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Generalized sub-Schawlow-Townes laser linewidths via material dispersion
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A recent S-matrix-based theory of the quantum-limited linewidth, which is applicable to general lasers,
including spatially nonuniform laser cavities operating above threshold, is analyzed in various limits. For
broadband gain, a simple interpretation of the Petermann and bad-cavity factors is presented in terms of geometric
relations between the zeros and poles of the § matrix. When there is substantial dispersion, on the frequency scale
of the cavity lifetime, the theory yields a generalization of the bad-cavity factor, which was previously derived
for spatially uniform one-dimensional lasers. This effect can lead to sub—Schawlow-Townes linewidths in lasers
with very narrow gain widths. We derive a formula for the linewidth in terms of the lasing mode functions, which
has accuracy comparable to the previous formula involving the residue of the lasing pole. These results for the
quantum-limited linewidth are valid even in the regime of strong line pulling and spatial hole burning, where the
linewidth cannot be factorized into independent Petermann and bad-cavity factors.
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I. INTRODUCTION

One of the oldest problems in laser physics is the character-
ization of the quantum-limited laser linewidth. In their seminal
paper on the theory of the laser, Schawlow and Townes derived
the formula [1],
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where g is the frequency of the laser mode, y, is the
linewidth [full width at half maximum (FWHM)] of the
corresponding passive cavity resonance, and P is the output
power. Several corrections to this result were found by
subsequent researchers: (i) an excess noise factor arising
from incomplete population inversion in the gain medium;
(i1) the Petermann factor, which describes excess noise due
to mode nonorthogonality [2-7]; (iii) the Henry « factor,
which describes indirect phase fluctuations from instantaneous
intensity changes caused by spontaneous emission [8]; and
(iv) a “bad-cavity” factor which reduces the linewidth when
the cavity decay rate is on the order of the gain width [9-14].
The first three factors all broaden the linewidth relative to
the basic Schawlow-Townes result [Eq. (1)]. The bad-cavity
factor, however, reduces the linewidth. Its origin was originally
attributed to the slowdown of phase diffusion caused by
atomic memory [9-11]; subsequently, Kuppens ez al. gave
an alternative interpretation based on the increase in the laser
cavity’s group refractive index due to the frequency dispersion
of the gain medium [13]. This factor deviates significantly from
unity in bad-cavity lasers, whose cavity decay rates are on the
order of the gain width (or polarization dephasing rate), and
has been demonstrated experimentally in an HeNe gas laser
[13,14]. It has also recently been re-derived in the context of
quantum cascade lasers, where it yields a small but measurable
correction to the linewidth [15]. Recently, there have been

(D

(Sa)s'r =

“yidong @ntu.edu.sg

1050-2947/2014/89(3)/033840(9)

033840-1

PACS number(s): 42.55.Ah

theoretical proposals to achieve ultralow linewidth lasers by
exploiting this effect with superradiant gain media [16-20].

Recently, two of the present authors developed a theory
of the quantum-limited laser linewidth [21], based on the
properties of the scattering matrix (S matrix) derived from
steady-state ab initio laser theory (SALT) [22-25]. According
to this theory, the cavity decay rate y. in Eq. (1) is replaced by
a generalized decay rate,

wiw,
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where Res(s) denotes the residue of the S-matrix eigenvalue
s, which diverges at the laser frequency, and W, is the
corresponding S-matrix eigenvector. Note that W, is not the
lasing mode function, i.e., it is not the electric field as a function
of position, but rather an N-component complex vector,
where N is the number of asymptotic scattering channels
coupled to the laser cavity. The quantity denoted \IJZ W, s
the usual Hermitian norm of this vector, which will be set to
unity by convention. The quantity W/ W, = >"% w2 s the
biorthogonal norm of W, a complex number with modulus
less than or equal to unity. It does not represent the Petermann
factor K, despite its apparent similarity to familiar integral
formulas for the same; in fact, for one-port (N = 1) lasers,
W7 W, | = 1eventhough K < 1.

SALT describes single- or multimode lasing above thresh-
old for arbitrary laser cavities, and the § matrix used in
Eq. (2) is a nonlinear S matrix computed from the SALT
equations as described in [21]. It takes into account both
the gain competition, spatial hole-burning and self-saturation
effects present above threshold. It was shown in Ref. [21] that
Eq. (2) incorporates the incomplete inversion and Petermann
factors, and due to the generality of the S-matrix approach,
it can be applied to complex modern laser cavity geometries,
such as microdisk, photonic crystal, and random lasers. By
contrast, previous derivations of the Petermann factor have
been specific to one-dimensional (1D) cavities [2—7], with the
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notable exception of a paper by Schomerus [26] which will be
discussed below.

