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Álvaro M. Alhambra,1,2 Achim Kempf,1,2,3 and Eduardo Martı́n-Martı́nez1,2,3

1Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
2Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

3Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada N2L 2Y5
(Received 29 November 2013; published 20 March 2014)

Casimir-type forces, such as those between two neutral conducting plates, or between a sphere, atom, or
molecule and a plate, have been widely studied and are becoming of increasing significance, for example, in
nanotechnology. A key challenge is to better understand, from a fundamental microscopic approach, why the
Casimir force is in some circumstances attractive and in others repulsive. Here, we study the Casimir-Polder
forces experienced by small quantum systems such as atoms or molecules in an optical cavity. In order to make
the problem more tractable, we work in a (1+1)-dimensional setting, we take into account only the ground state
and the first excited state of the atom, and we model the electromagnetic field as a scalar field with Dirichlet or
Neumann boundary conditions. This allows us to determine the conditions for the Casimir force to be attractive or
repulsive for individual atoms, namely, through the interplay of paramagnetic and diamagnetic vacuum effects.
We also study the microscopic-macroscopic transition, finding that as the number of atoms in the cavity is
increased, the atoms start to affect the Casimir force exerted on the cavity walls similarly to a dielectric medium.
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I. INTRODUCTION

The presence of Casimir forces between a neutral atom
and a conducting plate was noticed already in the early
days of quantum field theory [1]. They were first detected
experimentally in [2]. The analysis of Casimir-type forces
has been extended to various different geometries and for
both conductive and dielectric media [3,4]. It was found that
Casimir forces are in general attractive. However, evidence for
instances in which the Casimir force is repulsive have also been
found (see [5,6]). While the conditions for when the Casimir
force becomes repulsive are not yet fully understood, several
proposals for setups which should yield repulsive Casimir
forces have been made. These include setups with conditions
of high magnetic permeability [7,8], optical setups involving
left-handed metamaterials [9], or nontrivial boundary condi-
tions [10]. Examples of repulsive Casimir forces have been
experimentally observed only in recent years [11]. Repulsive
Casimir forces are of practical interest, for example, in the
field of nanomachines [12], for which Casimir-related effects
are the ultimate source of friction. See [13] for a detailed
review.

Here, motivated by progress in quantum optics and its
applications to quantum information (see among many others
[14–17]), we will study the Casimir effect experienced by
atoms or molecules inside optical cavities. In particular, we
will study the conditions for the Casimir force to become
repulsive.

Technically, Casimir-type forces arise when the ground-
state energy E0(λ) of a quantum system depends on a
classically treated parameter λ, where λ is usually the distance
between two subsystems. Then, F = dE0/dλ is the Casimir
force with which the quantum system drives or resists an
adiabatically slow change of λ. Ultimately, the Casimir-Polder
forces between neutral systems such as neutral atoms or
neutral macroscopic matter arises via the standard QED
minimal coupling between the constituent charges and the

electromagnetic field [1]:

H QED = 1

2m

[
p − e

c
A(x)

]2

. (1)

In the Coulomb gauge
∑3

i=1 ∂i Ai(x) = 0, the interaction terms
read as

H
QED
I = − e

mc
A(x) · p + e2

2mc2
[A(x)]2. (2)

In weak A fields, the term linear in A, the so-called
paramagnetic term, usually dominates over the term which
is quadratic in A, the so-called diamagnetic term. The
diamagnetic term is therefore often neglected in simplified
models of light-matter interaction. The Casimir effect between
neutral systems would seem to be a small-field case in which
the diamagnetic term is negligible. This is because in this
case there is no finite classical background field A and the
neutral systems in question merely interact with the quantum
fluctuations of A in the vacuum. The variance 〈A2〉 of the
quantum fluctuations of A in the vacuum depends, however,
on the size of the region that they are being smeared over, i.e.,
the variance depends on the size of the system that interacts
with the A field. As the size of the system is taken to zero,
the variance of the quantum fluctuations of A diverges. For
small enough systems, therefore, the diamagnetic term, which
is proportional to the variance, can contribute on the order of
the paramagnetic term, as we will see in the following.

In order to make the calculations more tractable, we will
use a simplified model, the so-called Unruh-DeWitt (UdW)
model. In the UdW model, the interaction between an atom
and a quantum field is described as the interaction of a localized
two-level system with a scalar field. The UdW model has been
shown to reproduce very well the light-matter interaction at
leading order, as long as there is no exchange of orbital angular
momentum [18].

Concretely, we will begin by analyzing the Casimir-Polder
force experienced by a neutral atom between reflective plates.
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For previous work in this field, see, e.g., [19–22]. Since we
are here working with the UdW model, we can go beyond
the usual proximity field approximation. Namely, instead of
considering one atom close to a mirror [1], we allow atoms to
be introduced at any arbitrary distances from the two mirrors
of a cavity. Also, we will be able to add the diamagnetic term
and conclude that the diamagnetic term should generally be
taken into account. Finally, we will explain both quantitatively
and intuitively how the paramagnetic and diamagnetic terms
together with the boundary conditions in the cavity determine
whether the Casimir force is repulsive or attractive.

We will then also determine how the presence of multiple
atoms in the optical cavity affects the Casimir-type force
between the walls of the cavity. Namely, in the regime of a
high density of uniformly distributed atoms, the collection
of atoms starts to act as a dielectric medium so that in a
suitable approximation the macroscopic Lifshitz formalism [5]
for the calculation of the Casimir effect between plates [23]
separated by a dielectric medium becomes applicable. We find
scenarios where the Casimir force between the plates and the
forces due to the presence of the atoms oppose each other, so
that in certain regimes the total force between the plates can
become repulsive. This result from a microscopic description
supports previous works that used macroscopic effective
models, suggesting that Casimir forces can be screened in
the presence of matter [24,25].

II. FIELD-MATTER INTERACTION MODELS

We begin by considering the standard Unruh-DeWitt
Hamiltonian [26] for the interaction between a scalar field
and an atom modeled by a two-level system. This model is
obtained by replacing the vector quantum field A by a scalar
quantum field φ and by reducing the Hilbert space of the atom
from infinite dimensions to just the two dimensions of the
ground state and first excited state. The paramagnetic term of
the minimal coupling Hamiltonian (2) then takes the form

HI = λ md φ(xd). (3)

Here, φ(xd) plays the role of A(x). The 2 × 2 matrix md

represents the action of the paramagnetic term on the two-
dimensional Hilbert space of the atom which is spanned by its
ground state and its first excited state:

md = |g〉 〈e| + |e〉 〈g| = σ− + σ+. (4)

Here, λ is the coupling strength.
Notice that in this Hamiltonian one models the atom as

coupling to the field at a point only (see, e.g., [18]) on the
assumption that the spatial extent of the atom is negligible as
compared to the wavelength of the radiation that is resonant
with the atom’s energy gap.

