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Determination of the effective transverse coherence of the neutron wave packet as employed in
reflectivity investigations of condensed-matter structures. II. Analysis of elastic scattering using

energy-gated wave packets with an application to neutron reflection from ruled gratings
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We present a general approach to analyzing elastic scattering for those situations where the incident beam is
prepared as an incoherent ensemble of wave packets of a given arbitrary shape. Although wave packets, in general,
are not stationary solutions of the Schrödinger equation, the analysis of elastic scattering data treats the scattering
as a stationary-state problem. We thus must gate the wave packet, coherently distorting its shape in a manner
consistent with the elastic condition. The resulting gated scattering amplitudes (e.g., reflection coefficients) thus
are weighted coherent sums of the constituent plane-wave scattering amplitudes, with the weights determined
by the shape of the incident wave packet as “filtered” by energy gating. We develop the gating formalism in
general and apply it to the problem of neutron scattering from ruled gratings described by Majkrzak et al. in a
companion paper. The required exact solution of the associated problem of plane-wave reflection from gratings
also is derived.
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I. INTRODUCTION

In this paper we address the problem of analyzing elastic
scattering, especially as in reflectometry, when the incident
wave (for a single incident quantum of radiation) is a shaped
wave packet poorly approximated by a perfect plane wave. The
basic idea is simple enough: The incident wave packet is in
general a solution of the time-dependent Schrödinger equation,
but standard analysis of data treats the elastic scattering as a
stationary-state problem, thereby effectively gating the wave
packet, i.e., distorting its shape in a manner consistent with the
elastic condition. The resulting gated scattering amplitudes
(e.g., reflection coefficients) thus are weighted coherent sums
of the constituent plane-wave scattering amplitudes, with the
weights determined by the shape of the incident wave packet as
“filtered” by energy gating. Among its benefits, gated analysis
leads to well-defined notions of longitudinal and transverse
“coherence lengths” and their effects on the scattering, which
usually are treated rather phenomenologically. The price paid
for gated wave-packet analysis is the need of an accurate
description of the underlying perfect plane-wave scattering,
especially in the dynamical regime, where the Born approx-
imation fails. Our notion of the energy-gated wave packet
was motivated in part by the approach of Zhu et al. [1] to the
problem of defining a time-independent Lippmann-Schwinger
description of wave-packet scattering. The formulation of
wave-packet scattering described here was applied to the anal-
ysis of neutron scattering from ruled gratings in a companion
paper by Majkrzak et al. [2], hereafter referred to as Part I.

In this work the wave packet of study is taken as the
complete description of the quantum mechanical state of a
single particle—say, a neutron—in the physical space of the
scattering and detection events. No account is taken of the
source of the incident particles, but each particle is viewed as
being totally uncorrelated with any other, as appropriate for
the description of an incoherent incident beam of like particles,
as produced, say, in the core of a nuclear reactor. However, no

explicit consideration is given to the processes responsible for
the assumed shape of the wave packet, which, for neutrons,
may include interactions with moderators, filters, guide tubes,
collimators, monochromators, and so on. We also assume a
“perfect instrument” once the particle is in the incident field
of the sample, and we neglect postscattering effects related
to slit settings and detector characteristics. For our purposes,
such matters lie within the realm of the usual incoherent
instrumental effects which act to select or reject particles either
from being incident upon the sample or from being detected
after scattering. See Part I for a discussion of instrumental
considerations and for an analysis of relevant “upstream”
effects that could influence wave-packet shape for a neutron
beam or which may even be connected to imperfections in
the sample itself, thus acting to partially mask the coherent
behavior of the single-particle wave packet.

In Sec. II we derive the gated wave-packet formalism in
some generality in the context of neutron reflectivity, taking
up a number of implementation matters in Sec. III. The theory
is developed first for specular-only reflection in Sec. III A
and for nonspecular reflection in Sec. III B, and a definition
of observable reflection amplitudes is shown in Eq. (54b).
The concept of coherent aliasing, or misidentification of
scattered rays, is introduced in Sec. IV. The application to
ruled gratings, the subject of Part I of this work, is described
in Sec. IV. The Appendix presents an exact formulation of
plane-wave scattering from ruled gratings using a Green’s
function technique, which was used in the gated wave-packet
analysis of data in Part I.

A general discussion of wave packets may be found in
the textbook by Tannor [3], while copious theoretical material
specific to neutron scattering is in the handbook by Utsoro and
Ignatovich [4]. Treatments of dynamical plane-wave neutron
scattering from gratings have also been developed by Tolan
et al. [5] and by Ashkar et al. [6]. References relating to
wave-packet scattering in a variety of contexts, both theoretical
and experimental, are listed in Part I.
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Before moving on to the problem at hand, it is worthwhile
emphasizing that while the gated wave-packet notion may
seem intuitive enough, it constitutes a particular approach to
the analysis of neutron scattering in its traditional setting.
Its essential idea is to make a sharp distinction between
the totally coherent superposition of momentum eigenstates
implicit in any wave packet fully describing a single incident
neutron—thus resulting in a coherent superposition of virtual
plane-wave incident angles—and the incoherent distribution
of energy and momentum eigenstates associated with the
ensemble of different neutrons in the incident beam, however
realized in a particular instrumental setup. As discussed in
detail in Secs. I and II of Part I, this separation of coherent
from incoherent behavior of typical neutron beams stems
from the overtly incoherent generation of particles, be it by
nuclear fission or spallation. Such partitioning of coherent
from incoherent character of the beam does not apply, in
general, to all radiation sources, light sources especially. Thus,
all treatments of wave-packet scattering cannot be assumed to
be universally applicable, and it follows that all approaches that
have been discussed over time for quantifying beam correlation
lengths and related properties (many of these cited in Part I)
are not necessarily appropriate to a chosen problem of interest.

The remaining point is why, specifically, we need wave-
packet energy gating. The underlying mathematical problem
originates in the fact that, as mentioned earlier, we normally
analyze elastic neutron scattering with stationary-state formal-
ism, as if it were scattering of monoenergetic plane waves. The
scattering data thus are characterized in terms of sharply de-
fined incident and scattered momenta and resulting momentum
transfers (setting aside instrumental resolution). Wave packets,
however, are not stationary solutions of the time-dependent
Schrödinger equation and thus the collection and refinement
of data as if they were requires a formalism distinct in
principle from that associated with the usual assumptions. In
more technical terms, the equivalence of the time-dependent
Schrödinger equation and the time-independent Lippmann-
Schwinger (LS) equation only holds for stationary solutions
of the former, and it is the latter equation that gives us explicit
and exact formulas for scattering amplitudes in terms of the
scattering potential and these solutions. In Zhu et al. [1] energy
gating (they do not use this terminology) leads to an exact,
modified version of the LS equation. As we see below, this
fact, combined with the energy gating implicit in conventional
analysis of scattering, allows us, employing different methods,
to maintain the fundamental relationships between scattered
waves and the scattering potential—perfectly well defined for
plane-wave scattering—but now folded into what might be
called the “coherent collimation” intrinsic to the gated wave
packet. From this perspective one may view the energy-gated
wave-packet formalism as the primary elastic scattering theory
for neutrons. Because plane waves, by mathematical definition,
have infinite spatial extent, the very notion of the physical sep-
aration of incident from scattered waves presents conceptual
difficulties that are generally overlooked in applications of
the stationary-state scattering paradigm or which are handled,
as it were, by “thinking” wave packets while “doing” plane
waves. However, in energy-gated wave-packet theory, to be
introduced in Sec. II B in the context of neutron reflection,
the exact (dynamical) stationary solutions are not taken as

physical entities (except for satisfying required boundary
conditions); they appear instead as appropriate basis states in
which to represent the energy-gated physical solutions of the
time-dependent Schrödinger equation. Thus, the physical real-
ization (i.e., observation) of dynamical plane-wave scattering
itself emerges asymptotically from energy-gated wave-packet
theory in the limit that the wave packets are sufficiently
delocalized with respect to the germane spatial properties
of the scattering sample and the surrounding apparatus.
Fortunately, this limit has proven to be appropriate—or at least
adequate—for a wide range of problems in neutron scattering;
but experiments on large-period gratings described in Part I
show that the gated wave packet is itself rendered observable
by its coherent interplay with the various relevant spatial scales
in the experimental setup. Therefore, as a matter of principle,
the more comprehensive theory is called for.

In Sec. V, following the mathematical development, we
return to a brief summary of these major points along with a
few additional concluding remarks.

II. GATED WAVE PACKETS

A. Preliminaries

In order to facilitate a mathematical analysis of the
reflection problem we assume a “slab” topology in which the
relevant space of the scattering problem is partitioned into three
regions having planar boundaries parallel to the surface of
the sample (film) slab. Taking the z axis along an inward
normal to the film, these regions are I, z < 0, the space above
(in front of) the film, containing the incident and reflected
waves; II, 0 � z < L, containing the film of thickness L; and
III, z � L, the space below (behind) the film, containing a
substrate (if required) and the transmitted wave. Since we are
dealing with a three-dimensional problem, it is also useful
to think of region I as having “incidence” and “reflection”
subspaces, Ii and Ir; then the wave packet fully describing a
single incident neutron is prepared somewhere in Ii, while
the reflected wave packet is detected in Ir. Similarly, the
transmitted wave packet is detected in IIIt. It also will be
helpful to to define the subspace where the scattered wave
packet, either reflected or transmitted, is detected as �d =
Ir

⋃
IIIt.

Clearly, even at this rudimentary level of description we
cannot easily envision “incident” and “scattered” plane waves
without some attendant notion of localization. A common
conception is to interpret plane waves in this context as
describing “beams of particles” that we conveniently may view
as localized when it suits the picture of scattering by billiard
balls or the like. Our view, as laid out in Sec. I, is that the
individual incident neutrons in the beam act independently
and are physically localized to an extent limiting how they
can coherently interact with the film of interest (or any part
of the measuring apparatus). From this perspective, “perfect
plane waves” are a convenient basis in the Hilbert space of the
problem of individual scattering events, since wave packets can
be analyzed as coherent superpositions of plane waves—or, as
we do below—as superpositions of exact representations of
plane-wave scattering. That single plane waves usually give
an accurate description of scattering follows, in this picture,
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from the fact that, fortunately, wave packets that are not too
well localized on the scale of the relevant geometry of the
scatterer do behave (mathematically) more or less as perfect
plane waves.