In this paper, we analyze the S-matrix linewidth formula
further, and derive additional results which flow from it.
We show that Eq. (2) also exhibits the bad-cavity linewidth
reduction effect mentioned above [9-14]. Before proving this,
we analyze a one-port laser (e.g., a Fabry-Pérot single-mode
laser), for which the S matrix can be completely described in
terms of the poles and zeros positions. This leads, in Secs. II
and III, to a simple geometric interpretation of the Petermann
and bad-cavity factors in terms of the motion of the poles
and zeros of the S matrix in response to the pumping of
the gain medium. For more general lasers, including non-1D
and/or spatially nonuniform lasers, the full S-matrix theory
allows for a more rigorous calculation of the linewidth. In
Sec. IV, we use the S-matrix theory to derive an alternative
formula for y; in terms of the lasing wave function, and show
that the bad-cavity linewidth reduction factor is automatically
incorporated. By contrast, the bad-cavity factor was derived
in Refs. [9—11] using Langevin equations, in which the spatial
variation of the lasing mode is neglected, and in Ref. [12]
using a Green’s function method specific to 1D cavities. For
Fabry-Pérot cavities, we show analytically and numerically
that our theory reduces to the earlier results. In Sec. V, we
present numerical analyses of more complex lasers, including
spatially nonuniform 1D cavities and 2D cavities. When spatial
hole burning and line pulling (due to the frequency dispersion
of the gain medium) are negligible, the S-matrix theory is
in good agreement with previous, more approximate theories,
where the bad-cavity factor and Petermann factor are treated
as independent quantities. In the presence of strong line
pulling or spatial hole burning, we find that this factorization
breaks down. The deviations in the linewidth predicted by the
S-matrix theory, under these more general conditions, can be
tested in future experimental work.

II. GEOMETRIC VIEW OF THE PETERMANN FACTOR

Possibly the most-studied correction to the Schawlow-
Townes linewidth formula is the Petermann factor, which ac-
counts for the fact that the modes of any open system, including
laser cavities, are nonorthogonal. When spontaneous emission
noise is decomposed into these nonorthogonal modes, there
is an excess in the overall noise level associated with noise
correlation in different modes [3]. This effect was originally
discovered and discussed in the context of transverse modes
of gain-guided lasers [2,3,5], and subsequently extended to
longitudinal modes by Hamel and Woerdman [4,6,7]. The
Petermann factor is written as

| Sdr le@)P
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where ¢(r) is either a transverse or longitudinal wave function
(mode amplitude), and the integral is, correspondingly, either
taken over the area transverse to the axis of the laser cavity or
along the axial direction. The methods which have previously
been used to derive the Petermann factor [2-7] are limited
to 1D lasers with a well-defined axis, and with spatially
uniform dielectric functions. In particular, for the longitudinal
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Petermann factor, Eq. (3) can equivalently be written as
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where r; and r, are the reflection coefficients at the two
ends of the uniform 1D cavity [4,6]. Recently, Schomerus
has derived a generalization of the Petermann factor which
applies to subthreshold high-Q 2D lasers [26]. We will discuss
the relationship between our results and those of Schomerus
in Sec. IV.

In this section, we develop a simple and intuitive interpreta-
tion of the Petermann factor, based on the analytic properties of
the S matrix. In the next section, we will see that the bad-cavity
linewidth reduction factor also emerges in this picture. The
important role of dispersion in reducing the linewidth was
noted in Ref. [21], but in a less complete manner, as we did
not then appreciate its connection to the bad-cavity factor
in Fabry-Pérot systems. The geometric interpretation of the
Petermann factor was also touched upon in a recent work on
the bandwidth of coherent perfect absorption [27].

We begin by considering a one-port laser, such as a
1D cavity with a perfect mirror on one end, or a higher-
dimensional cavity with a single-mode port. In this case, S(w)
is a scalar whose exact form depends on the distribution of
dielectric and gain material in the system. Under very general
conditions [28], S(w) is analytic and possesses an infinite
discrete set of poles and zeros in the complex w plane, denoted
by {wf }and {a)j }, respectively. In a passive cavity (one without
material gain or loss), time-reversal symmetry ensures that the
poles and zeros are symmetrically placed around the real-w
axis, allowing us to label them with a single index j such
that wf = (wj)*. For example, Fig. 1(a) shows the poles and
zeros for a spatially nonuniform 1D cavity (open symbols). The
poles of the passive cavity correspond to scattering resonances,
whose decay rates (FWHM) are defined as y; = —2 Im(a);’ ).

