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Dispersion-induced dynamics of coupled modes in a semiconductor laser with saturable absorption
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We present an experimental and theoretical study of modal nonlinear dynamics in a specially designed
dual-mode semiconductor Fabry-Pérot laser with a saturable absorber. At zero bias applied to the absorber
section, we have found that with increasing device current, single-mode self-pulsations evolve into a complex
dynamical state where the total intensity experiences regular bursts of pulsations on a constant background.
Spectrally resolved measurements reveal that in this state the individual modes of the device can follow highly
symmetric but oppositely directed spiraling orbits. Using a generalization of the rate equation description of
a semiconductor laser with saturable absorption to the multimode case, we show that these orbits appear as a
consequence of the interplay between the material dispersion in the gain and absorber sections of the laser. Our
results provide insights into the factors that determine the stability of multimode states in these systems, and they
can inform the development of semiconductor mode-locked lasers with tailored spectra.
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I. INTRODUCTION

Semiconductor lasers with a saturable absorber can gen-
erate short and high-power optical pulses by the mechanisms
of self-pulsation and mode locking [1–4]. These modes of
operation are typically associated with different time scales
determined by the relaxation oscillation frequency (GHz) and
the round-trip time in the cavity (tens to hundreds of GHz).
As self-pulsations (SPs) are often a significant source of
instability in mode-locked lasers, a thorough understanding
of mechanisms leading to their appearance is desirable [5,6].

The model of a laser with a saturable absorber (LSA model)
considers the dynamics of the total field on time scales long
compared to the round-trip time in the cavity. While it cannot
therefore describe phenomena such as mode locking, this
model has provided valuable insights into the origins of SPs
and the factors that lead to the appearance of bistability in
devices with saturable absorbers [7–10].

Quantitative dynamical models of semiconductor lasers
with saturable absorbers include traveling-wave methods that
consider the spatiotemporal dynamics of the slowly varying
electric fields [11,12]. A lumped-element time-domain model
has also been developed that eliminates the spatial dependence
in favor of a delay-differential equation for the field variable
[13]. These models are efficient tools for understanding
the physical origins of complex spectral and pulse-shaping
mechanisms in mode-locked semiconductor lasers [14–16].

For certain applications of these devices however, we
may be interested in quantities such as the frequency and
phase-noise properties of the individual locked modes rather
than the pulse train generated by the device. Examples include
stable terahertz frequency generation and tailored comb-line
emission demonstrated recently by our group [17–19]. These
Fabry-Pérot (FP) lasers included a spectral filter to limit the
number of active modes, and here it may be appropriate
to formulate the problem of describing the dynamics in the
frequency domain. In such a model, each longitudinal mode
of the cavity is considered as an independent dynamical
variable [20]. The round-trip time in the cavity then determines
the mode spacing, and by including phase-sensitive modal
interactions in the model, one can describe mode-locked states
as mutually injection-locked steady states of the system [21].

In this paper we consider a device that supports two
longitudinal modes with a large frequency spacing. In this
case, a frequency-domain description based on an extension of
the LSA model represents a natural starting point. A transition
to mode locking is not possible in this device. Instead, we have
found familiar single-mode SP dynamics, but also interesting
examples of coupled dual-mode dynamics. Here we describe a
transition to a multimode state where the total intensity expe-
riences bursts of fast pulsations. We show that in this state the
individual modes follow oppositely directed spiraling orbits
that are related to the underlying SP dynamics of the system.
Our modeling approach is valid for small values of the gain and
loss per cavity round trip. Because these approximations are
not expected to hold in a semiconductor laser, our results are
necessarily qualitative. However, we highlight an interesting
example of a multimode instability that can arise in two-section
devices with large dispersion, and our results can guide the
future development of optimized mode-locked devices with
tailored spectra.

This paper is organized as follows. In Sec. II we introduce
our device and experimental setup. We present optical and
mode-resolved power spectra as well as a series of char-
acteristic intensity time traces illustrating a progression to
a region of complex dual-mode dynamics. In Sec. III we
describe our proposed model equations, which are a multimode
extension of the LSA model that accounts for dispersion of
gain and saturable absorption with wavelength in the system.
In Sec. IV we uncover the bifurcation structure of the system
leading to the measured results. We conclude by discussing
the implications of our results for future work.