B. Wave-packet scattering

Now let ψ(r,t), for t � t0, be the exact solution of the
scattering problem for an incident wave packet defined by its
initial form ψ(r,t0), which we assume is entirely supported in a
region r ∈ I0 ⊂ Ii. It is natural—and usually justified—to think
of the subspaces identified with wave-packet “preparation” and
“detection” as being well separated, such that I0

⋂
�d ≈ 0. In

what follows we refer to this as the separation assumption
and call the more stringent I0

⋂
�d = 0 the strong separation

condition.
ψ(r,t) satisfies the time-dependent Schrödinger equation

(TDSE),

Hψ = i�∂tψ, (1)

where H = − �
2

2m
∇2 + U (r) = K + U and U is the film

potential in II, which—for t-independent H—has the formal,
energy-conserving (elastic scattering) solution

ψ(t) = e−iH (t−t0)/�ψ(t0). (2)

(We sometimes suppress arguments.) This defines ψ(t) at all
t , but given that ψ(t0) is known—i.e., has been prepared in
region I0—we are only interested in ψ(,t) for t > t0. Since
H = K in region I, the TDSE has stationary solutions,

ψk(r,t) = e−iEk/� tψk(r), (3)

corresponding to incident plane waves eik·r with Ek =
�

2k2/2m = �ωk, where ψk(r) satisfies the time-independent
Schrödinger equation (TISE),

Hψ(r) = Ekψk(r). (4)

We take the ψk to be the unique “physical” solutions of (4), i.e.,
the solutions satisfying boundary conditions appropriate to the
scattering experiment defined earlier: incident wave in region
Ii, reflected wave in Ir and transmitted wave in IIIt. These
time-independent states are eigenfunctions of the Hermitian
operator H and thus, in D spatial dimensions, form a complete
orthonormal basis for the scattering problem,∫

ψ∗
k′ (r)ψk(r) dDr = (2π )D

V
δ(k′ − k) (5a)

and

V

(2π )D

∫
ψ∗

k (r′)ψk(r) dDk = δ(r′ − r). (5b)

The general concerns at hand require D = 3, of course, but
for U (r) which vary over fewer dimensions, the effective di-
mension of the scattering problem can be reduced to D = 2 or
even D = 1, as in specular reflection from a perfectly smooth
film. As is well known, normalization and completeness are
technically delicate matters in the scattering theory, because
states are labeled by a continuous “quantum” number k and
true plane waves are not normalizable; they do not quite “fit”
into a separable Hilbert space, unless it is rigged to accept
them, which we take for granted (e.g., see [7], Sec. 1.4). The

multiplier of the Dirac δ function in (5a) accounts for “box
normalization” of plane waves and is required for dimensional
consistency; ψk(r) → eik·r/

√
V , where V is the volume of

the scattering setup, with the limit V → ∞ understood. The
“value” of δ(k′ − k)/V can be thought of, casually, as unity
for k′ within a dDk neighborhood of k. Thus, scattering states
are normalized here to (2π )D . The factor (2π )D is required by
the integral representation of the δ function,∫

∞
eik·r dDr = (2π )Dδ(r),

where ∫
∞

· · · dDu =
∫ ∞

−∞
· · ·

∫ ∞

−∞
du1 · · · duD,

for any D-dimensional u. (We usually write the limits
explicitly for D = 1 to avoid possible confusion.) The similar
prefactor in (5b) expresses the conversion of a sum to an
integral: ∑

kn

· · · → V

(2π )D

∫
∞

· · · dDk.

[It is common to define ψk(r) → eik·r/
√

(2π )DV for normal-
ization to unity.] Consistent with the form of the stationary
plane-wave state,

ψk(r) = eik·re−iωkt , (6)

the Fourier transform f̃ (k,ω) of a function f (r,t) is defined
here as

f̃ (k,ω) =
∫

∞

∫ ∞

−∞
e−ik·reiωtf (r,t) dDr dt,

with the inverse transform

f (k,ω) =
∫

∞

∫ ∞

−∞
eik·re−iωt f̃ (k,ω)

dDk

(2π )D
dω

2π
.

According to Plancherel’s theorem, the existence of either
integral implies the existence of the other. From here on, we
follow the convention of setting V = 1 in (5), so that plane-
wave states can be represented simply as ψk(r) → eik·r, which
leads to more transparent looking equations than otherwise.
Strictly speaking, this entails rescaling r and k, but we not
need to worry about this for now.

The initial state, i.e., the prepared wave packet ψ(r,t0), can
be expanded in the stationary-state basis as

ψ(r,t0) =
∫

Akψk(r)
dDk

(2π )D
, (7a)

where, from (5a),

Ak =
∫

ψ∗
k (r)ψ(r,t0) dDr. (7b)

Now write

ψk(r) = eik·r + ψs
k(r), (8)

where ψs
k(r) is the scattered basis component for incident eik·r.

This scattered wave effectively is defined by (8) as ψs
k(r) =

ψk(r) − eik·r, viz., as as component of ψs
k(r) that depends on

the presence of nonzero U in region II. The scattered basis
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wave thus can exist in regions I, II, and III but is detected in
what we have defined as �d . Since plane-wave states eik·r also
comprise a complete orthonormal set in a rigged Hilbert space,
the scattered basis part has an expansion as

ψs
k(r) =

∫
Bs

k,k′e
ik′ ·r dDk′

(2π )D
. (9)

Then, from (7b) it follows that

Ak = A
(0)
k +

∫
Bs

k,k′A
(0)
k′

dDk′

(2π )D
, (10)

where

A
(0)
k =

∫
e−ik·rψ(r,t0) dDr. (11)

In the integral part of (10), A
(0)
k′ delimits the domain of

contributing k′ to the set S
(0)
k′ that defines an incident wave

packet, while Bs
k,k′ delimits the domain of contributing k′ to the

set Ss
k,k′ defining scattered plane waves. Assuming that region

I0 is well separated from regions Ir and III, S
(0)
k′ and Bs

k,k′ will

tend to have small intersection, leading to Ak ≈ A
(0)
k .

Equations (2), (3), and (7a) lead directly to

ψ(r,t) =
∫

e−iEk(t−t0)/�Akψk(r)
dDk

(2π )D
(12)

for the exact evolution of ψ(r,t), where all the information
about the incident state preparation is in Ak. At this point Ak
can be considered to be relatively unrestricted, except that it
should describe a wave packet ψ(r,t) that for some period of
time t > t0 actually moves toward the film.

Now define the function

ψ(r,E)
def=

∫ ∞

−∞
eiE(t−t0)/�ψ(r,t) dt, (13)

viz., the Fourier transform of ψ(r,t) with respect to t . Then,
with the representation of ψ(r,t) from (12), we get

ψ(r,E) =
∫

d3k Akψk(r)
∫ ∞

−∞
ei(E−Ek)(t−t0)/� dt

= 2π�

∫
Akψk(r)δ(E − Ek)

dDk

(2π )D
. (14)

It is easy to see that ψ(r,E) is an eigenstate of H belonging
to eigenvalue E:

Hψ(r,E) = 2π�

∫
Ak[Hψk(r)]δ(E − Ek)

dDk

(2π )D

= 2π�

∫
Ak[Ekψk(r)]δ(E − Ek)

dDk

(2π )D

= Eψ(r,E). (15)

Thus, ψ(r,E) is the time-independent component of a station-
ary state, ψ(r,E)e−iEk/� t . The Dirac δ function in (14) reduces
to

δ(E − Ek) = m

�2k(E)
δ(k − k(E)),

where k(E) = √
2mE/�. Writing k = kk̂, the δ function fixes

k = |k| = k(E), leaving only the direction k̂ to integrate

over. Therefore, with dDk = kD−1 dk dD−1ωk, where the
differential solid angle at k, dD−1ωk, denotes integration
over the D − 1 sphere—i.e., “over the direction of k”—(14)
becomes

ψ(r,E) = 2πmk(E)D−2

�

∫
Ak(E)k̂ψk(E)k̂(r)

dD−1ωk

(2π )D
.

(16)

Here ωk, now denoting solid angle, should not be confused
with its previous connection to time-dependent analysis, since
we are done with that aspect of the development. In standard
curvilinear coordinates,

dD−1ωk =
{
dθ, D = 2, polar coordinates,
sin θ dθdφ, D = 3, spherical coordinates.

For D = 1 only two points, k = ±k, comprise the D − 1 = 0
sphere; and for this case, we can use polar coordinates for
dD−1ωk by including the factor [δ(θ ) + δ(θ − π )]. (This usage
of θ and φ is only for illustration with conventional notation;
below, we use these symbols differently.)

The result in (16) is made more transparent by defining

k(r) = ψ(r,Ek) and using the identity k(Ek) = k. Then


k(r) = 2πmkD−2

�

∫
Akψk(r)

dD−1ωk

(2π )D
. (17)

With the substitution of (8) for ψk(r), this also can be written
as


k(r) = ψ̃ i
k(r) + ψ̃s

k (r), (18)

where

ψ̃ i
k(r) = 2πmkD−2

�

∫
Ake

ik·r dD−1ωk

(2π )D

≈
∫

ψk(r,t0)δ(E − Ek), (19a)

and

ψ̃r
k (r) = 2πmkD−2

�

∫
Akψ

s
k(r)

dD−1ωk

(2π )D

=
∫

Akψ
s
k(r,t0)δ(E − Ek)

dDk

(2π )D
. (19b)

The “≈” sign is appropriate in (19a) because of (10) and the
separation assumption, but with strong separation it can be
replaced with “=”. Thus, assuming strong separation, (18)
behaves as


k(r) =
{

ψ̃ i
k(r) for r ∈ I0,

ψ̃s
k (r) otherwise.

(20)

For D = 1 (where d0ωk means evaluate the integrand at ±k̂
along, say, the z axis),


k(z) = 2πm

�k
[Akψk(z) + A−kψ−k(z)]

= 2πm

�k
Akψk(z), (21)

if we also define A(−k) = 0 for k > 0. Except for the 2π , this
is Eq. (18) of [1], which considered only one dimension and
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used a different tack, although the general approach developed
here was mentioned in passing as an alternative. Because of the
time integration in (13), 
k(r) depends on t0 only implicitly
in the sense of (7b), which defines Ak at t = t0. As long as
region I0 is far-enough removed from II, and to the extent
we can ignore the spreading of ψ(r,t0), 
k(r) effectively is
independent of t0. In the special case that Ak = δ(k − k0), (17)
degenerates to


k(r) = 
k0 (r) = 2πmkD−2
0

�
ψk0 (r), (22)

which, as expected, is uninformative.
In brief summary, the temporal Fourier transform of ψ(r,t)

for an incident wave packet of arbitrary shape in D dimensions
produces the function ψ(r,E) = 
k(r), which selects the
Fourier content Ak of the of the incident wave packet ψ(r,t0)
that intersects the D − 1 sphere of radius k(E) in reciprocal
space for any specified energy E. We call 
k(r) the energy-
gated (or, simply, gated) image of ψ(r,t). In general, wave
packets of arbitrary shape are not stationary states of the
Schrödinger equation. However, passing ψ(r,t) through a gate
that coherently discriminates for energy E gives a stationary
state 
k(r) uniquely associated with the prepared wave packet
ψ(r,t0). These gated wave packets should properly describe
elastic scattering measurements.