As gain (and/or loss) is introduced, these labeled poles and
zeros move in the complex w plane, as shown in Fig. 1(a).
They no longer form conjugate pairs, but if their frequencies
{a)f "} are known, we can compute S(w) for any  using the
Padé approximant,

w—w

~m
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up to an irrelevant phase factor which has been omitted. For

the passive cavity, Eq. (5) gives |S(w)| = 1 for all real w, as

expected. The precision of the Padé approximant increases

as more pole and zero pairs are included in the product. Its

validity for S(w) is demonstrated numerically in Fig. 1(b).

A lasing mode corresponds to a pole of S(w) located on
the real-w axis [25]. As noted, this description holds both at
the lasing threshold and above threshold, except that S(w)
above threshold must be computed using an w-dependent
dielectric function with a nonlinear contribution from spatial
hole burning, which can be found via the SALT method
[22-25]. Denoting the lasing pole by j = 0, we can use Eq. (2)
with Eq. (5) to obtain the generalized decay rate,
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FIG. 1. (Color online) (a) Poles and zeros of a one-port 1D
cavity, consisting of four slabs of equal length L/4 with a perfect
mirror on the left boundary (inset), and € =1 in the external
region. Solid symbols show poles (circles) and zeros (squares)
for frequency-independent slab refractive indices of (left to right)
n =[3,1.5 - 0.002i,2.5 — 0.0057,3]. Open symbols show poles and
zeros for the passive cavity, with Im(n) = 0. (b) Values of S(w) on the
real-w line, for the cavity with gain, calculated exactly (solid curve)
and using the Padé approximant of Eq. (5) with 12 pole/zero pairs
near oL = 100 (dashed curve).

(As mentioned above, for the one-port system, the lasing
eigenvector ¥ has only one component, so [¥7W| = 1.)

Figure 1(a) demonstrates the effects of broad-band gain
on the poles and zeros. In this case, the gain is simply
frequency independent; more generally, “broad-band” gain
refers to a gain width much larger than the free spectral range
and resonance decay rates. The poles and zeros move almost
directly upward in the complex w plane, relative to their passive
cavity positions, and each pole and zero in a pair moves by
approximately the same amount. In order for a given pole
(say j =0) to lase, it must move a distance of yp/2; the
corresponding zero moves by the same amount, so the first
factor in Eq. (6) is |@ — @§| & yo. This factor corresponds to
an unmodified Schawlow-Townes linewidth.

Next, consider the product terms in Eq. (6). Neighboring
pairs of zeros and poles also move upward from their passive
cavity positions. Hence, as indicated in Fig. 2,
wf — w; ?

(,()O — @ 1

Kansaw = | |
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We interpret Kgnsaz as the Petermann factor. It approaches
unity in the limit where the free spectral range is much larger
than the resonance decay rates y;, in accordance with the usual
notion that the Petermann factor is negligible for high Q.

To show that K 4., is indeed the Petermann factor, suppose
our one-port laser is spatially uniform and 1D, with reflection
coefficient r at the output port. The frequencies of the poles
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FIG. 2. (Color online) Schematic of a pair of neighboring poles
and zeros, showing the geometric interpretation of the Petermann
factor. w{ is a pole which has reached the real-w axis. According to
Eq. (6), the contribution of the neighboring pole (a){' ) and zero (w7)
to the generalized decay rate is the ratio of the lengths of the upper
and lower dashed lines, which is >1. Open symbols indicate w!"* for
the passive cavity.

and zeros, denoted w, ;|, satisfy [29]
exp[£2inw, L]r = ei?, (8)

where 7 is the refractive index in the cavity, L is the cavity
length, and ¢ is the phase change at the perfectly reflecting
port. For the passive cavity (Im[n] = 0), with frequency-
independent n and r, Eq. (8) implies that the poles and zeros are
equally spaced with free spectral range Aw and located at equal
distances yy/2 from the real axis, where In |r| = —wy/Aw.
Assuming an “ideal” gain medium which moves all the poles
up to the real axis, and all the zeros up by an equal amount,
Eq. (7) implies

: 2 2 2
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Kansatz

In the last equality, we have used Euler’s product formula for
the sine function,

00 2
sin(mz) = mz H (1 — j—2> , (10)
=1

with an imaginary argument. Plugging into Eq. (8) yields
2

. (11)

1 —r2

Kansatz ~

2rIn|r|

This agrees exactly with Eq. (4), the formula for the lon-
gitudinal Petermann factor derived in Refs. [4,6], for the
one-port case (r; = r,|rp| = 1). This link between the motion
of S-matrix poles and zeros and Eq. (4) is a new result of this
paper. This geometric interpretation also emphasizes the fact
that the Petermann factor relates to the cavity finesse, Aw/yp,
not the Q-factor wy/yp.

