

|	4〉 = 1

2
√

2
(|ϕ2〉 +

√
3|ϕ3〉 + 2|ϕ4〉 +

√
3|ϕ5〉 + |ϕ6〉),

|	5〉 = 1

2
√

2
(|ϕ2〉 −

√
3|ϕ3〉 + 2|ϕ4〉 −

√
3|ϕ5〉 + |ϕ6〉),

with eigenvalues ξ1 = 0, ξ2 = λ, ξ3 = −λ, ξ4 = √
3λ, and

ξ5 = −√
3λ. It is verified that the H eff

al is

H eff
al = 1√

3
|	1〉(�1(t)〈ϕ1| + �3(t)〈ϕ7|)

+ 1

2
|	2〉(−�1(t)〈ϕ1| + �3(t)〈ϕ7|)eiλt

+ 1

2
|	3〉(−�1(t)〈ϕ1| + �3(t)〈ϕ7|)e−iλt

+ 1

2
√

3
|	4〉(�1(t)〈ϕ1| + �3(t)〈ϕ7|)ei

√
3λt

+ 1

2
√

3
|	5〉(�1(t)〈ϕ1| + �3(t)〈ϕ7|)e−i

√
3λt + H.c..

(35)

Caused by five different eigenvalues of the Hamiltonian Hac,
we divide the system into five subsystems,

S1 = {|ϕ1〉, |	1〉, |ϕ7〉}, S+
2 = {|ϕ1〉, |	2〉, |ϕ7〉},

S−
2 = {|ϕ1〉, |	3〉, |ϕ7〉}, S+

3 = {|ϕ1〉, |	4〉, |ϕ7〉}, (36)

S−
3 = {|ϕ1〉, |	5〉, |ϕ7〉}.

The main subsystem S1 can be considered as a three-level
single-atom system. If we set “

√
2λ is slightly larger than

�k” (actually, the setting varies depending on the method),
the terms containing the oscillating frequency ±√

3λ will
be effectively neglected, that is, the subsystems S±

3 can
be effectively neglected. The two vectors introduced for
rewriting the total Hamiltonian in Eq. (32) are |μ+〉 =

1√
2
(|	2〉 − |	3〉) and |μ−〉 = 1√

2
(|	2〉 + |	3〉). The whole

system evolves in the subspace spanned by the basis vectors
{|ϕ1〉, |ϕ7〉, |	1〉, |μ+〉, |μ−〉}. In terms of the basis vectors,
the total Hermitian in the interaction picture is simplified as

H 3
re = 1√

3
|	1〉(�1(t)〈ϕ1| + �3(t)〈ϕ7|)

+ 1√
2
|μ−〉(−�1(t)〈ϕ1| + �3(t)〈ϕ7|)

+ λ|μ−〉〈μ+| + H.c.. (37)

An ideal FPT is performed effectively in the whole system,
and it is the same as what we have done in Sec. II. First, we
design the two special Rabi frequencies by using the dynamics
of invariant-based inverse engineering. The Hermitian H 3

S1
for

the main subsystem S1 of the three-atom model reads

H 3
S1

(t) = 1√
3

⎛
⎜⎝

0 �1(t) 0

�1(t) 0 �3(t)

0 �3(t) 0

⎞
⎟⎠ . (38)

And the corresponding invariant Hermitian operator I 3
S1

(t)
satisfying i∂I 3

S1
(t)/∂t = [H 3

S1
(t),I 3

S1
(t)] for speeding up the

transfer is

I 3
S1

(t)

= 1√
3
χ ′

⎛
⎜⎝

0 cos γ ′ sin β ′ −i sin γ ′

cos γ ′ sin β ′ 0 cos γ ′ cos β ′

i sin γ ′ cos γ ′ cos β ′ 0

⎞
⎟⎠ ,

(39)

where χ ′ is an arbitrary constant with units of frequency to
keep I 3

S1
(t) involving the energy dimension. Then the two

special Rabi frequencies designed for performing the FPT in
the main subsystem S1 are inferred,

�1(t) =
√

3(β̇ ′ cot γ ′ sin β ′ + γ̇ ′ cos β ′),
(40)

�3(t) =
√

3(β̇ ′ cot γ ′ cos β ′ − γ̇ ′ sin β ′).

We also choose γ ′ = ε and β ′ = πt/tf , where ε is also a small
value which should be carefully chosen later for a high fidelity
of the transfer. Substituting γ ′ and β ′ into Eq. (40), the two
special Rabi frequencies turn out to be

�1(t) = (
√

3π/2tf ) cot ε sin(πt/2tf ),
(41)

�3(t) = (
√

3π/2tf ) cot ε cos(πt/2tf ).