Past and future temporal properties of gating

Now one can ask, why not define energy gating only in
terms of the wave packet for t > t0, i.e., the “future” behavior
of ψ(r,t0)? To answer this, start with the decomposition of (13)
into backward- and forward-looking Laplace transforms, viz.,

ψ(r,E) = χ−(r,E) + χ+(r,E), (23)

where

χ−(r,E) =
∫ t0

−∞
eiE(t−t0)/�ψ(r,t) dt (24a)

and

χ+(r,E) =
∫ ∞

t0

eiE(t−t0)/�ψ(r,t) dt. (24b)

Then, using the formula∫ ∞

0
eiωt dt =

∫ 0

−∞
e−iωt dt = πδ(ω) + i

ω
, (25)

and (12), the χ ’s become

χ±(r,E) = 1

2
ψ(r,E) ± i�P.P.

∫
Akψk(r)

E − Ek

dDk

(2π )D
, (26)

where P.P. denotes the principle part. So

Hχ±(r,E) = 1

2
Eψ(r,E) ± i�P.P.

∫
Ak[Ekψk(r)]

E − Ek

dDk

(2π )D

= 1

2
Eψ(r,E) ± i�P.P.

∫
Ak(Ek − E + E)ψk(r)

E − Ek

× dDk

(2π )D

= Eχ±(r,E) ∓ i�

∫
Akψk(r)

dDk

(2π )D

= Eχ±(r,E) ∓ i�ψk(r,t0), (27)

using (7a). This result also follows from the definitions in (24)
by using (1) under the time integral and integrating by parts,
assuming, as usual, that the integrands go to zero as t → ∞.
Thus, unlike ψ(r,E) proper, its temporally delimited—past
and future—components χ±(r,E) do not separately satisfy the
TISE. On the other hand, for r far from I0—and for ψk(r,t0)
sufficiently localized in r ∈ I0—(27) gives Hχ+(r,E) ≈
Eχ+(r,E); i.e., χ+(r,E) effectively behaves as a stationary
state for r �∈ I0. Similarly, one can argue that χ−(r,E) ≈ 0
under the same circumstances, since it is defined by the
backward propagation of the initial wave packet. In short, with
strong separation, (23) infers the asymptotic result

ψ(r,E) ∼ χ+(r,E), (28)

i.e., that

iP.P.

∫
Akψk(r)

E − Ek

dDk

(2π )D
∼ 1

2
ψ(r,E) (29)

for r �∈ I0. Since it is much more convenient to compute and
analyze the Fourier transform of the exact wave function rather
than its forward-looking Laplace transform, it is sensible to
define gating this way without introducing serious side effects,
as long as strong separation holds.

III. IMPLEMENTATION I: BASIC IDEAS

We look next at the scattered gated wave packet shown
in (19b), that is,

ψ̃s
k (r) = 2πmkD−2

�

∫
Akψ

s
k(r)

dD−1ωk

(2π )D
. (30)

Recall that under the integral sign, ψs
k(r) is the exact scattered

part of the wave function for the perfect plane-wave problem,
assumed to have been solved. For the gated problem we first
define two coordinate systems. The film space is the one
defined in Sec. II A, with the z axis being along an inward
normal to the film surface at z = 0, the plane separating
regions I and II. The film surface thus lies in the x-y plane;
we call the coordinate system for the film the II frame.
For ease of discussion—and implementation—we reduce the
three-dimensional problem to two dimensions, which we take
as the z-x plane (we use cyclic ordering in referring to the
axes). The reduction to D = 2 actually is appropriate for
films whose scattering length density varies laterally along
a single direction, e.g., a ruled grating, which we consider
below in detail. For the purpose of describing the (now
two-dimensional) incident wave packet, we use a coordinate
system local to it in I0, which we call the I0 frame. For
geometric convenience we assume that |ψ(r,t0)| has a cigarlike
(i.e., ellipsoidal) shape, with longitudinal (L) and transverse
(T) dimensions. (L here is not to be confused with the film
thickness L in region II.) We take the longitudinal axis to lie
along the direction of propagation toward region II. We choose
a Z-X coordinate frame relative to the initial wave packet with
the Z axis along the wave-packet longitudinal axis—i.e., along
the direction of incidence—and with the Z axis making an
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FIG. 1. Coordinate reference frames. The longitudinal axis of the
wave packet in the I0 frame has grazing angle of incidence θ on the
film in the II frame, while a “virtual” ray along ∠φ in the I0 frame is
incident on the film at ∠(θ − φ).

angle θ , the glancing angle incidence, with the x axis. These
two systems are depicted in Fig. 1. The orientations of the two
frames are thus related by(

z

x

)
=

(
sin θ − cos θ

cos θ sin θ

)(
Z

X

)
. (31)

For further simplicity we assume that in the I0 frame, Ak
factorizes as

Ak = A(kZ,kX) = AL(kZ)AT(kX), (32)

and model these as

AL(kZ) = G(kZ|kZ0,�kZ)e−i(kZ−kZ0)Z0 (33a)

and

AT(kX) = G(kX|0,�kX), (33b)

with G the normalized Gaussian,

G(k|k0,�k) = 1√
2π�k

e
− (k−k0)2

2�k2 . (33c)

These definitions describe the initial wave packet (in the I0

frame) as

ψkZ,kX
(Z,X) = W (Z,X)eikZ0Z, (34a)

i.e., as the plane wave eikZ0Z “modified” by a Gaussian LT
profile W (Z,X),

W (Z,X) = e− 1
2 (Z−Z0)2�k2

Z e− 1
2 X2�k2

X . (34b)

The choice of Gaussian profiles is no surprise, of course,
in dealing analytically with wave packets, although, strictly
speaking, such shapes are not compactly supported. We do not
believe, however, that this is a critical concern here.

While it is appropriate to specify a wave packet in terms of
its Fourier content, as we have done in (33), the longitudinal
(Z) and transverse (X) spatial dimensions of the wave packet
are not then precisely defined. The matter is compounded
by commonly loose references to wave-packet “sizes” or to
“correlation” or “coherence” lengths, which may refer to
different lengths in different contexts. It seems reasonable

enough, however, to define minimal and maximal lengths
1/�k
 and 6/�k
, respectively, for 
 = Z,X. We delay further
consideration of the “sizing” question until later.

Now in (30), for D = 2, the integration over ωk is most
conveniently expressed in the I0 frame as an integration of
the polar angle φ, defined relative to the Z axis, as in Fig. 1.
Then, using (31), the relationship between k = (kz,kz) and
k = (kZ,kX) = (k cos φ,k sin φ) is simply(

kz

kx

)
=

(
sin θ − cos θ

cos θ sin θ

)(
k cos φ

k sin φ

)

= k

(
sin(θ − φ)

cos(θ − φ)

)
. (35)

That is, a ray directed along given φ in the I0 frame, has grazing
angle of incidence θ − φ on the film, as depicted in Fig. 1.
For example, φ = 0 corresponds to the L axis of the incident
wave packet, and kz and kx thus are defined as usual for a
plane wave incident at ∠θ , while φ = θ corresponds to perfect
grazing incidence. Also in (30), let us again write k = kk̂
and promote k̂ to argument status by taking Ak → Ak(k̂) and
ψs

k(r) → ψs
k (r|k̂). Then the gated wave packet (30) becomes

ψ̃s
k (r) = 2πm

�

∫ φ2

φ1

Ak(cos φ, sin φ)

×ψs
k (z,x| sin(θ − φ), cos(θ − φ)) dφ, (36)

where the limits of integration, φ1,2, will be set shortly. This
represents a coherent average of ψs

k (r|k̂) over a set of virtual
plane-wave angles of incidence, weighted by the reciprocal
space wave-packet amplitude Ak(k̂) along the k circle in the
I0 frame (see Fig. 2). The coherent superposition described
here of virtual plane-wave incident angles “within” the wave
packet of a single particle must be carefully distinguished—
and separated—from an incoherent superposition of incident
angles in a beam of distinguishable wave packets. This point
and its experimental consequences are discussed in Part I.

Since ψs
k(r) is a physical scattering solution for the given

setup (with detectors in region �d ), virtual glancing angles of
incidence on the film—as defined by the angle of the wave

k E1 2

kx

kz

A kz,kx

k0

FIG. 2. Representation of I0 and the Z-X frame.
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packet’s L axis to the film—are limited to the range 0 �
θ � π/2. However, we must also allow for π/2 � θ − φ �
π , because the reciprocal-space representation of the initial
wave packet generally will have weight in directions k̂ that
correspond to incidence at angles in this range. Thus, the
allowed range of φ in (36) is restricted to θ − π � φ � θ ,
and (36) thus becomes

ψ̃s
k (r) = 2πm

�

∫ θ

θ−π

Ak(cos φ, sin φ)

×ψs
k (z,x| sin(θ − φ), cos(θ − φ)) dφ. (37)

In practice, the effective φ range of integration in (37) will be
reduced by the shape of Ak(k̂) (again, see Fig. 2). For example,
for ψ(r,t0) ≈ eik0·r, and with k = |k0|, the effective φ range
will be confined to a small neighborhood of φ = 0.

A. Specular-only reflection

Staying with D = 2, it is useful to apply (36) to the case
of a perfectly smooth film, such that in (1), U (r) = U (zẑ).
Reflection, then, is purely specular; and for an incident plane
wave ψi(r|k) = eikzzeikxx , the reflected wave (s → r) is

ψr (r|k) = r(kz)e
−ikzzeikxx, (38)

where r(kz) is the reflection coefficient. (The dynamical theory
of plane-wave specular reflection is summarized in [8], for
example.) Thus, from (37), an incident wave packet produces
the reflected wave

ψ̃r
k (r) = 2πm

�

∫ θ

θ−π

Ak(cos φ, sin φ) r[k sin(θ − φ)]

× e−ik sin(θ−φ)zeik cos(θ−φ)x dφ. (39)

It is important to notice in (39) that the z- and x-dependent
plane-wave functions are averaged with respect to φ along with
the reflection amplitude r[k sin(θ − φ)]. Since the scattered
wave is detected far from film surface, these sinusoidal factors
will oscillate very rapidly with φ, causing the right-hand
side to become very small in general. However, for specular
reflection, we expect the detected signal to be observable
only very near (z,x) lying along the specular ray, i.e., at
(z,x) = D(− sin θ, cos θ ), where D is the distance of the
detector to the center of the film. Therefore, on this line,

e−ik sin(θ−φ)zeik cos(θ−φ)x = eikD cos(2θ−φ)

in (39), where ∠2θ is, in fact, the specular scattering angle. For
a long cigar-shaped wave packet we can assume that Ak(k̂) is
pancaked shaped, centered at k0 = (k0Z,0) and with �kX �
�kZ . Thus, for k ≈ k0, the effective range, ±�φ, of φ about
φ = 0 is �φ ≈ arctan �kX/k0Z , so that

�φ ≈ λ0/�X � π/2,

using λ0 = 2π/k0 and �X = 2π/�kX. We also assume here
that the (real space) transverse width of the wave packet is large
compared to the neutron wavelength, which likely will hold in
most cases of interest, with the possible exception of ultracold
neutrons. Thus, we can assume for this case that the effective
limits of the φ integration in (39) are 0 ± �φ, with �φ �
2θ , except for near-perfect grazing incidence. Then (39)

becomes

ψ̃r
k (r) ≈ 2πm

�
eikD cos(2θ)

×
∫ �φ

−�φ

Ak(cos φ, sin φ) r[k sin(θ − φ)] dφ. (40a)

For all practical purposes under these conditions, we can also
take θ − φ → θ in this integral, leading to

ψ̃r
k (r) ≈ r(kz)e

ikD cos(2θ) 2πm

�

∫ �φ

−�φ

Ak(cos φ, sin φ) dφ

= r(kz)e
ikD cos(2θ)ck,

(40b)

in short, up to a normalizing constant ck , the specular result
for an incident plane wave.