For a cavity with more than one port, the ansatz (6) no
longer applies since the S matrix has more than one eigenvalue.
[As an exception, in a two-port parity symmetric system, the
eigenspace of S factorizes and Eq. (6) can be used with only
even/odd values of j in the product.] In the more general case,
yr would have to be calculated using Eq. (2), or from the
wave-function formula derived in Sec. IV.
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FIG. 3. (Color online) (a) Effect of Maxwell-Bloch gain medium
on poles and zeros. Poles (circles) and zeros (squares) are plotted
for a one-port Fabry-Pérot cavity of length L, for passive dielectric
€ = 2.5 (open symbols) and for a Maxwell-Bloch medium (solid
symbols) with n2 = 2.5, ¥, =2/L, , = 100.3/L, and D = 0.024.
The gain medium moves the poles up by a greater distance than the
zeros, resulting in the gain dispersion linewidth correction factor of
Ref. [12]. (b) Values of |w§ — w| for the zero and pole closest to
the gain center, versus the pump D. The dots are exact numerical
solutions; the line is an approximation using Eq. (14).

III. THE BAD-CAVITY FACTOR

In the previous section, when showing that the Padé
approximant ansatz (6) for the generalized decay rate yields the
Schawlow-Townes-Petermann linewidth for broad-band gain,
we assumed that the gain displaces the poles from their passive
cavity positions by the same amount as the zeros. Thus, for
instance, the leading factor of |co(’)7 — f] in Eq. (6) takes the
value yy. When the dielectric function is frequency dependent,
this condition is violated. Consider a Maxwell-Bloch gain
medium,

Dy,

A

(12)
where n3 is the background permittivity, D a scaled inversion
factor proportional to the pump, w, the polarization resonance
frequency, and y, the polarization dephasing rate (gain width)
[22-25]. This formula for €(w) can be analytically continued
into the complex w plane [28], in order to compute S(w) for
complex w.

Figure 3(a) shows the poles and zeros for a one-port Fabry-
Pérot cavity with this dielectric function. Both the poles and
zeros are moved upward, but the zeros move by a smaller
distance. As aresult, in Eq. (6) the leading factor of |a)(’)’ — ]
is smaller than yy, and the product terms (which, as discussed
above, give rise to the Petermann factor) are likewise reduced.
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The fact that the zeros move less than the poles can be
understood intuitively from Eq. (12). The effect of the gain
medium (which pushes poles and zeros upward in the complex
plane) is large when w is close to w, — iy, which lies in the
lower half plane. Hence the zeros, which are in the upper
half plane, “experience less gain” than the poles in the lower
half plane. The resulting linewidth reduction can, in principle,
overcome the increase due to the Petermann factor, resulting
in a linewidth below the Schawlow-Townes limit.

The linewidth reduction can be quantified in a simple way
for our toy model of a spatially uniform 1D one-port cavity,
for which the pole and zero frequencies w, . are given by
Eq. (8). For the passive cavity, n = ng, suppose that there is a
pair of poles and zeros located at wy F iy /2. For the pumped
cavity, the refractive index is n = n’ 4+ in” and the central
pole and zero frequencies become w), ; = a);,’z +iyp . Ifris
approximately independent of n and w, Eq. (8) gives

1

e = oz [Fron' G+ non‘en]. (13)
1 ;Yo ”

Vp: = W [:Fnon 5~ non a)o] . (14)

Threshold occurs when n” /n’ = yy/2wy. For a high-Q cavity
(Yo < wo), this implies |n"| K |n'| and @), = ~ w, as ex-
pected. Now suppose the medium has the Maxwell-Bloch
form, with the gain curve centered on this pair of poles
and zeros (w, = wp). From Eq. (12), at the pole and zero
frequencies,

"

S

D
. C (15)

' 205 (Yp: +v1)
Threshold occurs at D = ngyo /wp. From Egs. (14) and (15),

we can find the imaginary part of the zero frequency at
threshold,

3

Yo Y1
=14+ ) (16)
v: 2 < V. +vL
17!

= |1+ 2 (1+ VZ) . a7

2y 2y1

Hence,

~1

v: > % [1 + 27—"] , (18)
YL

with the inequality saturating as yy < y.. This result is valid
for a high-Q cavity at threshold.

