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Layered structures consisting of finite numbers of charge sheets separating dielectric layers are considered as
physically realizable media for the control of dipole deexcitation due to spontaneous emission. The dispersion
relation and the corresponding field distributions of a general structure are determined using transfer-matrix
techniques. An excited dipole emitter localized in the vicinity of the truncation layer is coupled to the fields
supported by such a structure, and its deexcitation rate is evaluated for a number of scenarios in which the
structure is characterized by different numbers of charge sheets for varying excitation frequency and varying
emitter position. The analysis highlights significant enhancements of the deexcitation rate which can be readily
controlled through the adjustable parameters of the structure.
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I. INTRODUCTION

It is well known that the rate of deexcitation of a dipole
emitter in the form of an atom, a molecule, or a quantum dot can
be controlled by modifying the electromagnetic environment
in which the emitter, regarded as a quantum bit (qubit),
is localized. One of the striking features of a controlled
environment occurs when the emitter is localized within a
periodic structure. The periodicity leads to the appearance of
band gaps in the frequency spectrum, and such band gaps arise
when the wavelength is comparable to the superlattice period.
If the excitation frequency lies within one of the frequency
band gaps of the structure, the emitter cannot release its
excitation energy, as it would in the unbounded bulk, and so its
lifetime is greatly enhanced [1–4]. For excitation frequencies
lying near a band edge it has been pointed out that the enhanced
density of states leads to enhanced deexcitation [5,6]. The
possibility of tailoring the electromagnetic environment for
specific outcomes using layered systems is significant, with
implications for useful applications in which the emitters serve
as elements in quantum circuits and quantum memory. Other
recognized applications involve use in low-threshold lasers
and other low-power consumption photonic devices [7].

The periodic structure consists of a set of dielectric sheets
periodically separating a set of layers of a different dielectric.
There have been considerable advances in the micro- and
nanofabrication of layered structures such as mentioned above
using deposition and lithographic techniques and exploiting
the clear flexibility afforded by the variety of material
combinations forming the dielectric and charge sheets. The
charge sheet can be formed as a two-dimensional electron gas
trapped in an inversion layer or in a quantum well achieved
by modulation doping [8,9]. It is known that the characteristic
frequencies of the charge-sheet-structure systems fall within
the terahertz (THz) or infrared wavelength range, and it is
beneficial for the development of compact devices operating
within this frequency range [10].
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Meanwhile, the layered structure of the dielectric and
charged sheets in superlattice forms has been shown to exhibit
many interesting physical properties. In the past few decades,
the properties of collective excitations in infinite and semi-
infinite superlattices have been studied intensively [11–15].
The characteristics of bulk plasmons and surface plasmon
modes in various structures have also been explored, including
infinite and semi-infinite charge-sheet superlattices [15]. The
periodicity of an infinite superlattice permits the application of
Bloch’s theorem, which leads to considerable simplifications
of the analysis. In the truncated charge-sheet system at hand,
the translational symmetry is not preserved, Bloch’s theorem
may not be appropriate, and we use the transfer-matrix exact
calculations here. As far as we are aware, previous treatments
did not proceed to determine the influence of superlattice
modes on emitters localized within the structure and in the
vicinity of the surface. More recent work on plasmonic
superlattices considered the interesting issues of the influence
of defects in the superlattice periodicity on the frequency
spectra [16].

In this paper the charge-sheet dielectric structures are
considered with special emphasis on the case of a finite number
of layers, and the analysis is carried out using transfer-matrix
methods. The objective is not only to determine the dispersion
relation and the quantized fields of the structure but also to
evaluate the coupling of the fields to excited dipole emitters.
The rate of the deexcitation of an emitter localized within the
structure and near the truncation surface is evaluated as well
as the variations of the deexcitation rate with the adjustable
parameters of the system, including the emitter position, the
excitation frequency, and the number of charge sheets in the
layered structure.

II. THE ELECTROMAGNETIC ENVIRONMENT

The charge-sheet dielectric system under consideration
is shown in Fig. 1. The region of space z < 0, hitherto
referred to as the surface or capping layer, is occupied by
a homogeneous dielectric of dielectric constant εs . The plane
z = 0 is occupied by a charge sheet (labeled l = 1) deposited
on the first dielectric layer (labeled n = 0). The space 0 <
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FIG. 1. (Color online) Schematic representation of the finite charge-sheet dielectric structure. See the text for the description of the layer
labels and the parameters.

z < Nd is occupied by N dielectric layers of equal thickness
d and dielectric constant εb, and these dielectric layers are
separated by the charge sheets occupying the planes z = nd

(n = 0,1,2, . . . ,N ). Finally, the region of space z > Nd is
occupied by a substrate layer with a dielectric constant εb.