The above line of analysis, while correct in its geometric
detail, is tedious. The better way to the desired result is to
formulate an ansatz for the measurable quantity of interest.
In (54b), near the end of the next section, we define the
measurable reflection amplitudes for a gated wave packet in
the manner of a projective measurement, namely, as

r̃k
(
kr
x

) =
〈
kr
x

∣∣ψ̃r
k

〉
〈
ki
x

∣∣ψ̃ i
k

〉 , (41)

computed at z = 0 and specialized here to the case of D = 2.
In other words, a gated reflection amplitude is the ratio of
projections of the gated reflected and gated incident waves onto
the plane waves implicit in the gated measurement. Since it is
the specular reflection we wish to observe (the only allowed
reflection in this example), we take kr

x = ki
x = k cos θ , and

thus, from (39),

〈
kr
x

∣∣ψ̃r
k

〉 = 2πm

�

∫ θ

θ−π

Ak(cos φ, sin φ) r[k sin(θ − φ)]

× 1

2πk
δ( cos(θ − φ) − cos θ ) dφ

= 2πm

�

∫ θ

θ−π

Ak(cos φ, sin φ) r[k sin(θ − φ)]

× δ(φ)
dφ

2πk| sin θ |
= m

�k| sin θ |Ak(1,0) r[k sin(θ )]. (42a)

where we have isolated φ = 0 as the only acceptable solution
of cos(θ − φ) = cos θ , required to satisfy the Dirac δ function
for given θ ; the factor | sin θ |−1 appearing in the second
equality is the Jacobian of the requisite transformation,
cos(θ − φ) → φ. Similarly,〈

ki
x

∣∣ψ̃ i
k

〉 = m

�k| sin θ |Ak(1,0), (42b)

obtained from (42b) by setting r[k sin(θ − φ)] = 1; in effect,
the incident beam is equivalent to a perfectly reflected specular
beam.

Thus, at once from (41),

r̃k
(
kr
x

) = r[k sin(θ )] = r(kz), (43)
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exactly as for an incident perfect plane wave. In other words,
the shape of an incident wave packet is invisible for reflection
from a perfectly smooth film along the specular ridge, i.e.,
for reflection angles satisfying the specular condition. We
point out that this result also follows, with a small bit of
reinterpretation, from (21), the case for gating when D = 1.
The problem of plane-wave reflection from a perfectly smooth
film can be mathematically reduced to one dimension.

For U (r) = U (z), the solution of the TISE in three dimen-
sions,

− �
2

2m
∇2ψ(r) + U (z)ψ(r) = �

2

2m
k2ψ(r),

has the form ψ(r) = ψ(z)eikxxeikyy , where ψ(z) thus satisfies

− �
2

2m
∂2
z ψ(z) + U (z)ψ(z) = �

2

2m
k2
zψ(z).

With ki = k, kr = −k,
∣∣ψr〉 =∣∣k〉, and

∣∣ψr〉 = r(kz)
∣∣ − k〉, the

combination of (21) and (41) directly gives r̃(kr ) = r(kz), since
Ak again cancels out. As we will soon see, it is the simultaneous
existence of specular and nonspecular reflections which bring
the shape of the wave packet into play along the specular ridge
through the phenomenon of aliasing, i.e., the appearance, in
the simplest cases, of nonspecular reflection at the nominal
specular angle.

On the other hand, returning to the two-dimensional case, let
us take kr

x = kx(θ,χ ) = k cos(θ − �) in (42); i.e., let us “look”
slightly off the specular ridge, corresponding to a “rocking
curve” with rocking angle �. (We define rocking curves in a
more general context in Sec. IV 1.) Then,

r̃k[kx(χ )] = | sin θ |Ak[cos χ, sin χ ]

| sin(θ − χ )| r[k sin(θ − χ )]. (44)

Thus, in the “critical” region, near θ = 0, where |r[k sin(θ −
χ )] ≈ 1|, and assuming χ is small, the rocking curve provides
a more-or-less direct measure of the transverse “shape” of the
incident wave packet, via Ak(1,χ ).

B. Nonspecular reflection

For the general case of nonspecular reflection (with D = 3),
the reflected wave (in region Ir) can be represented as

ψr
k(r) =

∫
ar

k(kr
‖)eikr (kr

‖)·r d2kr
‖

(2π )2
, (45)

with the identification

kr (kr
‖) = kr

‖ − kz(k‖) ẑ, (46)

where kz(k‖) =
√

k2 − k2
‖ for any k‖. The scattering coefficient

ar
k(kr

‖) in (45) is defined in terms of the exact wave function in
region II by

ar
k(kr

‖) = 1

2ikz(kr
‖)

∫
II

e−ikr (kr
‖)·rq(r)ψk(r) d3r, (47)

where q(r) = 4πρ(r), and where ρ(r) = 2mU (r)/(4π�
2) is

the scattering length density. (We assume, for now, a free
film.) Also in (47),

ψk(r) = eik·r + ψs
k(r), (48)

where ψs
k(r) is the scattered component of the total wave

function defined by the physical solution to the TISE. The
solution form in (48) applies everywhere, but in region Ir we
will refer to its scattered component as the reflected part; i.e.,
ψs

k(r) = ψr
k(r) for r ∈ Ir. Now at z = 0, the boundary between

I and II, (45) gives

lim
z→0+

ψr
k(r) = ψs

k(r‖) =
∫

ar
k(kr

‖)eikr
‖·r‖

d2kr
‖

(2π )2
, (49)

expressing the scattered wave on the nominal surface of the
film as a two-dimensional Fourier transform of the reflection
coefficient with respect to all possible reflected rays projected
onto the surface. Thus, the reflection coefficient itself is the
corresponding inverse Fourier transform of the reflected wave
on the z = 0 plane, viz.,

ar
k(kr

‖) =
∫

II
e−ikr

‖·r‖ψr
k(r‖) d2r‖. (50)

The reflected wave thus can be said to “carry away” its z = 0
imprint into region Ir by adding to each kr

‖ the appropriate
kz(kr

‖). For the D = 2 (z-x) problem the relevant planar Fourier
transform is a one-dimensional transform along the x axis,
and (50) becomes

ar
k

(
kr
x

) =
∫ ∞

−∞
e−ikr

xxψr
k(x,0) dx, (51)

where ar
k(kr

x) means ar
k(kr

x x̂), etc. The integral in (51) can
be interpreted as the (un-normalized) projection of ψr

k(x,0)
onto the “observed” plane-wave state eikr

xx ; in Dirac notation,
ar

k(kr
x) = 〈kr

x

∣∣ψr
k〉 at z = 0. In order to extract the associated

reflection amplitudes, let us define

ai
k(kx) =

∫ ∞

−∞
e−ikxxeikxx dx = lim

L→∞
L (52a)

for the incident beam, where L is the nominal macroscopic
length of the (one-dimensional) film. Then

rk
(
kr
x

) = ar
k

(
kr
x

)
ai

k(kx)
= lim

L→∞
ar

k

(
kr
x

)
L , (52b)

which is dimensionless.
In general, in D dimensions, ar

k(kr
x) has dimension

LengthD−1, as seen in (50) for dimensionless ψk(r). Typically,
especially for periodic structures, this dimensionality reveals
itself in the dimensions of Dirac δ functions, as in, say, for D =
2, ar

k(kr
x) = 2π rk(kr

x)δ(kr
x − kr

xm), where kr
xm = kx + Gxm and

Gxm is a reciprocal lattice vector along x. Then, using the rule
in (52), rk(kr

x) → rn(kr
x)δnm, where δnm is the Kronecker δ,

and δ(kr
x − kr

xm)/L → δnm. The case of a film in the form of a
grating is discussed in detail in Sec. IV.

For D = 3, (52) becomes

ai
k(k‖) = lim

S→∞
S,

where S is the nominal area of the film surface; and then the
dimensionless reflection coefficient is

rk(kr
‖) = ar

k(kr
‖)

ai
k(k‖)

= lim
S→∞

ar
k(kxkr

‖)

S . (53)
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The general result in (30) is now

ψ̃s
k (r) = 2πmkD−2

�

∫
d2kr

‖
(2π )D−1

×
∫

Aka
r
k(kr

‖)eikr (kr
‖)·r dD−1ωk

(2π )D
, (54a)

and the observable reflection amplitude r̃k(kr
‖), along the

direction of kr , is defined by

r̃k(kr
‖) =

〈
kr

‖
∣∣ψ̃r

k

〉
〈
ki

‖
∣∣ψ̃ i

k

〉 , (54b)

where ki
‖ = k‖; the gated incident wave ψ̃ i

k (at z = 0), needed
in (54b), can be obtained from (54a) by replacing ar

k(kr
‖) with

ar
k(ki

‖) = δ(kr
‖ − k‖). The application of (54b) to the special

case of reflection from a perfectly smooth film was shown in
the previous section, at Eqs. (42) and (43).

Needless to say, (54) hides details that can be difficult to
treat in some circumstances. However, these are better worked
out in the contexts of specific problems, and we now turn our
attention to an important class of such applications.