The right-hand side of (18) is yp multiplied by a factor
smaller than unity, which is precisely the “bad-cavity” factor
previously derived in Refs. [9-12]. For the moment, let us
consider the perturbative limit, yy < y., where this factor is
comparable to unity and the inequality (18) saturates.

For a high-finesse cavity (yy < Aw, occurring for
|r| — 1), the product terms in the ansatz (6) go to unity,
so yr &~ y,. In this limit, Eq. (18) gives rise to a laser
linewidth which includes a “bad-cavity” factor and a negligible
Petermann factor, as expected.

Away from the high-finesse limit () ~ Aw), the situation
is less clear and the Petermann factor cannot be neglected.
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FIG. 4. (Color online) Fractional deviation in +/K caused by
finite Maxwell-Bloch gain width y,, as a function of y, /2y, (where
o is the passive cavity decay rate). This plot is obtained varying
y. in the one-port Fabry-Pérot cavity of Fig. 3, and calculating the
Petermann factor from Eq. (7), based on the pole and zero frequencies
at threshold. The broad-band limit of the Petermann factor K is
computed from Eq. (9).

In the ansatz (6), we must account for the other pairs of
poles and zeros, which are located away from the gain center
w,. For example, Fig. 3(a) shows the poles and zeros for
a medium-finesse Fabry-Pérot cavity with yy & 0.5Aw. The
noncentral poles and zeros are displaced upwards from their
passive-cavity frequencies, but by less than the central pair.
They also experience “line pulling” towards the gain center
w,. Both effects modify the Petermann factor. The first tends
to suppress K, while the second tends to enhance it. Let
us compare +/ Knsatz» as calculated from Eq. (7) with the
Maxwell-Bloch gain medium, to the value /K for “infinitely
broad-band” gain, which is given by Eq. (9). Figure 4 shows
the value of

)

‘ hY Kansutz Y KO
v Ko

versus ¥p/2y., as y, is varied in the Fabry-Pérot cavity. It
turns out that the effects of gain reduction and line pulling on
the Petermann factor cancel to first order leaving a correction
which is second order in /2y, . Hence, even if the Petermann
factor itself is non-negligible, the correction to it due to a
finite y, is negligible compared to the correction to y,. The
bad-cavity factor and the Petermann factor can be taken to be
independent, in the limit yy < ;.

Away from the yy < y, limit, the inequality (18) does not
saturate, and the “bad-cavity” linewidth reduction effect has
a significant contribution from the positions of the noncentral
poles and zeros. In this case, the bad-cavity and Petermann
factor cannot be cleanly identified with the leading and product
terms in the ansatz (6). In the next section, we will derive a
general linewidth formula in terms of the lasing wave function,
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which is valid even if Yy ~ y, . We will then show that the bad-
cavity correction appears as a separate multiplicative factor,
consistent with Refs. [9-12], only for the special case of a
Fabry-Pérot cavity. In general the Petermann and bad-cavity
factors cannot be separated when yy 2 y,, i.e., in the full
bad-cavity regime.

IV. WAVE-FUNCTION FORMULATION

The generalized decay rate y,, defined in Eq. (2), can be
re-expressed in terms of the wave function of the lasing mode
and the frequency-dependent dielectric function of the laser
medium. This derivation, which uses a modification of the
approximation scheme of Schomerus [26], yields a generaliza-
tion of the usual Petermann formula (3) that also incorporates
the bad-cavity factor. Pick et al. have independently derived
a similar result, using a coupled mode theory approach which
also yields a generalization of the Henry « factor [30].

Consider a 1D or 2D transverse magnetic (TM) system
lasing at a real frequency w = wy. The laser mode is described
by a purely outgoing wave function ¥ (representing the
out-of-plane component of the complex electric field), which
satisfies the Helmholtz equation:

[V? + e(r.m) wj [$o(r) = 0,
Yo(r) = Zbﬂu,t(r;wo) for r ¢ C. (19)
"

Here, C denotes the scattering region, and {u,,} is an appropri-
ate set of outgoing channel modes defined in the region outside
C, where € = 1. For open 2D geometries, it is convenient to
let C be a circle of radius R, and define

Hf (or)

—® , 20
VR i (@R) (@) (20)

up(r,¢; w) =

with azimuthal basis functions satisfying fOZ” d¢ ®,®, =
8,v. The vector b = [by, .. .] is an eigenvector of S(wy), with
diverging eigenvalue.