Notice also that the model assumes that the atom will
behave like an effective two-level system. This means that
the time evolution will not induce transitions outside of the
sector spanned by the two lowest-energy states. This is a
good approximation, for example, in the case of hydrogen
(neglecting spin degeneracy). There, the probability of a
transition from the 1s to the 2p level is negligible compared
to both, the probability of remaining in the 1s state and
the already small probability of being excited to 2s. This is

discussed in a mathematically rigorous way in the paper [18],
where it is shown that, indeed, the Unruh-DeWitt model does
reproduce the physics of the term A(x) · p in the atomic
electron-electromagnetic field interaction if no exchange of
orbital angular momentum is involved (the photon-carried
angular momentum is balanced by the electron spin).

Nevertheless, it is important to keep in mind that the
operator (4) is a simplification that stems from a dimensional
reduction of the Hilbert space of p, which means that one one
has to carefully consider the appropriate matrix elements that
need to be taken into account to model transitions between
different orbitals. The associated subtleties will be analyzed
in more detail in Sec. III B when we introduce the specific
spatial profiles. Following, we will also add an analog of the
QED diamagnetic term to the Unruh-DeWitt model. Before,
however, let us analyze the behavior of the paramagnetic term.

In the case of an atom in an optical cavity, we can expand
the field in terms of the well-known stationary solutions of the
Klein-Gordon equation [1]

HI = λ md

∞∑
j=1

[a†
j + aj ]

sin kjxd√
ωjL

(5)

for the case of a reflective cavity and

HI = λ md

∞∑
j=1

[a†
j + aj ]

cos kjxd√
ωjL

(6)

for the case of a cavity whose fields obey Neumann boundary
conditions [see, for instance [27], for the one-dimensional
(1D) case]. The fact that a scalar field is considered instead
of the electromagnetic field does not, in itself, introduce any
fundamental differences in the nature of the model. The electric
and magnetic contributions can often be separately modeled
through scalar fields obeying corresponding boundary condi-
tions. Scalar fields have been used to analyze Casimir-type
phenomena, e.g., in [28,29]. One small caveat is that this
simple model encodes the basic features of the light-matter
interaction for atomic transitions only in the absence of the
exchange of orbital angular momentum [18]. The model has
been used in studies of Casimir-Polder forces involving only
one conducting plate [19–22] and is commonly used in studies
of quantum field theory in curved space-times and relativistic
quantum information [30–35], as well as in quantum optics
(see, e.g., [36]).

However, the model does not contain the analog of a
diamagnetic field self-interaction term as in (1). To include
such a term, we add to the interaction Hamiltonian

H ′
I = λmdφ(xd) + α

λ2

�
[φ(xd)]2. (7)

In the new term, the squared coupling constant is divided by
the atomic energy gap � to provide the correct units. Unlike
the electromagnetic minimal coupling in (1), the UdW model
does not uniquely determine the dimensionless constant α, i.e.,
it does not determine the prefactor of the diamagnetic term,
except of course that α should be positive.

As we will discuss in Sec. III B, the best choice of α

in a simple UdW model for the full electromagnetic (EM)
interaction will depend on the spatial profiles of the relevant
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orbitals of the specific atoms considered. Since our aim
in working with a simplifying UdW model is to obtain a
qualitative understanding of the range of possible effects,
we will first analyze the dependence of the Casimir-Polder
interactions on the value of α. Then, in order to work with a
definite model, we will choose a particular value of α that
will let us explore the regime when the diamagnetic term
contributes significantly. This value of α is also natural in that
it yields a natural dependence on the atomic gap that is similar
to the one corresponding to the full electromagnetic case [1].

We notice that the diamagnetic term contains only field
operators, namely φ2, but no operators of the atom’s quantum
system. This means that the lowest-order coupling of this
term to the dynamics of the atom is with the third power
of the coupling constant. The diamagnetic term’s contribution
is therefore negligible for the atom’s dynamics up to second
order in the perturbative expansion. We will nevertheless
include this term since as we shall show in the following
sections, its presence quantitatively and qualitatively affects
the Casimir-Polder forces.

To this end, we first need to address, however, the fact
that with the diamagnetic φ2 term in the Hamiltonian (7),
the atom can not be assumed to couple to the field at a
single point only. The reason is that a field’s vacuum quantum
fluctuations at a point diverge: 〈0|φ2(x)|0〉 = ∞. To regularize
the divergence, a finite spatial profile for the atom has to
be introduced, which then ensures that the atom couples to
the field’s quantum fluctuations smeared over a volume, and
these smeared fluctuations are finite. The original paper by
Casimir and Polder [1] introduced a regularizing factor e−γ k

as an effective spatial profile with the limit γ → 0 taken at
the end. Here, we instead regularize this divergence by setting
the profile of the atomic levels to be the actual radial wave
function of atomic s orbitals, as we will explain in more detail
in Sec. III B.

III. SINGLE ATOM IN A REFLECTIVE CAVITY

We begin by characterizing the force felt by single atoms
in optical cavities, and the effect of their presence on the
cavity walls. In particular, we will study the potential role
of the diamagnetic term in the Casimir effect. To this end,
we will consider the light-matter interaction in optical cavities
with and without the diamagnetic term, with various boundary
conditions. We will see that the exclusion or inclusion of the
diamagnetic term in the interaction Hamiltonian can make
the Casimir force attractive or repulsive. We will also find a
switch between attractive and repulsive Casimir forces when
the boundary conditions are switched between Dirichlet and
Neumann conditions.

A. One atom in a cavity, without diamagnetic term

Our aim is to calculate the ground-state energy of the system
consisting of an atom in a cavity with Dirichlet boundary
conditions, up to second order in perturbation theory. To this
end, we will use the interaction Hamiltonian (5), which models
an Unruh-DeWitt type of interaction without diamagnetic
term. Using time-independent perturbation theory, the leading-
order correction to the energy of the ground state is of second

order in the coupling strength. A standard calculation yields
that the energy of the ground state is given by

EI = E0 + E(2) + O(λ4),

where E0 is the energy of the free Hamiltonian’s ground state
and where the energy difference between the ground states of
the free and the interacting system

δE = E(2) + O(λ4)

obeys

E(2) =
∞∑
l=1

−λ2

ωl + �

∣∣∣∣∣∣〈e,kl| md

∞∑
j=1

(a†
j + aj )

sin kjxd√
ωjL

|g,0〉
∣∣∣∣∣∣
2

=
∞∑

j=1

−λ2 sin2
(

πj

L
xd

)
(πj/L + �)(πj )

. (8)

We substituted the frequency of the discrete modes ωj = πj/L

and made use of the dispersion relation. The series can be
summed analytically. Namely,

E(2) = −λ2

4π�

[
2H
(

L�

π

)
+ e

2iπxd
L �

[
e

2iπxd
L ,1,

L�

π
+ 1

]

+ e− 2iπxd
L �

[
e− 2iπxd

L ,1,
L�

π
+ 1

]

+ ln

(
2 − 2 cos

2πxd

L

)]
, (9)

where

�[z,s,α] =
∞∑

n=0

zn

(n + α)s
, H(x) = x

∞∑
k=1

1

k(x + k)
(10)

are, respectively, the Lerch transcendent and the generalized
harmonic number.