The electric-field vector E of a transverse mode of fre-
quency ω satisfies the wave equation

∇2E +
(

εiω
2

c2

)
E = 0, (1)

where εi = εs,εb are the dielectric constants of the capping layer and substrate layer, respectively, and c is the velocity of light
in vacuum. The solution of the interface-type modes in any layer can be written as

E(r,t) =

⎧⎪⎪⎨
⎪⎪⎩

Bs

[(
r̂‖ − ik‖

βs
ẑ
)
eβsz

]
ei(k‖·r−ωt), z < 0;{

An

[(
r̂‖ + ik‖

β
ẑ
)
eβ(z−nd)

] + Bn

[(
r̂‖ − ik‖

β
ẑ
)
e−β(z−nd)

]}
ei(k‖·r−ωt), 0 < z < nd;

AN

[(
r̂‖ + ik‖

β
ẑ
)
e−β(z−Nd)

]
ei(k‖·r−ωt), z > Nd;

(2)

where An,N and Bs,n are the field amplitudes, βs = (k2
‖ −

εsω
2

c2 )1/2 and β = (k2
‖ − εbω

2

c2 )1/2 are the wave numbers in the
surface layer and the n layer, and k‖ is the wave number parallel
to the interfaces. It should be noted that the amplitudes BN and
As are zeros because it is assumed no waves can enter from
the right side of the N th layer or from the left side in the
capping layer. Using Maxwell’s equation H = ε0c

2

iω
∇ × E, the

corresponding magnetic fields can be readily determined.
The presence of the two-dimensional charge sheets at inter-

faces presents jump conditions on the tangential component
of the magnetic field [17] in addition to the continuity of
the tangential component of the electric field. Applying the
continuity of the tangential E at the interface z = 0, between
the capping layer and the first dielectric layer n = 0, we have

E(s)
x = E(0)

x . (3)

From Eq. (3), the field-amplitude relation can be written as

Bs = A0 + B0. (4)

The second boundary condition on the continuity of the
tangential component of H can be written in terms of the
electric field using one of Maxwell’s equations at z = 0 as

ẑ × (∇ × E(0) − ∇ × E(s)) = σE(0)
x , (5)

where σ is the two-dimensional conductivity defined by

σ = inse
2

m∗(ω + iγ )
, (6)

with ns being the areal electron density, e and m∗ being the
electron charge and effective mass, and the damping rate γ �
ω. From Eq. (5) we obtain

ε0εbω

iβ
[A0 − B0] + ε0εsω

iβs

Bs = −σ [A0 + B0]. (7)

From Eqs. (4) and (7), the amplitudes A0 and B0 can be
expressed via a transfer matrix as[

A0

B0

]
= Ts

[
0

Bs

]
, (8)

where

Ts = 1

2

⎡
⎣0

(
1 + �2βd

ω2 − rs
β

βs

)
0

(
1 − �2βd

ω2 + rs
β

βs

)
⎤
⎦, (9)

with rs = εs

εb
being the permittivity ratio and � being a

scaling frequency defined by

�2 = nse
2

m∗ε0εbd
. (10)

Similarly, at successive layer surfaces z = d,2d, . . . ,Nd,
repeated application of the boundary condition tangential E
continuous leads to the determination of the amplitudes An and
Bn, which can be expressed via a transfer matrix as follows:[

A1

B1

]
= T

[
A0

B0

]
, (11)
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where

T = 1

2

[
m11 m12

m21 m22

]
, (12)

with

m11 = (2 + η)e−βd, (13a)

m12 = ηeβd, (13b)

m21 = −ηe−βd, (13c)

m22 = (2 − η)eβd, (13d)

where η = �2βd

ω2 . Thus the field amplitudes in the whole
structure comprising N layers can be expressed in matrix
form using Eqs. (8) and (11). We have for an N -layer
system [

AN

0

]
= TnTs

[
0

Bs

]
, (14)

where Tn = XDnX−1, with X being an eigenvector matrix of T
and D being a diagonalized eigenvalue matrix of T. The above
analysis provides the basis for the evaluation of the dispersion
relation in the following.