Next, consider a frequency w differing slightly from wy.
The § matrix remains dominated by the pole, so [26]

S(w) ~ ?

T
2 bb, 1)

with o(w) finite. Let a be an input amplitude, normalized
so that the output amplitude is equal to b. From (21), the
generalized decay rate is

b'b ; 1
yr = |Res o(a))ﬂ =b'b|Res <m> , 22)

with the residue evaluated in the limit w — wq. The corre-
sponding wave function ¥ (r) obeys

[V? + e(ro) o 1y (r) = 0,
Y(r) =Y lau}(r) + buu,(r)] for r ¢ C. (23)

12
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According to Gauss’s theorem,
[ @éripavy - w5yl
c

= [Yo VY — ¥ Volac
= —i(w+ wo)b’a + i(w — wy)b'b. (24)

The final equality in (24) is exact for 1D modes, and
approximate for the 2D modes defined in (20) in the limit
wR > 1. From the wave equation, (24) also equals

/ dr [e(r,wo)a)(z) — e(r,w)a)z]l/folﬂ
c

Y3 (25)

wo

d
~ —(w— wo)f dér |:a)2—6 + 2¢ a)]
C dw
Exploiting the time-reversal symmetry of the Helmholtz

equation, v/ acts as a purely incoming solution with € — €*.
This gives

| ey us = 090l = 1 V0 — ¥ Tialic
c

= —i(wj +wo)b'b,  (26)
and using the wave equation as before,

/ d'r [e(r,wo)wy — € (r.wo) (@) 1ol
c

= / d“r2Im[e(r,w)wg ] [¥ol*. 27)
c
Combining these equations and using (22) yields

wo [ dr Im[e(r,wp)wd ] 19ol?

" Relen)| B2+ fpdrew+ 5 45], vi |

YL (28)

2 2 dw

Equation (28) expresses the generalized cavity decay rate
in terms of the lasing mode (19), valid for arbitrary cavity
geometries and gain media. We now show that it reduces to
the usual bad-cavity linewidth formula for the special case of
a uniform 1D Fabry-Pérot cavity of length L. The b”b/2 term
in the denominator is normalized to the value of ¥ (r) at the
cavity boundary, in accordance with Eq. (23). We will drop
this term, as it is negligible for woL > 1. For wy = Re(wy),
Eq. (28) becomes

yL = BVK y, (29)
where
o de |
B='1+Z%wo, 30)
22
. ‘fdz ol " an
[dz y;
yo = — Lo Imle@o)] (32)
|€ (o)

are, respectively, the bad-cavity factor, the longitudinal Peter-
mann factor [6], and the passive cavity decay width. In (32),
o was identified via the standard relation between the passive
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cavity resonance frequency w, and the lasing refractive index
no in a Fabry-Pérot cavity [29]:
Im(ng) — Im(e)  Im(wr) — ye/2
Re(ng) 2Re(e)  Re(w.) wo
This approximation assumes that line pulling is negligible. We
now focus on the B factor of Eq. (30). Using the Maxwell-

Bloch dielectric function (12) in the limit w, &~ wy > y,,
together with Eq. (33), Eq. (30) simplifies to

(33)

a)()D -

2ngyL

—1
~ ‘1 4+ (34)

B%'1+ 2y
1

The above results are verified numerically in Fig. 5, for
one-port Fabry-Pérot lasers at threshold (with varying y,).
The S-matrix theory is typically in good agreement with
the Fabry-Pérot-specific Eqgs. (29)-(32). Discrepancies are,
however, observed when w, is significantly detuned from a
lasing pole and y, is small, as shown in Fig. 5(b). In this
regime, the lasing modes are strongly affected by line pulling,
so that the factorization (29) breaks down. In all the studies
we have performed, the integral form of the generalized decay
rate, Eq. (28), is in excellent agreement with y;, as evaluated
directly from the S matrix. It should be noted that both

1.4
(@) wq = 100.3/L

1.2

1 &
08 r
06

04t

0.2

0
1.4

1.2¢
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1 +

(Decay rate) x L
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0.4r¢

~vr (integral) +
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yoL L
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FIG. 5. (Color online) Generalized decay rates for a one-port
Fabry-Pérot laser at threshold, versus the gain width y,. The
Maxwell-Bloch gain medium has background permittivity nj = 2.5,
with the pump adjusted so that the laser is at threshold. Results
are shown for (a) w, = 100.3/L, centered on one of the poles of
the passive cavity, and (b) w, = 99.5/L, detuned from the pole by
slightly less than a free spectral range. In both plots, the decay rates are
calculated using the exact formula for y; from Eq. (2) (blue circles),
using the integral approximation (28) (red crosses), and using the
Fabry-Pérot-specific Egs. (29)—(32) (solid line). The passive cavity
decay rate y; is also shown (dashed line).
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approaches require solving the SALT equations for the (in
general) nonlinear multimode lasing state, but once that is
done the integral formula is evaluated simply by performing
the relevant integrals of SALT solutions over the lasing cavity,
whereas the S-matrix residue formula typically requires more
involved calculations.