II. EXPERIMENT

The device we consider is a multiple-quantum-well indium
phosphide–based ridge-waveguide Fabry-Pérot laser with one
high-reflection (HR) coated mirror. The total device length is
545 μm with a saturable absorber section of length 30 μm
adjacent to the HR mirror. The device has a peak gain near
1550 nm and slotted regions etched in the ridge define a
spectral filter, which is designed to select two primary modes
with a spacing of 480 GHz. Further details of the design of
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FIG. 1. (Color online) (a) Optical spectrum of the dual-mode
two-section device as the device current is varied. The bias applied
to the absorber section is 0 V. (b),(c) Corresponding power spectra of
the long- (ν2) and short- (ν1) wavelength primary modes.

similar devices and their operating characteristics can be found
in [17].

Figure 1(a) shows the optical spectrum of the laser as the
drive current in the gain section of the device is varied. These
spectra were obtained keeping a constant bias on the short
contact of 0 V and varying the pump current in the gain
section from below the lasing threshold at 30 mA to a value of
90 mA. All measurements of this device were carried out at a
temperature of 16.3 °C.

We label the short- and long-wavelength primary modes of
the device as ν1 and ν2, respectively. From Fig. 1(a) we see
that the long-wavelength mode of the device reaches threshold
first at a drive current of 30 mA. The two primary lasing modes
are located near 1550 and 1546 nm and they have a spacing of
six fundamental cavity modes. These primary modes dominate
the spectrum throughout the parameter region of interest. The
corresponding power spectral densities for each of the primary
modes are shown in Figs. 1(b) and 1(c). Structure appears
in the power spectral density of ν2 at approximately 35 mA,
indicating the onset of dynamical modulation with a frequency
of ca. 1.5 GHz. This transition is also reflected in a clear
spectral broadening visible in the optical spectrum of the mode.
We identify these dynamics as single-mode self-pulsations,
which appear following a region of constant output in mode
ν2 at threshold. The self-pulsations are initially sinusoidal
and their frequency increases gradually with device current
until a further transition at ca. 45 mA. Near this value of
the device current a discontinuity appears in the frequency of
the intensity modulation, which subsequently increases again
until a device current of 70 mA, where a dramatic switch to
a region of dual-mode dynamics is observed. In the region
of dual-mode dynamics the power spectra become symmetric
with a large range of frequencies present, including a signature
of low-frequency modulation in the 100 MHz range. This
region extends over a current range of approximately 10 mA,
with the dynamics switching abruptly to the short-wavelength
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FIG. 2. (Color online) (a),(b) Measured time traces for the long-
wavelength mode ν2 for a device current in the gain section of
44 and 59 mA, respectively. (c),(d) Time traces of the total intensity
at a current of 75 mA in the gain section. (e)–(h) Mode-resolved time
traces at a current of 75 mA in the gain section. The bias applied to
the absorber section is 0 V in all cases.

mode ν1 near 80 mA. Following the dual-mode region we
observe a single peak in the intensity power spectrum that
gradually diminishes in strength. This indicates that, for the
largest values of the device current shown, we have reached a
state of constant output on the mode at short wavelength.

Representative time traces for the intensity of the long-
wavelength mode in the first and second regions of dynamics
are shown in Figs. 2(a) and 2(b). The device currents are 44 and
59 mA respectively. Figure 2(a) shows characteristic self-
pulsation dynamics, where the intensity reaches small values
between pulses and the pulse duration is significantly less than
the interval between pulses. The dynamics in the second region
as shown in Fig. 2(b) are also strongly modulated but they are
much closer to sinusoidal than in the region of self-pulsations.

Time traces of the total intensity and of the individual modes
taken from the region of dual-mode dynamics are shown in
Figs. 2(c)–2(h). The device current in the long contact for these
measurements was 75 mA. One can see that the total intensity
experiences regular bursts of fast pulsations that are modulated
by a much lower-frequency envelope. The individual modes in
this dynamical state display a distinctive symmetric sawtooth
structure, where each mode closely follows a time-reversed
trajectory of the other. One can see that there is a significant
antiphase component to these dynamics, as the intensity of
the individual modes reaches values close to zero over a
considerable interval, whereas the total intensity is modulated
around a finite background level.
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III. MODELING OF THE DEVICE RESPONSE

Modeling the dynamics of our experimental system while
treating each mode individually is complicated by the rel-
atively large number of independent parameters [12,14].
However, we have successfully modeled the dynamics of
dual-mode devices with optical injection and feedback in
past work [22,23], and the LSA model provides a guide for
extending these models to the case of a two-section laser.
This model treats the absorber section as an unpumped region
with an unsaturated absorption and carrier recovery time that
depend on the applied voltage.