IV. IMPLEMENTATION II: GATED REFLECTION
FROM A GRATING

Here we apply the general case of Sec. IV to the case
of reflection from a perfect grating. Not only does this
specialization allow us to reveal more of the underlying
mathematical structure of the scattering of gated wave packets,
but it also bears directly on an important class of problems
of interest, including, of course the measurements described
in the companion work [2]. To this end we first work out
some general consequences of gated wave-packet reflection
from ruled gratings, assuming that the requisite plane-wave
solutions for gratings are known. In fact, this is a very difficult
problem in its own right in the dynamical scattering regime
of primary interest to us. Therefore, in the Appendix we
develop an exact solution method for the particular case
of rectangular gratings, i.e., gratings whose rulings have
rectangular-barrier-shaped scattering length density profiles.
In order to avoid mathematical complications related to
reflection from a film supported on a substrate, we imagine,
for now, a two-component grating with the space between
lines filled with material nearly transparent to neutrons, such
as silicon, so that the grating film can be considered to be
freely suspended. In the Appendix, we show how to include a
substrate in the context of the solution method developed there
for perfect plane-wave scattering from gratings.

From here on we consider only D = 2, which is sufficient
for the purpose at hand. Let us take the plane of incidence (as
would be defined by a ray of an incident plane wave) to be the
z-x plane of region I with the grating lines running along the
y axis; i.e., a ray incident in the z-x plane is perpendicular to
the direction of the grating lines. In this geometry the scattering
problem can be considered as two dimensional, since the film
potential U (r) → ρ(r) = ρ(z,x) is smooth along the y axis.
Then for a grating with rectangular lines (i.e., lines having ver-

tical sides) of thickness (along z) Lg and period (along x) Tg ,

q(z,x) =
∞∑

n=−∞
qn(z)eiGnx = q(z) +

∑
n�=0

qn(z)eiGnx, (55a)

where the Gn are the reciprocal lattice vectors for the grating,

Gn = 2πn

Tg

= nkτ, (55b)

for integer n, and where τ = λ/Tg for specified k = 2π/λ.
For a rectangular profile,

qn(z) =
{
qn(0), 0 � z � L,

0, otherwise.
(55c)

In (55a), q(z) = q0(z) = q0(0) is the average value of the
grating along the x axis, since the average of the summation
over n, absent n = 0, is zero. Furthermore, assuming a
real-valued ρ(z), we require that q∗

n (z) = q−n(z); for a choice
of the x origin about which q(z,−x) = q(z,x), this becomes
q−n(z) = qn(z).

At any z in II, the scattered component of the wave function
is a Bloch function along x,

ψs
k(z,x) = eikxxUs

k (kx,z,x), (56a)

where Us
k (kx,z,x + Tg) = Us

k (kx,z,x), so that

Us
k (kx,z,x) =

∞∑
n=−∞

Us
kn(kx,z)eiGnx. (56b)

Note that because of (46), the kz dependence of Us
kn(kx,z) is

implicit. Because the wave function is everywhere continuous,
at z = 0 we can identify ψs

k(0,x) in II with ψr
k(0,x) from I.

Then, by inserting (56) into (51), we easily get

ar
k

(
kr
x

) = 2π
∑

n

Ur
kn(kx,0)δ

(
kr
x − kr

xn

)
= 2π

∑
n

rr
kn(kx)δ

(
kr
x − kr

xn

)
, (57)

where

kr
xn = kx + Gn, (58)

and where the rr
kn(kx), for n = 0,±1,±2, . . ., are the reflection

amplitudes for the grating. Therefore, from (45),

ψr
k(r) =

∑
n

Ur
kn(kx,0)e−ikr

z (kr
xn)zeikr

xnx

=
∑
m

rkm(kx)e−ikz(kr
xn)zeikr

xnx (59)

in region Ir. The reflected wave in Ir, therefore, is a superpo-
sition of all allowed reflected plane waves. In (59), kr

z (kr
xn) =

−√
k2 − kr

xn is defined as a negative number, since the reflected
wave travels away from the surface, while our surface normal
is directed into the surface. When (59) is inserted into (37),
the gated wave packet for the grating becomes

ψ̃r
k (r) =

∑
n

∫ θ

θ−π

dφ Ak(φ) rr
kn(θ − φ)

× eikzn(θ−φ)zeikxn(θ−φ)x. (60)
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Our earlier notation, while precise, proves cumbersome for
the ensuing development. So, in (60) and in the subsequent
formulas, we simplify as follows:

kr
z

[
kr
xn(θ )

] → kr
zn(θ ), rk

[
kr
xn(θ )

] → rn(θ ),

and

Ak(cos φ, sin φ) → Ak(φ).

The constant-k constraint generally is left implicit, except in
Ak(φ), and some arguments are dropped when not immediately
essential. If now we consider a spherically shaped detector a
distanceD from a reference point on the sample, then with z =
−D sin θ and x = D cos θ , each term in the summation over
n is to be “observed” at angle θr

n = − arctan [kr
xn(θ )/kr

zn(θ )]
[for real-valued kr

zn(θ )].
The projection rule (54) applied to (60) leads in a few steps

[similar to those in Eq. (42)] to observable specular (m = 0)
and nonspecular (m �= 0) reflection amplitudes, at incident
angle θ , represented by

r̃m(θ ) =
∑

n

Ãk(θ,n − m)rn(θ − φn−m(θ )). (61a)

For further notational simplification we have defined

Ãk(θ,n − m) = Ãk(φn−m(θ )), (61b)

where

Ãk(φ) = | sin θ |
| sin(θ − φ)|

Ak(φ)

Ak(0)
, (61c)

and Ãk(0) = 1. In (61b) φn−m(θ ) is the physical solution of

cos(θ − φn−m) + nτ = cos θ + mτ, (62)

which we refer to as the aliasing equation, since it defines
a virtual incident ray producing the same reflection angle
as the wave-packet incident ray but corresponding to a
different reciprocal lattice vector. The denominator of the
transcendental ratio in (61c) is the Jacobian factor resulting
from the reduction of the Dirac δ function associated with the
solution of (62), normalized in the numerator by the Jacobian
factor for the incident wave packet. We note that Ãk(0) = 1,
which applies to all instances of n = m. The physical solutions
of (62) are the ones associated with real-valued kzn(θ ) and are
single-valued functions of θ . The aliasing equation also has
“unphysical” solutions corresponding to imaginary values of
kzn(θ ), which must not be counted.

In other words, (61b) expresses the appearance at reflected
wave vector kr

xm = k cos θ + Gm of a reflection expected at
wave vector kr

xn = k cos θ + Gn but associated with a virtual
wave vector incident at θ − φmn. Then, according to (61),
the gated reflection amplitude r̃m(θ ) is a weighted sum over
all possible aliased reflection amplitudes consistent with the
nominal incident angle θ .

On the specular ridge, where m = 0, the aliasing equation
reads as

cos(θ − φn) + nτ = cos θ, (63)

so that we can write

r̃m(θ ) = rm(θ ) +
∑
n�=0

Ãk(θ,n)rn(θ − φn(θ )), (64)

FIG. 3. φn(θ ) vs θ (angles in degrees), as determined by the
solutions of (63). In solid gray, physical solutions of the aliasing
equation along the specular ridge, ordered to the right for increasing
|n|, with negative (positive) φn corresponding to positive (negative)
n. The dotted vertical lines indicate the “horizon” incident angles θh

n ,
as defined by (65). The horizontal shading schematically indicates
the θ -independent “weight” of Ak(φ), assuming a Gaussian profile;
the φn get less weight the further they are from φ = 0. The solutions
shown here where computed for τ = 4.75 × 10−5, corresponding to
Tg = 10 μm and λ = 4.75 Å.

exhibiting the wave-packet reflection amplitude r̃m(θ ) as
the associated plane-wave reflection amplitude rm(θ ) plus
the corrections caused by aliasing of all other reflection
amplitudes. At a specified n there are physical solutions of (63)
only for θ � θh

n , the “horizon” incident angle,

θh
n = cos−1(1 − |n|τ ). (65)

There are 2|n| + 1 such solutions between adjacent horizons
θh
n and θh

n+1 for n = 0,1, . . . , and φ0 = 0 is a solution for all
θ . These properties are summarized in Fig. 3 for the case Tg =
10 μm and λ = 4.75 Å, corresponding to τ = 4.75 × 10−5. As
the figure illustrates, aliasing at small |n| becomes insignificant
as the transverse width of the wave packet becomes large, i.e.,
as the width of the function Ak(φ) becomes small (represented
by the horizontal shading in the figure for Gaussian weighting).

Again for τ = 4.75 × 10−5, Fig. 4 shows Ãk(θ,n) for
several n and for two values of the wave-packet transverse

FIG. 4. Ãk(θ ) = Ãk(θ,n) vs θ (in degrees) for n = 0 to n = ±5
(from left to right), as determined by the solutions of (63), and for two
choices of the wave-packet transverse dimension: (a) �X = 0.1 μm;
(b) �X = 0.15 μm. Solid lines, n � 0; dotted lines, n > 0. The wave-
packet longitudinal dimension is �Z = 10 μm. Other parameters are
as in Fig. 3.
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dimension, �X = 0.1 μm and �X = 0.15 μm for fixed lon-
gitudinal dimension �Z = 10 μm. The spike in (a) is caused
by the divergence of the Jacobian factor in (61c) at the
n = −1 horizon, significantly moderated by the exponential
decrease of Ak(φ) with increasing φ. Indeed, horizon spikes for
n = −2,−3, . . . , are hardly visible on the scale of the figure.
The difference between the plots in (a) and (b) also illustrates
the sensitivity to �X in this regime of parameters. It is also
worth noting that larger values of �Z have very little effect on
these graphs for the indicated τ and range of n; for �Z � λ,
the wave packet’s longitudinal behavior effectively is that of a
perfect plane wave.

It follows from (64) that when θ < θh
1 , r̃0(θ ) = r0(θ ), the

result for an incident perfect plane wave, as if Ak ≡ 0. That is,
in the critical—or dynamical—reflection region, where θ →
0, the specular ridge tends to be insensitive to wave-packet
dimensions—for those dimensions commensurate with and
greater than the grating period.

1. Gated wave packets and rocking curves

When observing sharp reflection peaks in practice, it can
be difficult to precisely “hit” a desired reflection angle. The
well-known idea of a rocking curve is to get close and then scan
along a “curve” of angles guaranteed to intersect the desired
peak or ridge [9]. For our grating, say that the reflection of
interest occurs at an angle corresponding to kr

mx/k = cos θ +
mτ . This location also can be described by an offset angle of
incidence, θ → θ − χ (0)

m , such that

kr
mx

/
k = cos (θ − χ (0)

m ), (66a)

where

χ (0)
m = θ − cos−1(cos θ + mτ ), (66b)

with χ
(0)
0 = 0; this, of course, is simply the geometry of the

Ewald sphere used to identify possible nonspecular scattering
events in crystals, here applied to the reciprocal space of the
grating. A continuous scan that intersects this reflection can be
defined by taking χ (0)

m → χm(�) = χ (0)
m − � for continuous

�, i.e.,

kr
mx

/
k → cos(θ − χm) = cos

(
θ − χ (0)

m − �
)
. (66c)

In effect, we can view this scan as taking m, the integer index
of the reflection, into a real variable μ(�). Indeed, to first order
in � in (66),

μ(�) ≈ m − �

τ
kr
zm(θ )

/
k =

(
1 − kr

zm

Gm

�

)
m.