The key approximations (21) and (24)—(27) were previously
used by Schomerus to derive a generalization of the Petermann
factor for 2D lasers [26]. The method of Schomerus differs
from ours in several respects. Instead of calculating the
S-matrix eigenvalue residue, he calculated the amplified
spontaneous emission (ASE) intensity,

1 |bb |’ 35
27 |bTa| ’ ©55)
for a subthreshold laser cavity. In Egs. (24) and (25), the
wave function v is chosen to be that of the subthreshold
system, whose dielectric function € differs from the threshold
laser’s dielectric function €;. For real w, Eq. (35) gives a
Lorentzian with width Aw, inverse to the total ASE power
P = hwy [ I(w) dw; this Schawlow-Townes-like relationship
is argued to hold as the system approaches threshold, at
which point it becomes the laser linewidth. Furthermore,
I (w) diverges at a complex frequency below the real-w axis,
corresponding to the pole of the subthreshold cavity. By
assuming that Eq. (35) holds all the way down to the passive
cavity limit, where the dielectric function is ~Re(e;) and the
resonance frequency is Xwy — iyp/2, Schomerus obtains [26]

oy | [ dPr Im(e) 9ol
Po | [d%r Im(e)yd |

Note that this reduces to the traditional formula for the
longitudinal Petermann factor for uniform cavities.

Thus, in Schomerus’ theory the relevant approximations are
based on a perturbation between a passive cavity pole and a
lasing pole. By contrast, we have used the approximation (25)
to describe a truly infinitesimal deviation from an S-matrix
pole, for the purpose of extracting the residue of the pole.
As might be expected, the Schomerus result (36) agrees well
with our present theory when yy is much smaller than all
other frequency scales, including y, and the free spectral
range. However the two do not agree in other regimes, when
dispersion is non-negligible, since the frequency dependence
of € is ignored. In the next section we will correct the
Schomerus theory by including the traditional bad-cavity
factor (18) by hand and use this hybrid theory to compare
to our more complete theory for complex cavities.

1
I(w) ~ —Tr(STS) ~
2

Aw (36)

V. COMPLEX LASER CAVITIES

Having established that the S-matrix theory agrees analyt-
ically and numerically with previous theories for uniform 1D
lasers, we now turn to more complex cases—1D lasers with
spatially nonuniform dielectric functions and pumping, 2D
lasers, and the effect of spatial hole burning above threshold.

Figure 6 shows the variation of y; with y,, at threshold, for
a nonuniform 1D laser with spatially inhomogenous dielectric
function and pumping. Over the entire computed range, the
integral formula (28) is again in excellent agreement with
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FIG. 6. (Color online) Generalized decay rates versus gain width
y., for a partially pumped nonuniform laser at threshold with the gain
centers (a) w, = 100.3/L and (b) w, = 99.6/L. The laser consists
of three slabs of lengths [0.4L,0.2L,0.4L] (inset schematic). The A
slabs contain gain material with background nJ = 2.25; the B slab has
passive € = 9. The generalized decay rate y; is computed from the
S matrix (blue circles), and from the integral approximation Eq. (28)
(red crosses). The solid curves show the traditional result Bv/K Ves
where B is the bad-cavity factor of Eq. (30) and K is the Petermann
factor of Eq. (36). The dotted curves show the result for a uniform
Fabry-Pérot cavity with region B replaced with gain material.

the exact y; computed from the S matrix. To compare our
S matrix or SALT integral results for more general cavities
to the most complete version of the “traditional” results, we
combine the Schomerus formula, Eq. (36), with an ad hoc
bad-cavity factor. If we do this, good agreement is observed
in Fig. 6(a), when the gain center w, is aligned with one of
the passive cavity resonances and line pulling is negligible.
In Fig. 6(b), a different choice of w, introduces line pulling,
and the S-matrix theory gives significantly different results,
particular for small values of y, .

Figure 7 shows an analogous two-dimensional calculation,
for a random laser cavity. Again, good agreement is observed
between the exact y;, and the integral formula. The S-matrix
theory approaches the traditional result for large values of y |
and negligible line pulling, and by more than 10% for small
values of y, . This is consistent with the results found in 1D.