We do not believe that undertaking a complete theoretical
study of the bifurcation structure of the dual-mode LSA model
along the lines of [8] would be practical here. Instead, our goal
is to understand the physical roles of the various parameters
of the system, and to obtain numerical estimates for these
parameters based on a comparison of simulation results with
the results of our experiment. In physical units the multimode
extension of the LSA model reads

Ṡm = [(1 − ρ)G̃m(Ng) + ρÃm(Nq) − γm]Sm,

Ṅg = j − Ng

τs

−
∑
m

G̃m(Ng)Sm, (1)

Ṅq = −Nq

τq

−
∑
m

Ãm(Nq)Sm.

Here Sm is the photon density, and Ng and Nq are the
carrier densities in the gain and absorber sections, respectively.
The ratio of the absorber section length to the total device
length is given by ρ. The total field losses of each mode are
γm = αmir + αint + αm

f , where αmir are the mirror losses and
αint are the internal losses, assumed constant for all modes.
Additional losses αm

f due to the action of the spectral filter
are also included. The current density in the gain section is j ,
while the carrier lifetimes in the gain and absorber sections are
τs and τq , respectively.

Typical profiles of the gain and absorption spectra in
a semiconductor laser of the kind we consider are shown
schematically in Fig. 3. The negative offset of the gain function
at long wavelength gives an estimate of the background
losses αint. Here we have indicated the locations of the two
primary modes of the laser. To define the dispersion of gain
and absorption, we first fix a reference carrier density value
N thr

g in order to define the dispersion of the gain profile for
our model. We take this reference value to be the threshold
carrier density for the device assuming a transparent absorber
section, and define the mode with the largest material gain at
this carrier density as our reference mode m0. The threshold
carrier density defines a reference value for the modal gain:
G̃m0 (N thr

g ) = (1 − ρ)−1γm0 , and a set of modal differential gain
values g̃gm. The gain function for each mode can then be
linearized around the reference value of the carrier density
so that G̃m(Ng) = G̃m(N thr

g ) + g̃gm(Ng − N thr
g ). Dispersion in

the modal absorption is included by defining Ãm(Nq) =
g̃qmNq − A0

m, where the differential absorption is g̃qm, and
unsaturated losses for each mode A0

m will be determined by
the applied voltage.
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FIG. 3. (Color online) Schematic diagram of the material gain
and absorption in a typical semiconductor laser. The locations of
the two primary modes of the device ν1 and ν2 are indicated. The
model parameters that describe the dispersion of the modal gain
and absorption are also highlighted. Inset: Branches of equilibrium
solutions of the single-mode LSA model for typical parameters
considered here. The vertical line is the lasing threshold jTC

s , where
the zero-field solution becomes unstable.

To derive normalized equations, we rescale time in units of
the photon decay rate of a plain FP cavity without spectral
filtering: γ = αmir + αint. We define the normalized pump
current p = (j − jthr)/jthr ≡ js − 1, where jthr = N thr

g /τs , and
we define the normalized carrier densities in each section of
the device: ng = (Ng − N thr

g )/N thr
g and nq = (N0 − Nq)/N thr

g ,
where N0 = A0

m0
/g̃qm0 . In normalized units the equations then

read

İm = [(1 − ρ)Gm(ng) + ρAm(nq) − γ
′
m]Im,

T ṅg = p − ng −
∑
m

Gm(ng)Im, (2)

T ṅq = �(q0 − nq) +
∑
m

Am(nq)Im,

where q0 = N0
N thr

g
, T = γ τs , and � = τs/τq . In these equations

the normalized gain functions are

Gm(ng) = Gm

(
nthr

g

) + ggmN thr
g ng,

where Gm(nthr
g ) = γ −1G̃thr

m0
+ �Gthr

m , γ
′
m = γm/γ , and ggm =

g̃gm/γ . Here �Gthr
m ≡ γ −1(G̃thr

m − G̃thr
m0

) describes the disper-
sion of the reference linear-gain profile. The normalized modal
absorption functions are

Am(nq) = −gqmN thr
g nq + (gqm − gqm0 )N0 − γ −1�A0

m,

where gqm = g̃qm/γ , and �A0
m = A0

m − A0
m0

. Here the nor-
malized carrier density in the absorber section is defined so that
the modal absorption is linearized around the saturated value
for the reference mode. Note that the phase space of system
(2) contains two invariant three-dimensional submanifolds,
defined by Im = 0, for m = {1,2}. The dynamics on each of
these submanifolds reduces to the single-mode LSA system,
and for this reason we will refer to these submanifolds as the
single-mode manifolds of the system.