The functional shape of the energy for various atomic gaps
is plotted in Fig. 1. We see that the atom experiences a repulsive
Casimir-type force, away from the cavity walls, in the direction
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x L

5 10 10

4 10 10

3 10 10

2 10 10

1 10 10

Energy

n 1

n 2

n 5

n 10

FIG. 1. (Color online) Energy (in units of 1/L) of the new ground
state of the cavity-atom system, to second order, as a function of the
position of the atom in the cavity. As seen by the form of the curve,
the plates exert a repulsive force in the detector towards the center.
The curves correspond to different sizes of the atom energy gap. In
each curve, the energy gap of the atom is resonant with one of the
modes in the cavity. The smaller the energy gap � is, the lower the
energy of the new ground state will be. We chose the parameters
L = 1 and λ = 10−4 (all energies in units of 1/L).
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of the middle of the cavity. In comparison, the calculation for
an atom close to a plate, taking into account both electric
and magnetic contributions with their respective boundary
conditions, yielded a net attractive force [1].

Let us also consider the interaction energy’s dependence on
L, the size of the cavity. Namely, in addition to the original
attractive Casimir force [23] between two conducting plates,
there will be an effect due to the presence of an atom between
the plates. We can calculate that additional force due to the
presence of the atom by differentiating the total energy with
respect to the parameter L.

However, there are two very different ways in which we can
differentiate it, which are (i) fixing x/L constant or (ii) fixing
x constant. The first case corresponds to a situation in which
the relative position of the atom is kept constant within the
cavity as the length varies infinitesimally. It is a case that will
be natural to consider later, when we will introduce a large
number of atoms into the cavity so as to model a dielectric
medium. The second case yields the force occurring when
only one of the two plates is allowed to move infinitesimally,
while the atom and the other plate remain at fixed positions
with respect to each other. The expression of the force in each
case is, respectively,

Fx/L =
∞∑

j=1

λ2 sin2 πjxd

L

(πj + L�)2
, (11)

Fx = Fx/L −
∞∑

j=1

λ2xd sin 2πjxd

L

(πj + L�)L
. (12)

When setting x/L constant, we get an expression for the force
that is always positive, meaning that it will be a repulsive
force opposing the usual attractive Casimir forces between
the plates, as well as symmetric over the cavity as we can
see in Fig. 2. For the force in the second situation, we break
the symmetry between the plates when differentiating with
respect to L. However, as shown again in Fig. 2, it is still
always repulsive, and stronger the closer the atom is to the
moving boundary.

B. Contribution of the diamagnetic term

The same analysis may be repeated this time for the
interaction Hamiltonian (7) which includes the diamagnetic

term. Now, the leading-order correction (in λ) to the ground-
state energy has two contributions. There is one contribution
in second order in perturbation theory which is similar to (8)
coming from the λmdφ term. There is also a contribution which
is first order in perturbation theory coming from the λ2φ2

term. We will call these two contributions E
(2)
UdW and E

(1)
φ2 ,

respectively. Both contributions are O(λ2), so they contribute
equally to the energy shift, which in this case takes the form

δE = E
(2)
UdW + E

(1)
φ2 + O(λ4).

As we discussed earlier, we can now no longer use the
approximation that the atom couples to the field only at one
point because then the E

(2)
φ2 of the self-interaction energy would

be divergent. This was observed already in the original work
of Casimir and Polder [1].

Hence, we need to consider that the atom has a physical
extension and model a spatial profile for it. Here, we will
choose as a spatial profile the square of the wave function
of the ground state of atoms such as hydrogen, in the same
fashion as in [18]. Hence, if a0 is some characteristic length
scale (the Bohr radius or a characteristic radius of a spherically
symmetric atomic species), then


(x) = e−x/a0

a0
. (13)

It can be easily seen (and as is also explained in detail, e.g.,
in [18]) that this spatial profile affects the Hamiltonian by
introducing a weighted interaction between the atom and the
field modes, with the weight equal to the Fourier transform of
the spatial profile (13). Here, this is

f (k,a0) = 2

(a0k)2 + 1
.

Since we are summing over a discrete number of modes, the
weight per mode is then

fj (L,a0) = 2(
a0

πj

L

)2 + 1
. (14)

In [1], the integral over the momentum is regularized by
the introduction of the factor e−γ k with the limit γ → 0
taken eventually. While this limit constitutes the pointlike
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FIG. 2. (Color online) The left graph shows the repulsive force (in units of 1/L2) on the plates in the case in which the atom conserves its
relative position to both plates when they move. The right one shows the repulsive force (in the same units) on the plate at x = L when we fix
the distance between the atom and the boundary at x = 0 as the further one is moved. This differentiation between the plates is the cause of
the lack of symmetry in the second graph. At x/L = 1, all the curves converge to the same value. Both forces are plotted as a function of the
position of the atom within the reflective cavity. We note how in the two the force decreases with the size of the cavity. For both these figures,
we choose � = 2π and λ = 10−4 (all energies in units of 1/L).
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approximation for the atom, we here take a somewhat more
realistic approach by instead regularizing the momentum
integrals through a finite Lorentzian atomic spatial profile,
which is typical for orbitals of zero angular momentum. In
our toy model, for simplicity, we will choose the same profile
for the ground and excited states. As we will discuss in the
following, this model, with the appropriate choice of α, also
describes atomic transitions of the type 1s → 2s.

Additionally, in our simplified model we are considering
that both the diamagnetic and paramagnetic terms are coupled
to the charge density (spatial smearing of the atomic orbitals).
However, if we assume that our md operator comes from a
restriction to two levels of the momentum operator, one has to
be careful with the fact that this term does not couple the field
to the charge density but to the “current density.” Indeed, in
our simple model we consider that

md = |g〉 〈e| + |e〉 〈g|,
which means that we are giving a weight 1 to the nondiagonal
matrix elements of p. Assuming that the right energy scale is
given by the choice of λ, the actual form of our operator md

should instead be

md ∝ 〈e| p |g〉 |e〉〈g| + 〈g| p |e〉 |g〉〈e|, (15)

where in the position representation, the radial momentum is
p = i( ∂

∂r
+ 1

r
). Thus, in the case of an electronic transition

between two levels of an atom which have rotationally
invariant symmetry, these matrix elements will be given by
the integral

4πi

∫ ∞

0
ψ1s(r)

(
∂ψ2s(r)

∂r
+ ψ2s(r)

r

)
dr,

where, in the case of a 1s → 2s transition, the two wave
functions are

ψ1s =
√

1

πa3
0

e
− r

a0 , ψ2s =
√

1

8πa3
0

(
1 − r

2a0

)
e
− r

2a0 .