This is mathematically equivalent to a local �-dependent
distortion of the reciprocal lattice itself (equivalently, the
grating Ewald sphere), taking Gm → Gm(�) with

Gm(�) ≡ Gm − kr
zm� + O(�2).

On the reflectometer, assuming a nonzero linewidth, we may
treat the observation angle of the reflection as a function of �,
i.e., take θobs → θobs(�) = θ − χ (�), or, for fixed θobs, treat
the incident angle as a function of �, i.e., take θ → θ (�) =
θobs + χ (�). In fact, depending on instrumentation, both θobs

and θ may need to be varied such that θ (�) − θobs(�) = χ (�)

for fixed �. For the purposes of the mathematical exposition,
we prefer to treat θ as fixed along the rocking curve.

The aliasing equation along this rocking curve is

cos(θ − φn,m) + nτ = cos
(
θ − χ (0)

m − �
)

= cos[cos−1(cos θ + mτ ) − �], (67a)

using (66b). For � = 0 this becomes

cos(θ − φn,m) + nτ = cos θ + mτ, (67b)

which is just (62) for φn,m = φn−m. The formal solution of
(67a), with φn,m → φn,m(�|θ ), is

φn,m(�|θ ) = θ − cos−1
[

cos
(
θ − χ (0)

m − �
) − nτ

]
= θ − cos−1{cos [cos−1(cos θ + mτ ) − �] − nτ }.

(67c)

By cos−1 here we mean the inverse satisfying cos−1 cos θ = θ

mod 2π for any θ . This corresponds to the arccos function,
as defined in Abramowitz and Stegun [10] and is to be distin-
guished from the principal value function, Arccos, for which
Arccos cos θ = |θ | for real θ . The Arccos function normally
is the one encountered in computational environments. Now
near � = 0, (67c) becomes

φn,m(�|θ ) = φn−m(θ ) + kr
zm(θ )

kr
z(n−m)(θ )

� + O(�2), (68a)

where θ is assumed to be above the m and n − m horizons. In
particular, for n = m,

φm(�|θ ) ≡ φm,m(�|θ ) = kr
zm(θ )

kr
z0(θ )

� + O(�2), (68b)

since φ0 = 0. [It is important to note the distinction between
φm,n(θ ) and the rocking curve trajectory φm,n(�|θ )]. There-
fore, for m = 0, i.e., along the rocking curve “transverse” to
the specular ridge (see below), φ0,0(�|θ ) ≈ �.

The reflection amplitudes on the rocking curve are r̃m(θ ) →
r̃m(�|θ ), where

r̃m(�|θ ) = Ãk(φm(�|θ ))rm(θ − φm(�|θ ))

+
∑
n�=m

Ãk(φn−m(�|θ ))rn(θ − φn−m(�|θ )).

(69)

For wave packets having sufficiently large �X, so that
aliasing can be ignored, the first term on the right-hand side
of (67c) gives the “natural” (i.e., coherent) line shape of the
mth reflection as the function Ãk(φm(�|θ )). Assuming for
simplicity a Gaussian shape for Ã(φm(�|θ )) → Ãm(�|θ ) near
� = 0, i.e.,

Ãm(�|θ ) ≈ e
− �2

2σ2
m ,

we get from (68b) that the angular dispersion near the center
of line m along the rocking curve is

σm ≈ 1

kσX

∣∣∣∣ ki
z(θ )

kr
zm(θ )

∣∣∣∣. (70)

Thus, σ0 ≈ 1/kσX determines the natural width of the specular
ridge, and σ−|m| < σ0 < σ|m| for m �= 0. Figure 5 shows
examples of Ã(�|θ ) for two values of �X. For the smaller
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FIG. 5. “Line shapes” Ã(�|θ ) vs � (in degrees) along rocking
curves [in θ for fixed θ ; see (69)] for m = 0 (thick gray line),
m = −3,−2,−1 (solid line), and m = 1,2,3 (dashed line); for �X =
0.1 μm and �X = 0.5 μm (shaded). The wave-packet longitudinal
dimension is �Z = 10 μm. Other parameters are shown on the figure
or are as in Fig. 3. The φm,m(�|θ ) trajectories (which are independent
of wave-packet shape) are also shown on an arbitrary scale. Horizon
effects are clearly seen for � > 0.

value, the plots exhibit noticeable asymmetry associated with
horizon effects as � → θ ; these are effectively suppressed,
i.e., rendered unobservable, by the exponential decay of the
line shape. Notice that � is defined relative to the line position,
as defined in (66), so that each of the profiles in Fig. 5 lies on
a different rocking curve.

Figure 6 compares the m = +1 line measured in Part I
with the corresponding predicted rocking curve. The points
correspond to the raw data, shifted from the actual peak
position at 0.5◦. The thin solid line is a model-independent
fit of the raw data; angular resolution was tight, and therefore
the result of the deconvolution of the incoherent instrumental
beam resolution is nearly indistinguishable from this curve.
The predicted line shape is essentially a Gaussian here.
The resulting transverse correlation length is approximately
1.13 μm full width at half maximum (FWHM). Refer to Part
I, Sec. VI and Tables III and IV. Similar agreement is obtained
for the measured m = −1 line, as discussed in Part I.

0.03 0.02 0.01 0.01 0.02 0.03
deg

20

40

60

80

100

120

Counts

FIG. 6. Comparison of the measured m = +1 off-specular line
from Part I for the Tg = 20 μm (“10 + 10”) grating with the
prediction (heavy gray line). The dashed horizontal line is the
predicted FWHM (see text).

The rocking curve specified here, when expressed in terms
of wave-vector transfers, is also known as a transverse scan.
Let θobs

m be the angle at which the reflection indexed by m is
observed. The wave-vector transfers for this reflection, Qmx

and Qmz, are

Qmx/k = cos θobs
m − cos θ = cos(θ − χm) − cos θ

and

Qmz/k = − sin θobs
m − sin θ = −[sin(θ − χm) − sin θ ],

where for Qmz we have reversed the sign of θobs
m to be consistent

with our definition of the z axis. After a bit of trigonometry
one finds that

Q =
√

Q2
mx + Q2

mx = 2k sin

(
θ − χm

2

)
,

and then

Qmx/k = Q sin

(
χm

2

)
,

and

Qmz/k = Q cos

(
χm

2

)
.

Take note of the interchange of the sine and cosine here.
Indeed, since over the range of θ typically of interest, χm

is small, it follows that Qmz ≈ 2k sin θ along the rocking
curve. Observed changes on the rocking curve thus are mostly
associated with wave-vector transfers along the x axis, the axis
“transverse” to z.

V. CONCLUSIONS

The material above presents a comprehensive theoretical
approach to the problem of elastic scattering of prepared wave
packets as observed by standard neutron spectroscopy. The
central results are summarized by the general representation of
the scattered gated wave packet and the associated scattering
(here reflection) amplitudes found in Eq. (54) and explicit
expressions for the specular and nonspecular reflection
amplitudes in Eqs. (64) and (69), respectively. These represent
special cases of the general result in Eq. (61). In summary, the
observable neutron reflectivities for prepared wave packets are
completely determined by coherent, weighted summations of
the exact dynamical reflection amplitudes for the plane-wave
problem, the weighting depending only on the geometrical
properties of the isolated wave packet with the energy gating
defining exactly how these properties are sampled by an
angular scan.

The main idea of this approach, as discussed in Sec. II, has
been to resolve the dichotomy that while wave packets are non-
stationary solutions of the time-dependent Schrödinger equa-
tion, elastic scattering theory, almost universally, assumes
stationary states, i.e., solutions of the time-independent
Schrödinger equation. Our resolution has been to obtain a
stationary-state solution of the scattering that incorporates
the main effects of time-dependent scattering by using the
notion of energy-gated wave packets, namely the distorted
wave packet that corresponds to the fixed incident energy
ascribed to the incident beam in the analysis of the scattering.
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The general picture of the scattering that results from gating
is conceptually straightforward; the incident wave packet
defines a totally coherent—i.e., pure state—collection of
exact (i.e., dynamical) plane-wave solutions of the “same”
scattering problem. With a proper definition of the observable
scattering amplitudes as ratios of projections of the gated
wave-packet scattering, shown in Eq. (54b), the resulting
amplitudes are just weighted sums of plane-wave scattering
amplitudes, the weighting depending on the Fourier content of
the incident wave packet on the energy shell and incorporating
the coherent aliasing due to misidentification of incident
angles associated with measured scattering angles. In casual
terms, the single-particle gated wave packet is a coherent
analog of the incoherent angular dispersion determined by
instrumental settings independent of the incident wave packets
in the beam.

We have treated the particulars of the gating idea in the
context of reflectometry for several reasons. First, the theory
was motivated by the measurements of neutron reflection from
ruled gratings described in detail in Part I of this study [2].
Second, the idealized “slab” reflection geometry allows for
an easy spatial separation of the several distinct regions
associated with different parts of the total wave function,
as was described in Sec. III. These ideas certainly can be
applied to other scattering conditions as well, including, say,
small-angle scattering, where the scattered beam of interest
there is analogous to the reflected wave here, while the forward
scattered beam there is the analog of the transmitted beam
here. We have developed implementation details for the grating
problem not only for the first reason above but also because of
the conceptually and mathematically convenient separability
(i.e., the discrete nature) of the reciprocal space attached to
gratings. Detailed generalizations to nonperiodic scatterers
should not be too difficult, albeit not trivial, depending on
the difficulty of the concomitant plane-wave problem. Third,
and most important, the study of large-period gratings in Part
I shows that for neutron beams the localization of the incident
wave packet is observable in reflectometry and amenable
to quantitative analysis with gated wave-packet theory once
instrumental and sample effects outside the theory have been
carefully removed from the data.