033848-3



O’CALLAGHAN, OSBORNE, AND O’BRIEN PHYSICAL REVIEW A 89, 033848 (2014)

Based on previous estimates obtained for similar devices
[22], we take the carrier lifetime in the gain section as
τs = 1 ns. The mirror losses of the device are calculated to
be αm = 13.8 cm−1, and we estimate the internal losses to be
αint = 9.2 cm−1. These losses determine the cavity decay rate
for the plain FP laser to be γ = 2 × 1011 s−1, and T � 200.
In order to define the losses due to spectral filtering and to
fix the value of N thr

g , we compared our results with threshold
data from a plain two-section FP laser. With a uniform current
density over the full device length, the threshold current of
the FP laser was 13.5 mA. With a bias of 0 V applied to the
absorber section, the threshold increased to 17 mA, with the
peak emission at 1557.5 nm. The scale of Ng is defined so
that the differential gain at threshold for the single-section FP
is equal to 1 in normalized units. We therefore set N thr

g equal
to 2.2 based on estimates of the increase in the carrier density
necessary to reach the defined threshold level at the wavelength
of the reference mode. This estimate was made by taking the
losses due to spectral filtering αm

f = 10 cm−1, and using an
approximate model for the semiconductor susceptibility [24].
This model allowed us to account for the large blueshift of the
gain peak from its position in the FP laser at threshold. We
note that the measured increase in threshold of the dual-mode
device, the placement of the spectral filter and the large
separation between the selected modes are all factors that
suggest large unsaturated absorption and enhanced dispersion
of the model parameters.

The carrier lifetime in the absorber section can be much
shorter than in the gain section, with a strong dependence on
the applied bias [25]. We fix the carrier lifetime in the absorber
section to be 50 ps, so that � = 20. However, provided � is not
close to 1, we have found our results are not dependent on the
precise value of this quantity. In order to complete the model
we must specify the values of the linear gain, the unsaturated
absorption, and the differential gain and absorption for each
primary mode of the device. Because of the large size of this
parameter space, we begin by considering the dynamics of two
coupled modes with similar parameters. Guided by the known
dispersive properties of the semiconductor susceptibility and
by the observed behavior of the device, we then make a series of
further adjustments to these parameters until we have obtained
satisfactory agreement with measured data.

IV. BIFURCATIONS OF A DUAL-MODE
SEMICONDUCTOR LASER WITH A

SATURABLE ABSORBER

For our numerical simulations, the parameters describing
the gain function at the position of the reference mode ν1 are
fixed. To begin we assume a flat gain and absorption curve
and we examine the effects of dispersion in the differential
gain and absorption on the dynamics of the coupled system.
From Fig. 1 we see that in our experiment the device begins
to lase with constant intensity output on the long-wavelength
mode, before entering a region of SP. At the largest values of
the pump current the intensity switches to short wavelength.
With equal linear gain and unsaturated absorption, the mode
with the largest differential gain will reach threshold first. On
the other hand, a larger differential absorption will mean that
a mode will saturate its losses more quickly above threshold

and thereby dominate at larger pump values. To reproduce this
behavior, we set the differential gain and absorption of mode ν1

in normalized units to be 1.0ρ−1 and 1.2ρ−1, respectively. The
ratio of these quantities for mode ν1 is then s1 ≡ gq1/gg1 = 22.
We set the differential gain and absorption of ν2 to be 1.4ρ−1

and 0.6ρ−1, respectively, so that s2 = 7.8. The remaining
parameter values we choose to begin are A0

[1,2] = 0.2γ and
�Gthr

m[1,2] = 0. Note that the differential gain in normalized
units is likely to be less than unity given the higher current
density at threshold in the dual-mode device. We have decided
not to make this correction in order to make the comparison
of the various model parameters more transparent. We have
confirmed that our results are largely independent of the
precise values chosen for gg1, provided the other differential
quantities are scaled accordingly.

While the LSA model can predict the appearance of
self-pulsations immediately at threshold [7,8], our chosen pa-
rameter values are consistent with the observation of a narrow
region of constant output at threshold in our experiment. If
we consider a single-mode system, the zero-field equilibrium
solution of these equations is stable until a transcritical
bifurcation at a threshold value of the pump

pTC = ρA0
m

(1 − ρ)ggγN thr
g

.