The difference between our toy model and the electromag-
netic coupling between different atomic electronic levels is a
constant factor (dependent on the length scale of the atom a0)
that can, in principle, be reabsorbed in the definition of λ.
However, this is a rather more subtle matter since the same λ

also appears in the diamagnetic term, where, in the position
representation, no derivative operators are involved (roughly
speaking, this term only involves the charge density). Hence,
for our toy model to be representative of a realistic atomic
transition scenario, we should be able to compensate for that
factor by choosing a suitable value of α. In this fashion, it is the
scale a0 and the orbitals that represent the ground and excited
states, which determine, to some degree, what adjustments
need to be done to the value of α to be able to reproduce
qualitative features of atomic systems through the UdW model.

For example, if the ground state is a hydrogenic 1s level
and the excited state is the 2s level, then the relative weight α

has to correct for a factor

|〈e| p |g〉|= 4π

∫ ∞

0
ψ1s(r)

(
∂ψ2s(r)

∂r
+ ψ2s(r)

r

)
dr = 4

√
2

27a0
,

(16)

which, for a0 = 10−2, is ∼ 20. This can be compensated for
in our toy model by a suitable choice of α in Eq. (7) (which
would be α ∼ 1

202 α
′ where α′ will be the value of this constant

chosen in our model).
There is no accurate value for α, as our UdW model is

not meant to accurately describe the full three-dimensional
electromagnetic system. Instead, by using a simple but fully
manageable UdW model in one dimension, our aim is to
explore the range of possible qualitative contributions of the
paramagnetic and diamagnetic terms to the Casimir-Polder
force. We explore the Casimir-Polder forces for a range of
values for α in Appendix A. Indeed, as shown in Fig. 10 we
find that a small enough value of α leads to a qualitatively new
behavior in that it changes the sign of the forces. Combined
with our discussion of what influences α in the UdW model,
this illustrates that the direction of the Casimir-Polder force
can depend on the geometry of the atoms involved.

As mentioned above, in order for our UdW model to possess
a realistic relative size of the paramagnetic and diamagnetic
terms in atomic systems, a natural choice is to set α = 1.
This choice can be readily shown to effectively provide
factors that reasonably model the full electromagnetic case
in three dimensions (3D). To see this, one can compare our
expressions (18) and (19) with the analogous terms obtained in
the 3D electromagnetic case with the proper summation rules
in [1]. For simplicity, throughout the rest of the calculations
we will set α to either 0 (when we want to study only the role
of the paramagnetic term) or 1 (when the diamagnetic term
dominates as in the full electromagnetic term in 3D [1]).

Modifying the interaction to take into account the atomic
spatial profile (13) hence changes the Hamiltonian (7) to

H ′
I = λ md

∞∑
j=1

fj (L,a0)(a†
j + aj )

sin kjxd√
ωjL

+ λ2

�

⎡
⎣ ∞∑

j=1

fj (L,a0)(a†
j + aj )

sin kjxd√
ωjL

⎤
⎦

2

. (17)

We then have

E
(2)
UdW = −λ2

∞∑
j=1

[fj (L,a0)]2 sin2 kjxd

(ωj + �)(ωjL)
,

(18)

E
(1)
φ2 = λ2

∞∑
j=1

[fj (L,a0)]2 sin2 kjxd

�ωjL
.

Adding the two, we obtain for the energy to second order

δE = E
(2)
UdW + E

(1)
φ2 = λ2

∞∑
j=1

[fj (L,a0)]2 sin2 kjxd

�L(� + ωj )
. (19)

Again, this series can be analytically summed into a closed
expression. The analytical expression of this series is given in
Appendix B. It turns out that, as we can see in Fig. 3, the shape
of the energy curve is the opposite in sign to what we can see in
Fig. 1, telling us that there will be an attractive force that will
pull the atoms towards the plates, in a similar way to [1]. This
shows that the nature of the Casimir-Polder forces is highly
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FIG. 3. (Color online) Energy (in units of 1/L) of the new ground
state, to second order, in the case in which we include the self-
interaction of the field with a spatial profile. We can see that here
there is an attractive force towards the plates, as we find in the classic
treatment of the Casimir-Polder force. The energy gap was chosen to
be resonant with different field modes, and we choose the parameters
L = 1, λ = 10−4, and a0 = 10−3 in natural units (with L setting the
units of length and all energies in units of 1/L). Again, we note how
the coupling energy decreases with increasing energy gap.

affected when we incorporate the φ2 term to our model, and
without it the forces would be repulsive instead of attractive.

Now, again this energy depends on the length of the cavity,
which means that a force will appear onto the walls of the
cavity due to the presence of atoms, in the same way it did
under variations of the position of atoms in the cavity. In this
scenario, we again also consider the differentiation under the
two different dynamical constraints. When xd/L is fixed, we
have a force given by

Fx/L = −dE(2)

dL
=

∞∑
j=1

bd
j . (20)

Here, we defined

bd
j = 4λ2L3

[
L3� − π2a2

0j
2(4πj + 3L�)

]
sin2

(
πjxd

L

)
�
(
π2a2

0j
2 + L2

)3
(πj + L�)2

.

(21)

When we fix xd instead we have

Fx = Fx/L +
∞∑

j=1

λ2f 2
j (L,a0)πjxd sin

( 2πjxd

L

)
�L2(πj + L�)

. (22)

The magnitude of these forces is shown in Fig. 4, where we can
see that the contribution is here always attractive, as opposed
to the case where the interaction did not have a φ2 term.

C. An atom in a Neumann-type cavity

It is interesting now to analyze how the boundary conditions
imposed on the cavity modify the nature of the Casimir-
Polder forces, also because in the case of full QED, the
electric and magnetic fields tend to obey differing boundary
conditions. If in our scenario with scalar fields we consider
Neumann conditions instead of reflective boundaries, the
nature of the field modes is still quite similar, as the spatial
behavior of the modes changes from a sine to a cosine. One
may expect, therefore, little to no change in Casimir-type
effects. For instance, it has been proven that varying the
boundary conditions has no effect in phenomena like the Unruh
effect [27]. However, we will see that for the Casimir-Polder
effect, the boundary conditions critically change the sign of
the force, from attractive to repulsive.