As described in Ref. [21], y, can be computed above
the lasing threshold by using the nonlinear S matrix. Above
threshold, €(r) is modified by spatial hole burning; instead of
being an independent parameter, the inversion D in Eq. (12)
becomes [22-25]

—1
D(r) = Dy F(r) [1 +y mwmﬁ} :
v (37)
_n
i+ (ky — ko)’

v
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FIG. 7. (Color online) Generalized decay rates versus gain width
y., for a two-dimensional random laser at threshold. The laser cavity
consists of a pumped dielectric disk of radius R = 1, background
dielectric n3 = 10, with 24 randomly placed air holes of radius 0.1.
The wave equation is solved by the finite-element method, and the
generalized decay rate y, is computed from the S matrix (blue circles)
and from the integral approximation Eq. (28) (red crosses). The result
of the traditional formula B~/K y, is shown for comparison (magenta
asterisks), where K is computed from the Schomerus formula of
Eq. (36). Two values of the gain center are used: (a) w, = 9.7, for
which the lasing mode has negligible line pulling, and (b) w, = 10.
(Inset) Computed mode intensity for the threshold lasing mode.

where Dy is the pump strength, F(r) is the spatial profile of
the pump (which is zero in unpumped regions), and &, and
W, (r) are the self-consistently determined frequency and field
function of the vth lasing mode (the possibility of multimode
lasing is thus explicitly included). The resulting complex €(r)
enters into the linewidth theory in exactly the same way as at
threshold: We can obtain the S matrix and hence y; , or obtain
W, (r) and use it directly in the integral formula (28).

Figure 8 shows y, as a function of Dy for a 1D Fabry-Pérot
cavity. The value of w, is chosen so that, at threshold, there
is negligible line pulling; hence the S matrix and traditional
results are in good agreement (as discussed above). As the
pump is increased, the results begin to deviate, up to 4% at
a pump of 10x threshold. Comparing this to the results of
Ref. [21], we conclude that the deviations from the Schawlow-
Townes-Petermann linewidth formula discussed in that paper
was due to the bad-cavity factor. However, Fig. 8 also shows
deviations at large pump strengths, which cannot be explained
by the bad-cavity factor.

In Fig. 8, the variation in the decay rate with respect to
the pump can be intuitively linked to the motion of the poles
and zeros by using Eq. (6). Suppose that we have a single
lasing mode at threshold. This corresponds to a pole sitting on
the real frequency axis. As the pump is increased, other poles
and zeros, including the zero associated with the lasing pole,
continue to move up the complex frequency plane. The lasing
pole, however, remains stationary on the real frequency axis.
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FIG. 8. (Color online) Generalized decay rates for above-
threshold lasers. The laser cavity is a slab of length L with a perfect
reflector on one side. The gain medium is uniformly pumped, with
parameters nj = 2.3 and w, = 100.3/L as described via Eqs. (12)
and (37). The pump Dj is varied from the threshold value up to 10x
threshold. The values of y;, are shown for gain widths of y, = 1/L
(solid circles) and y, = 0.5/L (open circles). The dotted lines show
the corresponding values of B~/K ., where B is the bad-cavity factor
and K is the Petermann factor of Eq. (36). For these parameters, the
laser is single mode.

As a result, both the prefactor and product terms in Eq. (6),
and hence y;, increase with pump Dy. As the pump is further
increased, a second mode turns on and the motions of the other
poles and zeros slow down. This causes the terms in Eq. (6) to
remain relatively constant as Dy increases. Thus, y; increases
more slowly with Dy.

In conclusion, we have found that the S-matrix theory of
the laser linewidth incorporates both the bad-cavity linewidth
reduction factor and the Petermann factor. For simple cavities,
particularly uniform Fabry-Pérot cavities with negligible line
pulling and close to threshold, the bad-cavity and Petermann
factors can be treated as independent quantities. In such
systems, we obtain results that are consistent both with the
studies of the bad-cavity factor in Refs. [9-14], and with
Schomerus’ generalization of the Petermann factor, without
the bad-cavity factor, in Ref. [26]. On the other hand, in the
most general case the bad-cavity and Petermann effects do
not emerge as independent factors, as we saw in Eq. (28)
when expressing the generalized cavity decay rate in terms
of the lasing wave function; this was confirmed in numerical
examples with strong line pulling and spatial hole burning. In
future work, these deviations will be studied further, with the
goal of developing experimentally feasible laser systems with
anomalous linewidth behaviors.
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