Second, we make the secondary subsystems S±
2 become the

auxiliary for the FPT in the whole system. By solving the
intrinsic equation of H 3

re, the dark state for the whole system
is obtained:

|Dark3〉 = 1√
N3

[
�3(t)|ϕ1〉

− �1(t)�3(t)

λ
(|ϕ3〉 − |ϕ5〉) − �1(t)|ϕ7〉

]

= 1√
N3

[
�3(t)|ϕ1〉

+ �1(t)�3(t)

λ
(|	2〉 − |	3〉) − �1(t)|ϕ7〉

]
,

= 1√
N3

[
�3(t)|ϕ1〉

+
√

2�1(t)�3(t)

λ
|μ+〉 − �1(t)|ϕ7〉

]
, (42)

with N3 =
√

�1(t)2 + �3(t)2 + 2(�1(t)�3(t)/λ)2. The inter-
mediate state |μ−〉 is considered as a state which can be
neglected all the time and the state |μ+〉 is considered as an
independent state of the system under certain conditions. By
setting the condition for very slightly increasing the population
of |μ−〉, the FPT of the whole system can be achieved. And
a very short interaction time, i.e., λtf = 9.5, is needed for
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FIG. 8. (Color online) (a) Time evolution of the populations for the states |ϕ1〉 − |ϕ7〉 when ε = 0.2596 and λtf = 9.5. (b) Time evolution
of the populations for the states |	1〉, |μ+〉, |μ−〉, and |	4〉(|	5〉) when ε = 0.2596 and λtf = 9.5.

achieving a perfect target state |ϕ7〉 with a fidelity 99.9%
from the initial state |ϕ1〉 when ε = 0.2596 by the numerical
calculation. Figure 8(a) shows the time evolution of the
populations for states |ϕ1〉 − |ϕ7〉. Figure 8(b) is plotted to
demonstrate that the subsystems S±

3 and the state |μ−〉 can
be effectively neglected. From Fig. 8(b), it is displayed that
the populations of the states |	4〉 and |	5〉 remain negligible
all the time since the maximum values of the populations are
only 0.82% for the states |	4〉 and |	5〉. The state |μ−〉 is very
slightly populated for speeding up the population transfer, and
it still can be considered as negligible since the maximum
value of its population is only 4.8%. Figures 8(a) and 8(b)
are plotted when ε = 0.2596 and λtf = 9.5. The fidelity of
the target state |ϕ7〉 in the presence of decoherence is given
through solving the master equation according to Eq. (27).
There are eight Lindblad operators for the three-atom model,

Lκ
1 = √

κ+a+, Lκ
2 = √

κ−a−,

L�
3 =

√
�1|f 〉1〈e|, L�

4 =
√

�2|f 〉3〈e|,
(43)

L�
5 =

√
�3|g+〉1〈e|, L�

6 =
√

�4|g−〉3〈e|,
L�

7 =
√

�5|g+〉2〈e|, L�
8 =

√
�6|g−〉2〈e|.

We also set κi = κ (i = +,−) and �j = �/2 (j = 1,2, . . . ,6)
for simplicity. From the relationship of fidelity F of the target
state |ϕ7〉 versus the ratios κ/λ and �/λ given in Fig. 7(b),
F decreases slowly with the increasing of cavity decay and
atomic spontaneous emission and it is insensitive to both of
these two error sources because it is still about 88.89% when
κ = � = 0.05λ.

IV. CONCLUSION

The invariant-based inverse method presented here
may be compared to the optimal control approaches in
Refs. [13,30–32]; it provides a complementary perspective
of these approaches, whereas optimal control is useful to
choose among the possible solutions found by the invariant-
based inverse engineering [13]. The QZD is a very effective
method and it has been widely used in quantum information
processing [33–36]. It is well known that the QZD has the

advantage of simplifying a complicated system by space
division, and the shortcuts to adiabatic passage mentioned by
Chen et al. has the advantage of shortening the operation time
by using special resonant pulses. In this paper, we combine
the advantage of “simplifying a complicated system” with
the advantage of “shortening the operation time,” and present
a method for performing the FPTs in multiparticle systems.
Two different models have been discussed, and a perfect target
state can be achieved in a very short interaction time in each of
the two models. But some relatively large laser intensities are
needed since shortening the time implies an energy cost [13].
In a more general case, if there are no eigenvalues ξn = 0 for
the Hamiltonian Hac, the Hamiltonian for the main subsystem
HS1 does not possess SU(2) symmetry, so that the invariant IS1

should be constructed in terms of the eight Gell-Mann matrices
for the SU(3) group [37].

In experiment, the atom cesium can be used for this
method. And a set of cavity QED parameters (λ, κ, �)/2π =
(750, 3.5, 2.62) MHz is predicted to be available in an
optical cavity [38], therefore, the fidelity for the target state is
still higher than 99.2% for the two-atom system. With these
parameters, it allows us to construct an atomic system for the
FPT in the presence of decoherence.

In summary, we have proposed a promising method to
construct shortcuts to perform the FPT for ground states in two
or more atom systems by invariant-based inverse engineering
and in the view of quantum Zeno dynamics in the cavity QED
system. Compared with the previous works, the present work
can perform perfect FPTs in multiparticle systems without
additional complex conditions. And this method is insensitive
to the variations of the parameters, at the same time, the inter-
action time needs not to be controlled accurately. We firmly
believe that this work will make contributions to quantum
information processing including performing atomic transport,
implementing quantum gates, generating entangled states, etc.
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