To this end, we repeat the calculation from the previous
subsection, now with the solutions to the Klein-Gordon
equation having the boundary condition to duj (0,t)

dx
= duj (L,t)

dx
=

0. As mentioned above, the way this changes the interaction
Hamiltonians is simply

HI = λ md

∞∑
j=1

(a†
j + aj )

cos kjxd√
ωjL

(23)

for the standard Unruh-DeWitt model and

H ′
I = λ md

∞∑
j=1

fj (L,a0)(a†
j + aj )

cos kjxd√
ωjL

+ λ2

�

⎡
⎣ ∞∑

j=1

fj (L,a0)(a†
j + aj )

cos kjxd√
ωjL

⎤
⎦

2

(24)

for the Hamiltonian with the diamagnetic term.
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FIG. 4. (Color online) Plots of the force (in units of 1/L2) of a single atom on the walls including the φ2 term. The left plot shows the force
when the atom is fixed at xd/L as given by (20). The right one is the force on plate at x = L from the atom fixed at xd, as given by (22). Now,
this force, being always negative, is attractive between the plates in both cases. The lines in the second plot converge to a highly negative value,
different for each one of them, when approaching xd = L. For both figures we choose the parameters L = 1, a Bohr radius of a0 = 10−3, and
λ = 10−4 (with L setting the units of length and all energies in units of 1/L).
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FIG. 5. (Color online) The left plot shows the energy of the ground state (in units of 1/L) to second order in the Neumann cavity without
the self-interaction energy of the field, to second order, as given by (25). Here, we have, as opposed to the Dirichlet case, an attractive force on
the atom from the plates. The right one shows what happens when we the include the self-interaction energy, from (27), where it can be seen
how the sign of the Casimir-Polder forces is inverted. For both figures, we choose the parameters L = 1 and λ = 10−4 in natural units (with L

setting the units of length and all energies in units of 1/L). For the second graph, we choose a Bohr radius of a0 = 10−3, which explains the
difference in energy scale between the two. Again, the curves correspond to different sizes of the atom energy gap, where n is the field mode
to which the atom is coupled. We can see how in general the larger the size of the energy gap, the smaller the coupling with the field.

The expression for the energy corresponding to (23) is

E(2) =
∞∑
l=1

−1

ωl + �

∣∣∣∣∣∣〈e,kl| λ md

∞∑
j=1

(a†
j + aj )

cos kjxd√
ωjL

|g,0〉
∣∣∣∣∣∣
2

=
∞∑

j=1

−λ2 cos2 πjxd

L

(πj/L + �)(πj )
(25)

for which there is an analytical expression given by

E(2) = − λ2

4π�

[
2H
(

L�

π

)
− e

2iπxd
L �

[
e

2iπxd
L ,1,

L�

π
+ 1

]

+ e− 2iπxd
L �

[
e− 2iπxd

L ,1,
L�

π
+ 1

]

− ln

(
2−2 cos

2πxd

L

)]
. (26)

The energy for the Hamiltonian in (24), when considering the
self-interaction of the field is, in analogy with (19),

δE = λ2
∞∑

j=1

f 2
j (L,a0) cos2 kjxd

�L(� + ωj )
. (27)

An analytic expression for this energy is given in Appendix B.
The effect of this change of boundary conditions is to invert

the behavior as compared to the one for a reflective cavity. This
can be seen in both plots of Fig. 5, for the interaction Hamil-
tonians (23) and (24), i.e., with and without the diamagnetic
term. Also, once again, the attractive forces in the UdW case
turn repulsive when including the diamagnetic term.

IV. MODELING A DIELECTRIC MEDIUM IN A CAVITY

In this section, we analyze the Casimir forces between
two conducting plates when a dielectric medium is introduced
between the plates; in particular, a medium made up of a large
number of uniformly distributed atoms. This simple model of
a medium filling the cavity can be dealt with by an extension of

the results in the previous sections, given that the leading-order
part of the total energy of the system due to the atoms will then
just be the sum of all the single-atom contributions. For the N

atoms, the energy of the Dirichlet cavity is in the two different
cases that we have been treating:

δEUdW
N =

N∑
n=1

∞∑
j=1

−λ2 sin2 kjxn

Lωj (ωj + �)
, (28)

δE
φ2

N =
N∑

n=1

∞∑
j=1

λ2f 2
j (L,a0) sin2 kjxn

L�(ωj + �)
. (29)

Here, δEUdW
N is the ground-state energy shift consider-

ing N atoms coupled through the standard Unruh-DeWitt

Hamiltonian that yields (8), and δE
φ2

N is the shift obtained
after including the φ2 self-interaction term, which yields (19).
The exact magnitude of these two will of course depend on the
specific distribution of the N atoms inside the cavity. For our
purposes, we will assume a uniform distribution of particles as
a rough model of a homogeneous dielectric medium. Our aim
is to compute the force exerted onto the walls by the presence
of that medium and to determine under what circumstances
this force may overcome the originally attractive Casimir force
between the two plates.

Note that if we introduce a number of atoms in the
cavity, then both the ground-state energy of the system and
consequently the forces that the presence of the atoms exert on
the cavity walls will be in principle modified by many-body
effects. Indeed, as has been known since the original work
of Casimir and Polder, there exists a fourth-order interaction
between neutral atoms even in free space [1]. In general, these
corrections will be of subleading order with respect to the
individual effect of every atom on the walls. Nevertheless, if
the density of atoms is high, then these effects can no longer be
neglected. We will further discuss this issue in the following
and we will show that the approximation of not considering
many-atoms-interaction contributions to the energy does not
change the qualitative features of our main result.
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FIG. 6. (Color online) Increase of the repulsive force (in units of 1/L2) between the plates of the reflective cavity due to n Unruh-DeWitt
atoms when (a) the relative position of the atoms xn/L is fixed and (b) when we fix the position of them with respect to the wall at x = 0. In the
left one, the coincidence of two of the three lines is due to the force being symmetric with respect to x = L/2 (the completely homogeneous
distribution is slightly different than the half-distributions). In the right one, it can be seen how the symmetry between the two plates is broken
given the different slopes of the lines. For these we choose L = 1, λ = 10−4, and � = 2π (in natural units, with L setting the units of length
and all energies in units of 1/L).

A. Force on the cavity walls of N Unruh-DeWitt atoms

From the energy given by (28), we can now obtain the
force on the walls of the cavity induced by the presence of
N pointlike Unruh-DeWitt atoms. Without the diamagnetic
term in the Hamiltonian, the presence of those atoms within
the cavity builds up a repulsive force on the plates that, for a
sufficient number of them, will overcome the attractive Casimir
force that would exist without the atoms.