The inset of Fig. 3 shows the branches of single-mode
equilibrium solutions of Eq. (2) taking the model parameters
for mode ν1. Here � exceeds a minimum value given by

� = s
q ′

0

1 + q ′
0

.

where q ′
0 = γ −1ρA0

m. This condition leads to constant output
at threshold, as the upper branch of equilibrium solutions takes
physical values after exchanging stability with the zero field
solution. A further bifurcation to SPs will then occur provided
there is sufficient saturable absorption in the system. We will
find that the stability of the single-mode equilibria plays a
fundamental role in organizing the dynamics in our device,
and we will therefore present numerical bifurcation diagrams
for each of the single-mode solutions of our model as we vary
the model parameters for each mode.

Numerical bifurcation diagrams and intensity power spectra
obtained with our first set of parameters are shown in Fig. 4.
Figures 4(a) and 4(b) describe the dynamics of both of
the primary modes restricted to their respective single-mode
manifolds, obtained by setting the intensity of the inactive
mode to zero for the time evolution of Eq. (2). In Fig. 4(a),
as expected, the single-mode dynamics of both modes exhibit
threshold behavior similar to the observed behavior of the
long-wavelength mode in our experiment, with a region of
constant output found after the zero-field solution becomes
unstable. Following this region, they enter a region of SPs
at the location of the first Hopf bifurcation, and the SP
region is bounded in each case by a second Hopf bifurcation
at larger pump current. In Fig. 4, dashed and dotted lines
labeled H1 and H2 indicate the second Hopf bifurcation points
that bound the SP region at larger pump values for each
mode.
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FIG. 4. (Color online) Left panels: Simulated bifurcation dia-
grams. Right panels: Power spectral densities. (a),(b) Single-mode
dynamics. (c),(d) Long-wavelength mode ν2. (e),(f) Short-wavelength
mode ν1.

Mode-resolved numerical bifurcation diagrams and power
spectra for the two modes in the full coupled-mode system
are shown in Figs. 4(c)–4(f). Chosen parameters ensure
that the long-wavelength mode reaches threshold first, and
because the second mode is initially suppressed, mode ν2

reproduces the dynamics found in the single-mode system.
However, before the region of single-mode SP ends at the
second Hopf bifurcation shown in Fig. 4(a), the dynamics
becomes dual mode, with the SP intensity gradually switching
across to the shorter-wavelength mode ν1 as the pump is
increased further. This dual-mode region comes to an end
shortly after a pump value of js = 3 where the system enters
a region of single-mode SP on ν1. The region of SP dynamics
finally ends at the subcritical Hopf bifurcation of ν1, and the
dynamics switches to constant output in mode ν1 for large
values of the pump current.

In the power spectrum of Fig. 4(d) we see that at the onset of
SPs, they occur with a frequency of ca. 500 MHz, with a linear
increase in each interval of single- or dual-mode dynamics
thereafter, and reaching a value of ca. 5 GHz at js = 4.25.
We can compare this evolution with the dependence of the
relaxation oscillation frequency, which, neglecting the effects
of saturable absorption, is given by

ωRO =
√

(1 − ρ)ggN thr
g p

T
. (3)

At js = 4.25, the result is approximately 6 GHz, which is a
reasonable estimate of the SP frequency in this model. Note
however that the close to linear increase of the numerical SP
frequency contrasts with the square-root dependence of the
above expression.

If we compare the numerical variation of the SP frequency
with our experiment, we see that the measured SP frequency
appears with a large value of ca. 1.5 GHz, and that it
then remains relatively constant. Our simulations therefore
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FIG. 5. (Color online) Left: Simulated time traces of the total
intensity (upper panel) and of the individual modes (center and
lower panels). The pump current value is js = 3. Right: Phase-space
diagrams for three values of the pump current as shown.

underestimate the SP frequency at onset and overestimate
its rate of increase. One can also see that the extent of the
SP region that we find numerically is much larger than the
measured value. While the measured variation of the SP
frequency may be partly due to an uncharacteristic behavior
of our device, it should be noted that we cannot expect to
obtain quantitative agreement with experiment using the LSA
model. We have confirmed this by comparing the results of
numerical simulations made using the LSA model and the
delay-differential model of [13]. For example, using experi-
mentally calibrated parameters appropriate to a self-pulsating
FP laser, we have found that the LSA model will in general
predict a far larger SP region, with a larger SP frequency than
the delay-differential model. In addition, while we can adjust
unknown parameters such as the absorber recovery time to
match numerical and experimental results in the case of the
delay-differential model, this is in general not possible when
using the LSA model. This comparison emphasizes the added
importance of accounting for the large changes in gain and
loss that can occur in two-section semiconductor lasers, where
SP dynamics involve strong saturation of the absorption for
typical parameters.