III. DISPERSION RELATION

The dispersion relation for this structure can be evaluated
numerically by solving the matrix component of (TnTs)22 = 0.
In the case rs = 1, it is known that Ts = Tn; then the matrix
element (TnTs)22 becomes (Tn+1)22, and after some algebra,
it can be written in the form

(Tn+1)22 = 1

2C
[(M1 + C)(M2 − C)n+1

− (M1 − C)(M2 + C)n+1], (15)

where M1 = 1
2 (m11 − m22), M2 = 1

2 (m11 + m22), and C2 =
M2

2 − m11m22 + m12m21.
In a layer system for which the dielectric constants satisfy

rs �= 1, the matrix elements of (TnTs)22 emerge in the
form

(TnTs)22 = 1

4m12C

{[(
M2

1 − C2
)
λn

1 + (M1 − C)

×(−M1 − C)λn
2

]
D1 + [

m12(M1 + C)λn
1

−m12(M1 − C)λn
2

]
D2

}
, (16)

where λ1,2 = M2 ∓ C and D1,2 = 1 ± η ∓ rs
β

βs
.

Figure 2 shows the dispersion curves arising from Eq. (15)
for the case of rs = 1 and for different layer numbers N . The
parameters used for calculations are as follows: εb = 12.90,
ns = 6 × 1015 m−2, d = 100 nm, e = 1.60 × 10−19 C,
m∗ = 9.11 × 10−31 kg. Figures 2(a)–2(d) present the disper-
sion relations of the finite charge-sheet dielectric structures
with layer numbers given by N = 0, N = 1, N = 5, and
N = 50, respectively. For N = 0 as in Fig. 2(a), only one mode
of the interface type exists, which was described earlier by
Albuquerque and Cottam [14]. The interface-type dispersion
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FIG. 2. (Color online) Dispersion relation for the case of rs = 1
with the number of finite layers (a) N = 0, (b) N = 1, (c) N = 5,
and (d) N = 50.

relation in the form of ω = [�ck||/(εs + εb)]1/2 [14] for
N = 0 is in agreement with the calculation presented in this
paper.

The case N = 1 is shown in Fig. 2(b); there are two
modes, both of which can be described as interface type,
and this conforms with what is expected since the structure
has two charge sheets. It is also found that for N = 5 (six
charge sheets) there are six modes of the interface type,
as in Fig. 2(c). When the number of layers is sufficiently
large [N = 50; see Fig. 2(d)], the dispersion relation becomes
similar to the so-called bulk mode in the case of an infinite
charge-sheet superlattice structure [15]. For comparison, we
display the case of the bulk-mode-dispersion relation of the
infinite charge-sheet system using the well-known dispersion
relation ω

�
= [ k‖d sinh(k‖d)

2[cosh(k‖d)−cos(Qd)] ]
1/2 in [14], as is shown in

Fig. 3 (shaded region).
Figure 3 presents the interface-type dispersion relation

for the case of rs �= 1 and N = 5 using Eq. (16) for
different rs = 0.1, 0.5, 0.9, 1.1, 2, and 10. It can be seen
that for each value of rs , there is only one mode, as
is well known for surface modes [15]. It is also found
that the surface-mode branch emerges out of the bulk
modes higher in frequency for the case rs < 1 and lower
in frequency for the case rs > 1. The surface modes
have previously been identified as satisfying the equation
[rs sinh(k‖d) + cosh(k‖d)]k‖d(�

ω
)2+(r2

s − 1) sinh(k‖d) = 0
[15]. The results in this paper are seen to be in agreement with
this analytical result.
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FIG. 3. (Color online) Bulk dispersion relation calculated using
a well-known expression in [15] (shaded region) and interface-type
mode dispersion curves for several variations of rs calculated using
Eq. (16).

IV. FIELD PROFILES

The field profiles of the interface-type modes are plotted
using Eq. (2). Once the wave number k‖ or the frequency ω is
obtained using (15) or (16), the remaining task is to calculate
the field amplitudes in any layer n. Consider the transfer matrix
again in the form

[
An

Bn

]
= TnTs

[
0

Bs

]
. (17)

The field amplitudes within layer n, namely, An and Bn,
can be calculated from the matrix elements of TnTs . It is
found that (TnTs)11 = (TnTs)21 = 0, and (TnTs)22 is already
given by Eq. (16). The matrix elements (TnTs)12 can be
written as