Our setup is n atoms uniformly distributed over the cavity,
at positions xn = L n

N+1 . In the same fashion as at the end of
Sec. III A, we have two different ways of differentiating the
energy, which are (i) fixing the relative position of every atom
with respect to the cavity walls xn/L and (ii) fixing the position
xn with respect to the plate at x = 0. In which way we choose to
differentiate the energy depends on what dynamical constraints
we impose on the system. When setting xn/L fixed we are
modeling a situation in which the particle medium expands
along with the motion of the cavities, filling the space evenly
at all times. On the other hand, fixing xn and differentiating
over L means that we have a setup in which the distance
between the left plate at x = 0 and the medium is fixed, and
where the force is applied exclusively on the plate at x = L.
The first scenario is a better model of a dielectric medium
that expands filling the free space generated when the cavity
expands infinitesimally. This is both because in the second
scenario we break the symmetry of the system and because, if
we let the plate move more than by an infinitesimal amount,
the assumption of a uniform distribution would break down.

The expression of the force is given by the sum over every
single atom in the expressions (11) and (12):

FN
x/L =

N∑
n

∞∑
j=1

λ2 sin2 πjxn

L

(πj + L�)2
, (30)

FN
x = FN

x/L −
N∑
n

∞∑
j=1

λ2xd sin 2πjxn

L

(πj + L�)L
. (31)

In Fig. 6, we show how this force behaves with an increasing
number of atoms. In this case, the force is repulsive and will
tend to separate the cavity walls. For the fixed xn/L, the first
case, the forces felt by the walls are relatively insensitive to
the distribution of atoms as long as it is uniform. However,
in the case where the position with respect to one of the
walls is kept constant and only the most distant wall can move
infinitesimally, the symmetry is explicitly broken and the force
depends on the position of the atoms within the cavity.

We have seen that in the absence of the diamagnetic term in
the Hamiltonian, this contribution to the Casimir force on the
walls of the cavity is repulsive. Let us compare this force with
the usual attractive Casimir force between the plates, which
for a scalar field in 1+1 dimensions is given by [37]

F = − π

24L2
. (32)

An immediate question in this setting is then for which linear
density of neutral atoms the two opposing forces become equal.
This will of course depend on the different energy scales (λ, �,
and L) and on which of the two differentiation prescriptions
is chosen (this is, if we let the two plates move freely or if
we keep one fixed and allow the other to move). We show one
particular example of this for realistic values in microwave
cavities in Fig. 7, including the two different prescriptions.

We obtain that at a critical density of atoms, the plate-plate
attractive Casimir forces would be overcome by the Casimir-
Polder plate-atoms repulsion. Note that in considering the
expression from (32) for the force we neglect the impact of the
atoms on the eigenstates of the field, which would change it to
some extent to become a function of λ and the other parameters.
This will not, however, change the qualitative behavior.

Also, as mentioned above, in calculating this we neglect
the energy of interaction between the many-body interactions
involving many atoms, which is a fourth- (and above) order
effect in λ. This is similar to what is known as the Pair-
wise summation approximation in different formalisms [38].
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FIG. 7. (Color online) Force (in Newtons) due to a uniformly
distributed row of atoms (at positions xn/L = n

N+1 ), compared with
the value of the Casimir force as given by (32). There are two cases,
which are a row of atoms with fixed relative positions xn/L, as given
by (30) and the same row of atoms with positions xn fixed with
respect to the plate at x = 0, given by (31). In both, we choose the
parameters L = 0.5 m, � = 2πc

L
resonant with the first field mode

and λ = 10−6�. Note that in this graph, unlike in all the others, SI
units (Newtons for the force and meters for the length) are used.

However, this approximation clearly breaks down when
N ∼ λ−2. For this reason, we additionally calculate the two-
body contributions and show that the contribution of this
energy to the force between the plates is also repulsive when
we do not consider the diamagnetic term. Thus, there will
always be a point at which the attractive Casimir force is
canceled out. The expressions for the fourth-order interaction
energy between any two atoms and the force when their relative
positions are fixed within the cavity (leaving x/L constant) are
given in Appendix C. We show the character of the contribution
as a function of the position of the atoms in Fig. 8, where we
can see that this force is always positive, tending to separate
the plates.
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FIG. 8. (Color online) The force on the plates caused by the
interaction of pairs of atoms (in units of 1/L2), for the cases of
leaving either x/L constant or x constant. It shows that the force is
always positive, yielding a repulsive contribution. The two atoms are
placed in symmetric positions in the cavity and the horizontal axis
represents their distance (i.e., the left of the graph corresponds to
both atoms in the middle). The parameters are λ = 10−4, L = 1, and
� = 2π in natural units, with L setting the units of length and all
energies in units of 1/L.

B. Force on the walls with the self-interaction of the field

The calculations of the previous section are repeated this
time for the energy as given in (29) taking into account the
field self-interaction term φ2. The force when fixing the atoms
at relative positions xn/L is given by the sum over the n atoms
of (20):

FN
x/L = −dδEN

dL
=

N∑
n

∞∑
j=1

bn
j , (33)

where bn
j is defined above in (20) for a single atom. When we

fix xn constant instead it is the sum of (22):

FN
x = FN

x/L +
N∑
n

∞∑
j=1

λ2f 2
j (L,a0)πjxn sin

( 2πjxn

L

)
�L2(πj + L�)

. (34)

We show the value of these two forces as a function of the
number of atoms in Fig. 9. As we showed above in Fig. 4, these
forces are always attractive, and we hence can not reproduce
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FIG. 9. (Color online) Growth of the attractive force (in units of
1/L2) on the plates due to n atoms considering the φ2 term in (a) the
situation with the relative position of the atoms xn/L fixed, which
is linear (the symmetry of the force with respect to the center of
the cavity is evident by the coincidence of two of the lines) and (b)
considering the self-interaction energy of the field. The contribution
of the asymmetric term is evident in the nonlinearity of the blue and
yellow lines, distributions in which atoms pile up in the vicinity of
the plate at x = L. For both graphs, we choose L = 1, λ = 10−4, and
� = 2π , and a Bohr radius a0 = 10−3 (natural units, with energies in
units of 1/L).
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a repulsive setup like the one found in the previous section,
exactly the opposite to the case where no self-interaction field
term is considered.

The fact that a medium of atoms is attractive when
considering the diamagnetic self-interaction of the field like in
the full QED case is consistent with the results of [5]. There,
it is found that a necessary condition of the repulsive setup is
for the medium in the middle to have an electric permittivity
with a value in-between those of the materials that make the
plates. Having here a cavity of two conducting plates, this is
of course not our case.

V. CONCLUSIONS

We showed that in the light-matter interaction models used
to compute Casimir and Casimir-Polder effects, it is necessary
to carefully account for the diamagnetic term as, unlike in
many other instances, this term can even qualitatively change
the Casimir-type forces, namely, it can turn a repulsive force
into an attractive force and vice versa. When the diamagnetic
term is present, the atoms are attracted to plates with Dirichlet
boundary conditions. But, without the term, the plate-atom
forces are repulsive and the atom has a stable equilibrium point
at the furthest point between both plates. We also considered
the case of an atom with or without diamagnetic coupling
term in a cavity with Neumann boundary conditions, in which
case the forces are of opposite sign to that of a Dirichlet
cavity.