Time traces taken from the center of the dual-mode region
with js = 3 are shown in the left panel of Fig. 5, while the
right-hand panel of Fig. 5 shows a phase-space representation
of the dynamics for three pump values, taken before, during,
and after the transition from ν2 to ν1. We see that the intensity
shifts continuously from one mode to the other through a
region of in-phase SP. As expected, the gradual transition of
the dynamics from ν2 to ν1 that we observe in these simulations
leads to agreement with the experimental measurements of
Fig. 1 near threshold and at large values of the pump.

Valuable insight into what factors can lead to better
agreement with experiment can be gained from a close
examination of the time traces presented in Figs. 2(c)–2(h).
From these figures, we see that for the majority of the orbit
duration the trajectory is close to the single-mode manifold
of one mode or the other. In Fig. 2(f) we see the large
intensity oscillations of ν2 decaying toward a state with almost
constant output, and the intensity then quickly switching to
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FIG. 6. (Color online) Effect of including dispersion in model
parameters on the transverse Lyapunov exponent and the location of
the second Hopf bifurcation of each single-mode equilibrium of
the model. Dashed and dotted lines indicate Hopf bifurcations
of ν1 and ν2, respectively. Solid lines are the transverse Lyapunov
exponents of each mode as indicated. (a) (i) Parameters as in
Fig. 4, (ii)–(iv)A0

1 = 0.35γ and �Gthr
m2 = [(ii) 0,(iii) − 0.25,(iv) −

0.5]γ −1. (b) (i) Parameters as in (iv) of (a), (ii),(iii) gq1 = 1.5, and
A0

1 = (ii) 0.35γ, (iii) 0.4γ .

a similar state in ν1 from which the oscillations grow again.
The clear observation of this nearly single-mode state with
constant output at the beginning and end of these bursts of
pulsations suggests that the single-mode equilibrium states of
(2) may be playing an important role in organizing the observed
dynamics. In particular, given the presence of symmetric
invariant submanifolds in the phase space, we should examine
the dependence of the transverse stability of the single-mode
equilibrium solutions on the model parameters.

The transverse stability of the single-mode equilibrium
solution for mode νi , I 0

i , is determined by the sign of its
transverse Lyapunov exponent

λ⊥i = (1 − ρ)Gj

(
I 0
i

) + ρAj

(
I 0
i

) − γj , (4)

where {i,j} = {1,2} and mode νi is transversely stable for
negative values of λ⊥i . For illustration purposes, we have
plotted and labeled solid lines in Fig. 4 that indicate where the
changes in transverse stability occur for the chosen parameter
values. Note that in this case ν2 becomes transversely unstable
while ν1 becomes transversely stable with increasing js . The
impact of dispersion of linear gain and unsaturated absorption
on the dynamics of our model can be illustrated by a plot
of the locations of the Hopf bifurcations and changes in
transverse stability of the single-mode equilibrium solutions
as the relevant parameters are varied. In Fig. 3, the physical
dispersion of the unsaturated absorption suggests a larger
value of A0 for ν1, and stability changes for both modes
obtained with A0

1 increased to a value of 0.35γ and �Gthr
m2

ranging from 0 to −0.5γ −1 are shown in Fig. 6(a). In these
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FIG. 7. (Color online) Left panels: Simulated bifurcation dia-
grams. Right panels: Intensity time traces. (a) Single-mode dynamics.
(b) Total intensity. (c),(d) Long-wavelength mode ν2. (e),(f) Short-
wavelength mode ν1.

figures vertical dashed and dotted lines indicate the locations
of the second Hopf bifurcation for ν1 and ν2, respectively.
Curved solid lines plot the value of the transverse Lyapunov
exponent for each mode as indicated, with sign changes of
these quantities indicating changes in transverse stability. One
can see the impact that a change of only 0.5 cm−1 to the
linear gain profile has on the transverse stability properties of
these modes. The cumulative net effect of these changes is
that there is now a much larger separation between the second
Hopf bifurcation points of both modes. In addition, the sign
changes of the transverse Lyapunov exponents for each mode
now occur between the pair of Hopf bifurcations.