For the specific application of the gated wave-packet theory
to ruled gratings it remains to obtain the required dynamical
solutions of the attendant plane-wave scattering problem. We
deal with this problem in some detail in the Appendix for the
two-dimensional grating problem that was defined in Sec. III.
An alternative treatment is described by Ashkar et al. [6].
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APPENDIX: PLANE-WAVE REFLECTION
FROM A RULED GRATING

In order to compute the formula for the gated reflection am-
plitudes in (60) we need the plane-wave reflection coefficients
rkn = Ur

kn = Us
kn(z = 0) for the grating. We obtain these from

the physical solutions of the Schrödinger equation in region II,

−∇2
z,xψk(z,x) + q(z,x)ψk(z,x) = k2ψk(z,x). (A1)

Now from (48), ψk(r) = eik·r + ψs
k(r), and we have seen

that in II ψs
k(r) is a Bloch function along x with representation

as in (56). Thus, in II, since a plane can be considered as a
periodic function at the center of the first Brillouin zone, ψk(r)
also can be treated as a Bloch function along x,

ψk(kx,z,x) =
∞∑

m=−∞
Ukm(kx,z)ei(kx+Gm)x, (A2a)

with

Ukm(kx,z) = eikzzδm0 + Us
km(kx,z). (A2b)

Then Ur
km(kx,0) = δm0 − Ukm(kx,0), once the Ukm(kx,z) are

known. Upon inserting (A2a) into (A1), and using the
representation of q(z,x) in (55a), we find after a few steps
that

∞∑
m=−∞

Vkm(kx,z)eiGmx = 0, (A3a)

where, suppressing the k and kx arguments,

Vm(z) = U ′′
m(z) + [k2 − (kx + Gm)2]Um(z)

−
∑

n

qn(z)Um−n(z). (A3b)

Equation (A3a) formally defines a periodic function in x that
vanishes everywhere. Therefore, we must have Vm(z) = 0
everywhere, giving us in region II a set of coupled one-
dimensional equations, which, for m = 0,±1,±2, . . ., can be
written as

U ′′
m(z) + (Em − q0)Um(z) = Qm(z), (A4a)

where

Em(z) = k2 − (kx + Gm)2 = k2[1 − (cos θ + mτ )2] (A4b)

for incident ∠θ and with τ = λ/Tg , as in (55b), and where

Qm(z) =
∑
n�=m

qm−n(z)Un(z). (A4c)

Let us here restrict attention to gratings composed of
symmetric rectangular barriers of width wg [with q(z) = q �
0 in the barrier and q(z) = 0 between barriers] and center the
grating on (x,z) = (xg,0), where xg is located at the center of
a barrier; then we have

qm = e−iGmxg q̃|m|, (A5a)

with

q̃m = q̄ sinc
Gmwg

2π
(A5b)

and q̄ = qwg/Tg . The “normalized” sinc function is

sinc x = sin πx

πx
,

so that sinc m = δm0. For these gratings,

Qm(z) =
∑
n�=m

e−iGm−nxg q̃|m−n|Un(z). (A5c)
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We see that q̃0 = q0 = q̄ and that qm is invariant under xg →
xg + nTg .

Now ψk(kx,z,x) is subject to the continuity conditions,

lim
z→0+

∇(j )
x,zψk(kx,z,x) = lim

z→0−
∇(j )

x,zψk(kx,z,x), (A6)

at z = 0 for the j th derivatives (j = 0,1). Taking (59) for
ψk(kx,0−,x) and (A2) for ψk(kx,0+,x) gives

1 + r0 = U0(0), ikz(1 − r0) = U ′
0(0), (A7a)

for m = 0, and

rm = Um(0), − ikzrm = U ′
m(0), (A7b)

for m �= 0. These conditions are summarized by

U (j )
m (0) = (ikz)

j [δm0 + (−1)j rm], (A7c)

with j = 0,1. Similarly, at z = L,

U (j )
m (L) = (ikz)

j tm, (A7d)

where tm is the transmission amplitude associated with
scattering into kt = (kx + Gm)k̂x + k̂zkz. We note in passing
that the Bloch form of the x dependence of ψk(kx,z,x) and
j = 0 continuity are sufficient for j = 1 continuity in x at
z = 0 and z = L.

The equations for Um(z) in (A4a) each have the form of an
inhomogeneous Sturm-Liouville (S-L) problem,

LmUm(z) = Qm(z), (A8a)

with Liouville operator

Lm = ∂2
z + Em − q0 (A8b)

and “inhomogeneous” term Qm(z). This appearance is some-
what illusory in the usual S-L context, since the Qm(z)
defined by (A4c), for m = 0,±1,±2, . . ., cannot be specified
independently of the desired Um(z) over the entire set of
equations. Nevertheless, the analogy is useful for the purpose
of generating a formal description of the solutions, which can
serve as a starting point for controlled approximations. Thus,
the set of solutions of (A8a) for z ∈ II can be represented as

Um(z) = Uc
m(z) + Up

m(z), (A9)

where Uc
m(z) is the “complementary” solution of the homoge-

neous equation

LmUc
m(z) = 0 (A10)

and U
p
m(z) is the “particular” solution of (A8a), as if Uc

m(z) ≡ 0.
We consider each of these in turn.

Notice that in a strict S-L problem, boundary conditions act
only to fix the complementary solution. Here the continuity
conditions of (A7) apply to the total solution. We impose
specific conditions on the homogeneous problem shortly.

1. Complementary solution

Since Em − q0 is independent of z, the solutions of the
homogeneous problems (A10) are of the general form

Uc
m(z) = a+

meiκmz + a−
me−iκmz, (A11a)

with constants a+
m and a−

m to be determined (see below), and
where

κm =
√
Em − q0 =

√
k2
zm − q0, (A11b)

with

kzm =
√

k2 − k2
xm (A11c)

and

kxm = kx + Gm, (A11d)

representing, respectively, the z and x components of an
allowed reflected wave vector, such that k2

xm + k2
zm = k2. So

we can also write

κm = nmkzm, (A11e)

where

nm =
√

1 − q0

k2
zm

(A11f)

acts as an effective refractive index.
Now kx0 = kx and kz0 = kz, so that κ0 = n0kz, with n0 =√

1 − q0/k2
z , as in the problem of specular reflection from a

smooth, uniform film in region II with q = q0. There are other
useful ways of writing κm, so we also mention

κm = k
√

1 − (cos θ + mτ )2 − η, (A12)

with η = ρ̄λ2/π .
Elastic scattering from the grating is allowed only ifEm � 0,

i.e., if kzm is real valued. From (A4b), and always taking kx �
0—i.e., π/2 � θ � 0—we require cos θ � 1 − mτ . This can
not be satisfied for any |m| � 1 if τ > 1 (Tg < λ); i.e.,
there is no off-specular reflection when the grating period is
smaller than the neutron wavelength. For τ < 1, the resulting
restrictions are

m <
1 − cos θ

τ
(A13a)

at given θ or

θ > cos−1(1 − mτ ) (A13b)

for specified m. Therefore, for small-period gratings, i.e.,
periods comparable to a small number of wavelengths, we
expect noticeably asymmetric off-specular reflection relative
to the specular angle θ0, with fewer observable peaks for θ > θ0

than for θ < θ0. On the other hand, for large-period gratings,
i.e., when τ � 1, we can expect more-or-less symmetrically
disposed off-specular reflection.

The occurrence of κm = 0 can be called a horizon. Scat-
tering involves a particular Gm only above its associated
horizon, where κm is real valued. So for fixed τ and θ ,
the horizon is at m = mh = (1 − cosθ )/τ , and no scattering
occurs for m > mh. While for fixed τ and m, the horizon
is at θ = θh = cos−1(1 − mτ ) and no scattering occurs for
θ < θh. Above its horizon, κm > 0 by definition (for the given
reflection geometry).

There remains the matter of determining the coefficient
sets {a±

m}. We address this after a discussion of the particular
solution.
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2. Particular solution

For any Qm(z), the particular solution U
p
m(z) can always be

generated by

Up
m(z) =

∫ L

0
Gm(z − z′)Qm(z′) dz′, (A14a)

where Gm(z) is a Green’s function of the Liouville operator
Lm, satisfying

LmGm(z) = δ(z). (A14b)

The Green’s function appropriate to reflection from the slab
geometry of our model film is

Gm(z) = 1

2iκm

[e−iκmz�(−z) + eiκmz�(z)], (A14c)

where �(z) is the Heaviside function,

�(z) =

⎧⎪⎨
⎪⎩

1, z > 0,

1
2 , z = 0,

0, z < 0.

The Green’s function in (A14c) is verified to satisfy (A14b)
using ∂z�(z) = δ(z).

It follows that, with a bit of manipulation,

Up
m(z) = 1

2iκm

∑
n�=m

e−iGm−nxg q̃|m−n|

×
[
eiκmz

∫ z

0
e−iκmz′ + e−iκmz

∫ L

z

eiκmz′
]
Un(z′) dz′,

(A15a)

which satisfies

∂zU
p
m(z) = 1

2

∑
n�=m

e−iGm−nxg q̃|m−n|

×
[
eiκmz

∫ z

0
e−iκmz′ − e−iκmz

∫ L

z

eiκmz′
]
Un(z′) dz′.

(A15b)

In particular,

∂zU
p
m(z)|z=0 = −iκmUm(0) (A16a)

and

∂zU
p
m(z)|z=L = iκmUm(L), (A16b)

independently of the form of Um(z).

3. A solution ansatz

To get an idea of how this works, consider first the case that
q̃|m| = 0 for all m �= 0. We expect, of course, that the resulting
reflection is specular only, caused by a smooth, uniform film
with q = q0. Let us see in detail how this comes about.
From (A4c) Qm(z) ≡ 0, and we are left with the homogenous
S-L problem (A10), with general solutions (A11a) and the
continuity conditions at z = 0 in (A7c). Specifically, we have

Û ′′
0 (z) + κ2

0 Û0(z) = 0, (A17a)

with continuity conditions Û
(j )
0 (0) = (ikz)j [1 + (−1)j r̂0], for

j = 0,1, while, for m �= 0,

Û ′′
m(z) + κ2

mÛm(z) = 0, (A17b)

with continuity conditions Û
(j )
m (0) = (ikz)j (−1)j r̂m.

Here we employ the hat (ˆ) notation to identify the specular-
only case. As in (A11), the general solution of (A17a) is

Û0(z) = a+
0 eiκ0z + a−

0 e−iκmz,

and from the continuity requirements at z = 0, one readily
finds

â+
0 = 1

2

[
1 + r̂0 + 1

n0
(1 − r̂0)

]
,

â−
0 = 1

2

[
1 + r̂0 − 1

n0
(1 − r̂0)

]
,

(A18a)

so that

Û0(z) = (1 + r̂0) cos κ0z + i(1 − r̂0)
sin κ0z

n0
. (A18b)

To get an explicit expression for r̂0, we also need to consider
the continuity of Û0(z) at z = L, the boundary between regions
II and III, which requires that Û

(j )
0 (L−) = (ikz)j t̂0eikzL

+
, for

j = 0,1, where t̂0 is the transmission amplitude for the smooth,
uniform film. Then with (A18b), we obtain two equations for
the unknowns, r̂0 and t̂0, which, in particular, lead to

r̂0 =
(
n−1

0 − n0
)

sin κ0L(
n−1

0 + n0
)

sin κ0L + 2i cos κ0L
and

t̂0 = 2e−ikzL(
n−1

0 + n0
)

sin κ0L + 2i cos κ0L
.

(A18c)

Thus is (A17) completely solved in terms of q0 and kz, with
κ0 = √

k2
z − q0 = n0kz.