These results suggest a natural and intuitive interpretation.
To this end, let us reconsider the interaction of an atom
with a finite classical background field. The diamagnetic
term leads to a diamagnetic repulsion of the atom from
regions of large field strength. This is, of course, because
the diamagnetic term is quadratic in the field, such that the
larger the field strength the more energy does the diamagnetic
term add. In contrast, the paramagnetic term is linear in the
field and therefore not of definite sign. The atom’s degrees of
freedom can therefore adjust to the prevailing field to make
the energy contribution of the paramagnetic term negative. A
paramagnetic term can therefore contribute to a force that
attracts the atom towards a region of large field strength.
In the cavities that we considered, we assumed the vacuum
state, i.e, we assumed the absence of any background field so
that the atom interacts only with the quantum field’s vacuum
fluctuations. Does the atom get attracted or repulsed from such
vacuum field fluctuations similarly to how it behaves with
respect to classical background fields? Our results suggest
that this is indeed the case. To see this, let us consider that
the strength of the quantum fluctuations of the field is not
homogeneous in the cavity. If the walls impose Dirichlet
boundary conditions, the field modes are sine functions that
vanish at the walls, implying that an atom experiences the
field’s vacuum fluctuations as the weaker, the closer the atom
is to a wall. Its diamagnetic interaction term should therefore
drop in energy as the wall is approached, thus contributing an
attractive force. Its paramagnetic term should instead drop in
the direction of greater field strength fluctuations, i.e., away
from the wall, thus leading to a repulsive force. This is indeed
what we found. Further, in a cavity with Neumann boundary

conditions, the field’s fluctuations are strongest at the walls,
implying that then the paramagnetic term should lead to an
attractive force and the diamagnetic term to a repulsive force,
which is again what we found.

We also found that depending on whether we include the
diamagnetic term in our model or not, the effect of the atom on
the cavity walls changes in a manner that is consistent with the
interpretation above. Indeed, when the φ2 term is not present,
the effect is to create a repulsive force between the plates,
thus opposing the usual Casimir forces between conducting
plates. If we model a dielectric medium by adding more atoms
to the cavity, then this force can eventually build up to the
point of overcoming the regular Casimir force between the
conducting plates of an empty cavity. We considered these
forces for two different dynamical constraints on the position
of the atoms either as they move along with the plates, or fixed
with respect to one of them. With these results, we then built
a simple model of a medium between conducting walls that
creates a repulsive force between them. Essentially, this is a
simple microscopic account of a setup based on a cavity filled
with a medium, for which repulsive forces appear. We then
found that when including the diamagnetic term, for which it
is necessary to consider a specific spatial shape of the atoms,
the forces induced in the plates by the presence of the atoms
can become of an attractive kind, which is consistent with the
macroscopic approach of Lifshitz.

In conclusion, we found that the paramagnetic and diamag-
netic terms in small system’s interaction Hamiltonians tend
to contribute opposing Casimir-type forces. The direction of
these Casimir forces due to quantum field fluctuations can be
predicted in analogy to the direction of the paramagnetic and
diamagnetic forces in finite classical background fields. It will
be very interesting to extend our analysis to atoms minimally
coupled to the electromagnetic field in 3+1 dimensions. In this
case, the relative strength of the paramagnetic and diamagnetic
terms should depend on both the size of the smeared atom
and on the details of the shape of the smearing function,
beyond the dipole approximation. Namely, the smaller the
atom, the larger are the quantum field fluctuations that it
couples to and therefore the larger is the diamagnetic term.
The detailed shape of the atom’s smearing function impacts
the strength of the paramagnetic term through its spatial
derivatives. Here, in the UdW model, we have shown that the
strength of the diamagnetic term, controlled by the parameter
α in (7) and dependent on the geometry of the problem,
is key in order to see the repulsive or attractive nature of
the Casimir-Polder forces. In particular, the choice α = 1 is
analogous to the 3D model studied in the original Casimir-
Polder paper [1]. We showed that the diamagnetic term can not
only contribute significantly but that it can also dominate over
the paramagnetic term, thereby determining the direction of the
Casimir force.

It should be very interesting to extend our study to
engineered systems such as metamaterials and analog models
for paramagnetic and diamagnetic Hamiltonians such as in
superconducting circuits, where various kinds of boundary
conditions and coupling strengths can be engineered [39,40].
Also, our results suggest that it should be interesting to study
the consequences of taking into account the diamagnetic term
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FIG. 10. (Color online) Force in the UdW model (in units of
1/L2) on an atom at position x/L = 0.1 as a function of α as defined
in(7). We choose the parameters L = 1 and λ = 10−4 (all energies
in units of 1/L). The case α = 0 (no diamagnetic term) corresponds
to Eq. (3). In this case, we see that force repulses the atom from
the nearest plate. This behavior changes quickly to attraction for
increasing α, and in particular in the case α = 1, the case which most
resembles the full electromagnetic Casimir-Polder case.

in those scenarios where the UdW model is traditionally
applied without this term, namely, in quantum field theory
in curved space-time (see, e.g., [35]).
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APPENDIX A: DEPENDENCE OF THE CASIMIR-POLDER
FORCE WITH THE PARAMETER α

In the main text of the paper, we only consider the two
cases when α = 0 and 1. However, it is interesting to consider
how the behavior of the force changes with the value of α.
As discussed in Sec. III B, α is influenced by the geometry of
the atomic systems considered. In this appendix, we determine
within the UdW model the Casimir-Polder force experienced
by an atom in a fixed position of a Dirichlet cavity in the ground
state (see Fig. 10). We find that the force changes sign quickly
from repulsive to attractive as α increases and the diamagnetic
term starts to dominate over the paramagnetic one, illustrating
the effect that the introduction of a paramagnetic term in the
interaction term has over the force.