Numerical bifurcation diagrams obtained for parameter
set (iv) of Fig. 6(a) are plotted in in the left-hand panels
of Fig. 7. Here, A0

1 = 0.35γ , �Gthr
m2 = −0.5γ −1, and all

other parameters are unchanged from Fig. 4. The increased
unsaturated losses mean that mode ν1 is suppressed for longer
and, in contrast to the results of Fig. 4, mode ν2 now completes
a region of single-mode SP bounded by two single-mode
Hopf bifurcations. Following the SP region, the system enters
a region of single-mode constant output. However, as we
increase the pump current still further we find the dynamics
are dramatically “blown out” from the single-mode manifold
and we enter a region of coupled dynamics in both modes. The
location of the blowout is determined by the loss of transverse
stability of ν2, and this point is located shortly after ν1 has
become transversely stable. The region of dual-mode dynamics
is bounded at larger values of the pump current by a subcritical
Hopf bifurcation of mode ν1.

In order to compare the measurements of Fig. 2 in the
dual-mode region with the simulation results of Fig. 7, we
have plotted mode-resolved and total-intensity time traces with
js = 5.1 in the right-hand panels of Fig. 7. The similar nature
of the two dynamical states is clear, with the numerical results
reproducing the observed bursts of fast pulsations in the total
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FIG. 8. (Color online) Left panels: Simulated bifurcation dia-
grams. Right panels: Power spectral densities. (a),(b) Single-mode
dynamics. (c),(d) Long-wavelength mode ν2. (e),(f) Short-wavelength
mode ν1.

intensity and also the switching sequence with the intensity
rising on the short-wavelength mode before switching and
falling on the long-wavelength mode. However, the frequency
of the bursts that we find numerically is much too low at around
10 MHz. In addition, the numerical bifurcation sequence in
not in full agreement with our measurements. We find a large
region of constant output between the second Hopf bifurcation
of ν2 and the onset of coupled-mode dynamics, and we also
do not see any evidence of a discontinuity in the frequency of
the intensity modulation at intermediate values of the pump.

By further adjustment of parameters we can shift the point
where the transverse stability of the equilibrium state of ν1

changes at smaller values of the pump. This will result in a
narrowing of the region of constant output in agreement with
experiment. Figure 6(b) illustrates the effect of an increase in
gq1 combined with a further increase of A0

1. The net effect of
these adjustments is that the positions of the Hopf bifurcations
remain largely the same, but the changes of transverse stability
happen much closer in pump current to the second Hopf
bifurcation of ν2. Numerical bifurcation diagrams and intensity
power spectra with gq1 = 1.5 and A0

1 = 0.4 are shown in
Fig. 8. The bifurcation sequence we observe until the change in
transverse stability of the single-mode equilibrium of ν2 is the
same as in Fig. 7. However, instead of a dramatic transition
to a region of complex coupled dynamics, in this case we
find a very narrow region where a dual-mode equilibrium
state of the system is stable. This state appears because the
order of the changes in transverse stability of the single-mode
equilbiria has been reversed compared to the previous example.
We find that the dual-mode equilibrium state quickly evolves
into a dual-mode limit cycle at a Hopf bifurcation point. This
dual-mode limit cycle is unusual in that the amplitude of ν1

over the cycle is very weak to begin. With a further increase
in the pump current, the dual-mode limit cycle loses stability,
and we observe a dramatic transition to a region of complex
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FIG. 9. (Color online) Left: Simulated intensity time traces. (a)
Total intensity. (b) Long-wavelength mode ν2. (c) Short-wavelength
mode ν1. Right: Phase-space diagram.

coupled dynamics in both modes. As in the previous example,
the region of complex dynamics is bounded at a large pump
current by a subcritical Hopf bifurcation in ν1.

A plot of the mode-resolved and total-intensity time traces
taken from the region of complex coupled dynamics in Fig. 8
with js = 5.2 is shown in the left-hand panels of Fig. 9.
When compared to our experimental results, there is a greater
degree of asymmetry between the dynamics of the two modes
in this example. Unlike the previous example, however, the
frequency of the bursts of fast pulsations of the total intensity
is now accurately matched to our experimental results. We
note also that the observed bifurcation sequence provides an
explanation for the dynamics we found at intermediate values
of the pump current in our experiment. We can now see that the
discontinuity in the frequency of the intensity modulation of ν2

was due to the momentary appearance of a stable dual-mode
steady state in the system, leading to the absence of any
structure in the intensity power spectrum over this interval. In
addition, we must reinterpret the region after the discontinuity
as a dual-mode state with strong intensity modulation, but
where the amplitude of the component in ν1 is very weak.