For m �= 0 in (A17b), here repeated,

Û ′′
m(z) + κmÛm(z) = 0,

with the continuity conditions r̂m = Ûm(0+) = â+
m + â−

m

and −ikzr̂m = Û ′
m(0+) = −iκm(â+

m − â−
m). Physically, r̂m =

0, since the “grating” is completely smooth in x; so âm = b̂m =
0 at once for all m �= 0. Alternatively, the continuity restraints
on (A17b) can only be satisfied by a single wave emanating
from the film into region I; but this cannot be a physical solution
without a wave incident along −z from region III, and there is
no such wave in this problem.

In general, for all m we must solve

Um(z) = a+
meiκmz + a−

me−iκmz +
∑
n�=m

e−iGm−nxg q̃|m−n|

×
∫ L

0
Gm−n(z − z′)Un(z′) dz′, (A19a)

subject to the continuity conditions at z = 0 and z = L,

U (j )
m (0) = (ikz)

j [δm0 + (−1)j rm], (A19b)

and

U (j )
m (L) = (ikz)

j tm. (A19c)
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Assume, for argument’s sake, that M is the maximum relevant
value of |m|. Then, in region I there are 2M + 1 reflec-
tion amplitudes to be determined, viz., r0,r±1, . . . ,r±M , and
the 2(2M + 1) = 4M + 2 associated continuity conditions
in (A7c) at z = 0. Similarly, in III there are 2M + 1 transmis-
sion amplitudes, t0,t±1, . . . ,t±M and the 4M + 2 associated
conditions in (A7d) at z = L. Meanwhile, according to (A19),
there are 2(2M + 1) “free” variables associated with the com-
plementary parts of the solutions, viz., a+

0 ,a+
±1, . . . ,a

+
±M and

a−
0 ,a−

±1, . . . ,a
−
±M . This means there are a total of 2(4M + 2) =

8M + 4 equations from the combined continuity conditions at
z = 0 and z = L with which to determine the 8M + 4 variables
{a±

±m,r±m,t±m}M+1.
The S-L problem specified by (A19) is self-consistent

in the specific sense that the number of available boundary
value equations matches the number of free variables to be
determined, at least over a finite set of reciprocal lattice
points {±m}M+1 (i.e., if we throw away all U±m labeled
by |m| > M). This is a necessary condition for unique
solutions but also sufficient only if the system of equations
is linearly independent. Linearity in the scattering amplitudes
is obvious, since the continuity conditions are patently linear
in {r±m,t±m}M+1. Linearity in the complementary variables
{a±

±m}M+1 may not obvious, but we can demonstrate it formally
by iterating (A19a) on the complementary solution. Since this
process quickly becomes unwieldy without some preparation,
let us first write (A19) for any ni (with n0 ≡ m) as

Uni
(z) = Uc

ni
(z) +

∑
nj �=ni

Fni

nj
� Unj

(z), (A20)

where � stands for convolution with respect to z ∈ {0,L},

Fni

nj
� Un′ (z) =

∫ L

0
Fni

nj
(z − zj )Unj

(zj )dzj (A21)

and where

Fni

nj
(z) = e

−iGni−nj
xg q̃|ni−nj |Gni−nj

(z). (A22)

Then iteration of (A20), starting with Un0 (z) = Uc
n0

(z), gives

Un0 (z) = Uc
n0

(z) +
∑

n1 �=n0

Fn0
n1

� Uc
n1

(z)

+
∑

n1 �=n0

∑
n2 �=n1

Fn0
n1

� Fn1
n2

� Uc
n2

(z) + · · ·

= Uc
n0

(z) +
∑
N=1

VN
n0

(z), (A23a)

with

VN
n0

(z) =
∑

n1 �=n0

· · ·
∑

nN �=nN−1

e−iGn0−nN
xg q̃|n0−n1| · · · q̃|nN−1−nN |

×
∫ L

0
. . .

∫ L

0
dz1 · · · dzNGn0−n1 (z − z1) · · ·

×GnN−1−nN
(zN−1 − zN )Uc

nN
(zN ). (A23b)

Thus, using (A11) for Uc
nN

(zN ),

Un0 (z) = Uc
n0

+ Up
n0

=
∑
N=0

∑
nN

[
WN+

n0,nN
(z)a+

nN
+ WN−

n0,nN
(z)a−

nN

]
, (A24)

where we have incorporated the homogeneous solution into
the sum over N , defining

W0,σ
ni ,ni

(z) = eσiκni
z (A25a)

for N = 0, with σ ≡ ±1 and i = 0,1 . . . . Then, for N > 0,

W1,σ
n0,n1

(z) = (1 − δn1n0 )e−iGn0−n1 xg q̃|n0−n1|

×
∫ L

0
Gn0−n1 (z − z1)e±iκn1 z1dz1, (A25b)

W2,σ
n0,n2

(z) = e−iGn0−n2 xg (1 − δn1n0 )
∑

n1 �=n2

q̃|n0−n1|q̃|n1−n2|

×
∫ L

0

∫ L

0
dz1dz2Gn0−n1 (z − z1)Gn1−n2 (z1 − z2)

× eσiκn2 z2 , (A25c)

and so on. Notice that the summation restrictions in (A23b)
apply only to adjacent indices, nj , nj+1; in (A25c), in
particular, n2 = n0 is allowed but not n1 = n0. In general,
for N � 2, closed “loops” in ni occur if the associated weight
q̃|ni−ni+1| . . . q̃|nj+1−ni | �= 0. For example,

U0(z) = [
eiκn0 z + W2+

0,0(z) + · · · ]a+
0

+ [
e−iκ0z + W2−

0,0(z) + · · · ]a−
0

+ [
W1+

0,−1(z) + W2+
0,−1(z) + · · · ]a+

−1

+ [
W1−

0,−1(z) + W2−
0,−1(z) + · · · ]a−

−1

+ · · · . (A26)

The entire sequence started in (A25) can be notated as

WN,σ
n0,nN

(z = z0) = e−iGn0−nN
xg

{
N∏

i=1

∑
ni−1

q̂|ni−1−ni |

}

×
N∏

i=1

∫ L

0
dziGni−1−ni

(zi−1 − zi)W0,σ
nN ,nN

(zN )

(A27)

for N > 0, where

q̂|m−n| ≡ (1 − δmn)q̃|m−n| (A28)

succinctly incorporates the restriction to nonzero reciprocal
lattice vectors and with

∑
n0

≡ 1. To computeWN,σ
n0,nN

(z) in this
form, we must integrate with respect to the zi in the sequence
zN,zN−1, . . . ,z1.

With regard to the product symbol, we use the convention
that

∏
i fig = (

∏
i fi)g. Note also that{

N∏
i=1

∑
ni−1

q̂|ni−1−ni |

}
· · ·

means∑
n0

∑
n1

∑
n2

· · ·
∑
nN−1

q̂|n0−n1|q̂|n1−n2| . . . q̂|nN−1−nN | . . .

=
∑
n1

∑
n2

· · ·
∑
nN−1

q̂|n0−n1|q̂|n1−n2| . . . q̂|nN−1−nN | . . . .
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4. Summary

For coding or other purposes, it may be helpful to summa-
rize the solution ansatz, repeating some earlier equations. We
are mostly concerned with obtaining the 4M + 2 reflection
and transmission amplitudes {r±m,t±m}M+1 for 0 � m � M ,
where M labels the largest reciprocal lattice vectors that
need to be considered for reasonably accurate solutions over
a given angular range of measurement. The solution for
these “physical” amplitudes also demands finding the 4M + 2
amplitudes {a±

±m}M+1 of the homogenous contributions to
the wave function in the grating. All 8M + 4 variables are
determined by the 8M + 4 linear equations obtained from the
set

Un0 (z) =
∑
N=0

∑
nN

[
WN+

n0,nN
(z)a+

nN
+ WN−

n0,nN
(z)a−

nN

]
, (A29)

evaluated at z = 0 and z = L with the continuity conditions

U (j )
m (0) = (ikz)

j [δm0 + (−1)j rm] (A30a)

and

U (j )
m (L) = (ikz)

j tm (A30b)

for j = 0 [continuity of U (z)] and j = 1 [continuity of U ′(z)].
In (A29) the coefficients WN,σ

n0,nN
(z = 0,L), with σ = ±, are

summarized by

WN,σ
n0,nN

(z = z0 = 0,L)

= e−iGn0−nN
xg

{
N∏

i=1

∑
ni−1

q̂|ni−1−ni |

}

×
N∏

i=1

∫ L

0
dziGni−1−ni

(zi−1 − zi)W0,σ
nN ,nN

(zN ), (A31)

independent of the solution variables. The z integrations
in (A31) are defined by a Green’s function for the slab
geometry,

Gm(z) = 1

2iκm

[e−iκmz�(−z) + eiκmz�(z)], (A32)

with the grating substrate automatically incorporated into the
κ variables, and by the initial condition

W0,σ
ni ,ni

(z) = eσiκni
z. (A33)

FIG. 7. Dynamic plane-wave specular reflectivity |r0|2 for two
values of the grating period Tg . The grading linewidth is w = 1/2 Tg ,
the line depth L = 1000 Å, grating material Ni, the substrate Si; the
neutron wavelength is λ = 4.75 Å. N = 1 (W linear in q̂) in (A31).
The maximum m value used is M = 8, but M � 1 gives similar
results at Qz � 0.02. The curve for Tg = 1 μm virtually coincides
with that for the averaged scattering length density of the grating
over this Qz range on a linear scale. The sharp feature near Qz =
0.03 Å−1 for Tg = 10 μm is the first visible horizon effect; the slight
rise above unity near Qz = 0 is a computational artifact. [The linear
equations obtained from (A29) and (A30) were solved using the
“Solve” command of a commercial mathematical software package
and were verified by direct matrix inversion.]

For m values over the horizon of the associated r±
m and t±m ,

the corresponding continuity equations must be eliminated.
The number of equations to solve, therefore, is generally less
than 8M + 4 at sufficiently large incident angles.

The summation over powers of q̂|ni−1−ni | in (A31) may be
suggestive of a distorted wave Born series. It is important to
keep in mind, however, that the solutions of (A29) for the
scattering amplitudes are not a power series in in the grating
potential. Thus, even a truncated approximation of (A29)
produces a fully dynamical result at small incident angles.
Indeed, the terms in the series (A29) quickly become quite
complicated with increasing N . However, for many purposes,
even the first-order truncation at N = 1 likely suffices at angles
below all m horizons (see Fig. 3). Having said that, however,
we acknowledge not having determined the formal behavior of
the W series in (A29). An example of the specular reflectivity
for a grating is shown in Fig. 7. A comparison with grating data
for Tg = 20 μm, similar to the case Tg = 10 μm in the figure,
is shown in Fig. 27 of Part I with some additional pertinent
information.
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