APPENDIX B: ANALYTICAL EXPRESSIONS FOR THE ENERGY

In this Appendix, we show the exact analytical expressions of the energy of a single-atom situation for the cases in which we
include the self-interaction energy and we hence assume a spatial profile for the atom. These have a significantly more complex
expression than in the purely UdW case, which are (8) for the reflective (Dirichlet) cavity and (25) for the Neumann-type cavity.
For the Dirichlet case, that energy, which comes from the expression in (19), is
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π
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+ 1
)

(
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[
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+ 1
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L

+
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[
e− (2i)πx

L ,2,1 − iL
a0π

]
a0(a0� + i)e

(2i)πx

L

+
Le

(2i)πx

L �
[
e

(2i)πx

L ,2, iL
a0π

+ 1
]

a0(a0� − i)
+

Le
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[
e

(2i)πx

L ,2,1 − iL
a0π

]
a0(a0� + i)

+
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(
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+ 1
)
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+
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(
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)
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2Lψ (1)

(
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)
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−

2Lψ (1)
(
1 − iL

a0π

)
a0(a0� + i)

)
. (B1)

Similarly, for the energy of a single atom in a Neumann cavity we have the exact analytical expression, again considering the
self-interaction energy and the spatial profile for the atom, as given by (27). That is,

E
(2)
VN = λ2

4a0�
(
πa2

0�
2 + π

)2
e

(2i)πx

L

⎡
⎣e
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(
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0�
3 + 3a0� + 2i
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(
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)
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0�
2 + 3
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(
1 − iL

a0π

)
+ L(a0� + i)(a0� − i)2(−e

(2i)πx

L

)
�

[
e

(2i)πx

L ,2,1 − iL

a0π

]
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(
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(
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where � [z,s,α] is as specified above in (10), and we further define Gauss’ hypergeometric function

2F1 (a,b; c; z) =
∞∑

n=0

(a)n(b)n
(c)n

zn

n!
, (B3)

the nth derivative of the digamma function

ψ (n) (x) = dn

dxn

�′(x)

�(x)
, (B4)

and the incomplete beta function

B (x; a,b) =
∫ x

0
ta−1(1 − t)b−1dt, (B5)

where �(x) is the gamma function and the Pochhammer symbol is defined as

(p)n =
{

1 if n = 0,

p(p + 1) . . . (q + n − 1) if n > 0.
(B6)

APPENDIX C: FOURTH-ORDER INTERACTION ENERGY AND FORCE BETWEEN PAIRS OF ATOMS

The energy of interaction of two atoms with positions xa and xb, without considering the diamagnetic term, and in a Dirichlet
cavity reads as

E
(4)
a,b =

∞∑
j=1

∞∑
l=1

− λ4L2

π3j l�(j + l)(πj + L�)2(πl + L�)

{
2[2πL�(j + 2l) + π2j (j + l) + 2L2�2] sin

(
πjxa

L

)
sin

(
πjxb

L

)

× sin

(
πlxa

L

)
sin

(
πlxb

L

)
+ L� sin2

(
πjxa

L

)[
(πj + 3πl + 2L�) sin2

(
πlxa

L

)
+ 2π (j + l) sin2

(
πlxb

L

)]

+L� sin2

(
πjxb

L

)[
2π (j + l) sin2

(
πlxa

L

)
+ (πj + 3πl + 2L�) sin2

(
πlxb

L

)]}
. (C1)

The corresponding force, when the two atoms are kept at a fixed x/L, reads as

F
x/L

a,b = −dE
(4)
a,b

dL

=
∞∑

j=1

∞∑
l=1

λ4L

π3j l�(j + l)(πj + L�)3(πl + L�)2

{
L� sin2

(
πjxa

L

)[
sin2

(
πlxa

L

)
[π2L�(2j 2 + 15j l + 3l2]

+ 2πL2�2(3j + 2l) + 3π3j l(j + 3l) + 2L3�3) + 2π2(j + l) sin2

(
πlxb

L

)
(L�(2j + l) + 3πjl)

]
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+L� sin2

(
πjxb

L

)[
sin2

(
πlxb

L

)
[π2L�(2j 2 + 15j l + 3l2) + 2πL2�2(3j + 2l) + 3π3j l(j + 3l) + 2L3�3

]

+ 2π2(j + l) sin2

(
πlxa

L

)
[L�(2j + l) + 3πjl]

]
+ 2 sin

(
πjxa

L

)
sin

(
πjxb

L

)
sin

(
πlxa

L

)
sin

(
πlxb

L

)

× [π2L2�2(3j 2 + 17j l + 4l2) + 2π4j 2l(j + l) + 2πL3�3(3j + 2l) + π3jL�(j + 3l)(j + 4l) + 2L4�4]

}
. (C2)

An instance of this force as a function of the position of atoms (placed symmetrically) in a cavity is shown in Fig. 8.

[1] H. B. G. Casimir and D. Polder, Phys. Rev. 73, 360 (1948).
[2] C. I. Sukenik, M. G. Boshier, D. Cho, V. Sandoghdar, and E. A.

Hinds, Phys. Rev. Lett. 70, 560 (1993).
[3] A. M. Marvin and F. Toigo, Phys. Rev. A 25, 782 (1982).
[4] S. Y. Buhmann, D.-G. Welsch, and T. Kampf, Phys. Rev. A 72,

032112 (2005).
[5] I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii,

Sov. Phys. Usp. 4, 153 (1961).
[6] M. Bordag, U. Mohideen, and V. Mostepanenko, Phys. Rep.

353, 1 (2001).
[7] T. H. Boyer, Phys. Rev. A 9, 2078 (1974).
[8] O. Kenneth, I. Klich, A. Mann, and M. Revzen, Phys. Rev. Lett.

89, 033001 (2002).
[9] U. Leonhardt and T. G. Philbin, New J. Phys. 9, 254 (2007).

[10] M. Levin, A. P. McCauley, A. W. Rodriguez, M. T. Homer Reid,
and S. G. Johnson, Phys. Rev. Lett. 105, 090403 (2010).

[11] J. N. Munday, F. Capasso, and V. A. Parsegian, Nature (London)
457, 170 (2009).

[12] H. B. Chan, V. A. Aksyuk, R. N. Kleiman, D. J. Bishop, and
F. Capasso, Science 291, 1941 (2001).

[13] K. A. Milton, E. K. Abalo, P. Parashar, N. Pourtolami,
I. Brevik, and S. Ellingsen, J. Phys. A: Math. Theor. 45, 374006
(2012).

[14] E. Knill, R. Laflamme, and G. J. Milburn, Nature (London) 409,
46 (2001).

[15] R. H. Jonsson, E. Martı́n-Martı́nez, and A. Kempf, Phys. Rev.
A 89, 022330 (2014).

[16] B. Reznik, A. Retzker, and J. Silman, Phys. Rev. A 71, 042104
(2005).

[17] E. Martı́n-Martı́nez, E. G. Brown, W. Donnelly, and A. Kempf,
Phys. Rev. A 88, 052310 (2013).

[18] E. Martı́n-Martı́nez, M. Montero, and M. del Rey, Phys. Rev. D
87, 064038 (2013).

[19] L. Rizzuto, Phys. Rev. A 76, 062114 (2007).
[20] L. Rizzuto, R. Passante, and F. Persico, Phys. Rev. A 70, 012107

(2004).

[21] R. Passante, F. Persico, and L. Rizzuto, Phys. Lett. A 316, 29
(2003).

[22] S. Spagnolo, R. Passante, and L. Rizzuto, Phys. Rev. A 73,
062117 (2006).

[23] H. B. G. Casimir, Indag. Math. 10, 261 (1948).
[24] C. Raabe and D.-G. Welsch, J. Opt. B: Quantum Semiclass. Opt.

7, S610 (2005).
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