The time traces of Fig. 9 are depicted in a phase-space
representation on the right of Fig. 9. If we consider trajectories
close to the single-mode equilibrium state of ν1, these
trajectories are attracted towards the single-mode manifold
as the single-mode equilibrium state has a negative transverse
Lyapunov exponent. Because this state is unstable in the single-
mode manifold, as the trajectory approaches the manifold it
is repelled into a spiraling orbit towards the SP limit cycle,
which is stable within the ν1 manifold. This is the origin
of the fast pulsations that grow from the quasi-single-mode
steady state of ν1. Once the trajectory approaches the SP
limit cycle, it experiences the transverse instability of this
limit cycle and is ultimately ejected from the region near the
single-mode manifold, undergoing a large amplitude excursion
where both fields have large intensity. This large excursion
leads the trajectory to enter the slow region near zero intensity,
where it is drawn towards the single-mode manifold of ν2,
where the single-mode equilibrium state is stable within the
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FIG. 10. (Color online) Bifurcation diagrams of ν2 (upper panel)
and ν1 (lower panel). Single- and dual-mode equilibrium states
are labeled SMEj and TME respectively. Bifurcation points are
single-mode Hopf bifurcations (H), transcritical (TC), dual-mode
Hopf bifurcations (HTM), torus bifurcations (T), and limit point
(LP). Solid and dashed lines indicate stable and unstable objects,
respectively. The results of numerical simulations of the coupled
system are included as a guide. Solid vertical lines bound the region
of complex dual-mode dynamics.

manifold. This leads to the cycle of fast pulsations that decay
towards the single-mode equilibrium state of ν2. Finally, as
the trajectory approaches the equilibrium, it is repelled on
account of the positive transverse Lyapunov exponent of
this state. This repulsion drives the trajectory towards the
transversely attracting equilibrium state of ν1 and the cycle
begins again. The switch in intensity from ν2 to ν1 is along
a corkscrew-type trajectory that is wound around the line
connecting the equilibrium states in the two single-mode
manifolds. This winding may be a signature of the dual-mode
limit cycle present before the region of complex dynamics.

To investigate this question and to shed more light on the
bifurcation structure in this system, in Fig. 10 we have plotted
numerical continuation results obtained using AUTO [26].
These results indicate that the instability of the dual-mode limit
cycle leading to complex dynamics is due to a supercritical
torus bifurcation (T). We can also see that the dual-mode
limit cycle is present as an unstable object throughout the

region of complex dynamics, and that there is evidence for
further bifurcations of interest involving this object beyond
the boundary of the region of complex dual-mode dynamics.
In particular, we can see that the unstable dual-mode limit
cycle collides with the unstable branch of single-mode SPs
of mode ν1 in a transcritical bifurcation (TC). This results in
the unstable branch of single-mode SPs becoming transversely
stable for decreasing pump values until the subcritical Hopf
bifurcation of ν1 is reached. This narrow region of transverse
stability for this unstable branch of SPs may explain the sharp
feature near the relaxation oscillation frequency found in the
power spectral data of Fig. 1. The diminishing strength of
this feature with increasing current could be a result of the
growth of the limit cycle away from the location of the stable
equilibrium.

Finally, we note that although a complete discussion of the
bifurcation structure that organises the dynamics of Fig. 9 is be-
yond the scope of the current paper, we can highlight a number
of interesting parallels with previous work on optically injected
dual-mode devices [22,27]. Mathematically, this system is also
four dimensional, but it features a single, three-dimensional
invariant manifold corresponding to the single-mode injected
system. Despite the lower symmetry of the dual-mode injected
system, in the example of [22], we also found a sawtooth
structure characterized by symmetric but oppositely directed
trajectories of the two modes. These dynamics originated
in a torus bifurcation of a dual-mode periodic orbit. On the
other hand, [27] considered an example of bursting dynamics
from the region of the single-mode manifold. These dynamics
appeared near a cusp-pitchfork bifurcation of limit cycles and
a curve of global saddle-node heteroclinic bifurcations. We
will present a similar two-parameter bifurcation study of the
current system and explore these connections further in future
work.

V. CONCLUSIONS

We have presented an experimental and theoretical study
of the dynamics of a dual-mode semiconductor laser with
a saturable absorber. The device was a specially engineered
Fabry-Pérot laser designed to support two primary modes with
a large frequency spacing. Fixing the voltage applied to the
absorber section, we performed a sweep in drive current in the
gain section of the device. We found that the dynamics evolved
from familar self-pulsations in a single mode of the device
into a complex dynamical state of both modes. By extending
the well-known rate equation model for the semiconductor
laser with a saturable absorber to the multimode case, we
were able to reproduce the observed dynamics, and to show
the fundamental role played by material dispersion in both
sections of the device in governing their appearance.
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