(TnTs)12 = 1

4m12C

{[ − m12λ
n
1(M1 − C) − m12λ

n
2

×(−M1 − C)
]
D1 + [

m2
12λ

n
2 − m2

12λ
n
1

]
D2

}
,

(18)

where we have set λ = λ1 = 1
λ2

= eα . After some algebra the
field amplitudes emerge in the form

An = 1

2 sinh α

{[
sinh(n − 1)α −

(
1 + η

2

)
e−βd sinh nα

]

×D1 −
[
η

2
eβd sinh nα

]
× D2

}
Bs, (19a)

Bn = 1

2 sinh α

{[
η

2
e−βd sinh nα

]
× D1

+
[

sinh(n − 1)α −
(

1 − η

2

)
eβd sinh nα

]
× D2

}
Bs,

(19b)
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FIG. 4. (Color online) Distribution of the electric field and its
intensity for a single charge sheet between two slabs, the capping
layer and the substrate; (a) Ex (b) Ez, and (c) the intensity profile
|Ex,z|2 for N = 0, k‖d = 3.5 and rs = 1.

AN = 1

2 sinh α

{[
sinh(N − 1)α −

(
1 + η

2

)
e−βd sinh Nα

]

×D1 −
[
η

2
eβd sinh Nα

]
× D2

}
Bs. (19c)

Figures 4–7 display the normalized field and intensity
profiles (in arbitrary units). Figure 4 shows the field profiles for
the case of N = 0, k‖d = 3.5, and rs = 1. Figures 4(a)–4(c)
display the tangential component Ex , the normal component
Ez, and intensities |Ex,z|2 for the mode featured in Fig. 2(a). It
is seen that the field distributions are localized at the interface.
The continuity of Ex and the discontinuity of Ez at the interface
are evident. This feature has also been addressed in [16]. It is
also seen from the intensity profiles in Figure 4(c) that both the
tangential and normal components have similar distributions.

Figure 5 shows the field profiles for the case N = 1,
k‖d = 3.5, and rs = 1. The corresponding dispersion relation
in this case is depicted in Fig. 2(b), involving two modes.
Figures 5(a)–5(c) correspond to the tangential component
Ex , the normal component Ez, and their intensities |Ex,z|2
for the first mode, while Figs. 5(d)–5(f) correspond to fields
and intensities for the second mode. It can be seen that the
first and second modes both possess one symmetric and one
antisymmetric field distribution, as shown in Figs. 5(a) and 5(d)
and 5(b) and 5(e). The intensity distributions have similar
shapes but differ in the magnitudes of the intensity.
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FIG. 5. (Color online) Field profile of the electric field and its intensity for the two-charge-sheet structure in which there are two modes
(for the case N = 1, k‖d = 3.5, and rs = 1): shown are (a) Ex , (b) Ez, and (c) |Ex,z|2 for mode 1 and (d) Ex , (e) Ez, and (f) |Ex,z|2 for mode 2.

Figure 6 shows the intensity profiles for the case of
N = 5, k‖d = 3.5, with several rs values. Figures 6(a)–6(c)
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FIG. 6. (Color online) The intensity with the variation of rs for
N = 5 and k‖d = 3.5 at (a) rs = 0.5, (b), rs = 1, and (c) rs = 2.

correspond to the cases rs = 0.5, rs = 1, rs = 2, respectively.
The dispersion relation corresponding to Fig. 6(a) is shown in
Fig. 3. In Fig. 6(a), it is seen that the intensities are localized
at the first interface. The dispersion relation corresponding to
Fig. 6(b) is shown in Fig. 2(c). It is clear that the intensities are
localized at each interface but are concentrated in the middle
layers. The dispersion relation corresponding to Fig. 6(c) is
displayed in Fig. 3. Two localized intensities can be seen at
the beginning and end layers, with a higher intensity at the end
layer. From Fig. 6, it is clear that the intensity profile strongly
depends on rs . In the case rs = 1, the intensity profile leads to
the known profile of a bulk plasmon mode, and for rs �= 1, the
intensity profile has surface-mode features.

Figure 7 explores the effect of the variation in the normal-
ized wave number k‖d on the intensity profile for the case of
N = 5. Figures 7(a)–7(c) show the intensity profiles in the case
of rs = 0.9 for k‖d = 2, 4.6, and 6, respectively. In Fig. 7(a), it
is seen that the intensity profile has the bulk-mode character, as
the wave number of k‖d = 2 is below the cutoff wave number
for the surface mode. The cutoff wave number corresponds
to k‖d = ln |(1 + rs)/(1 − rs)| [15], which equals 2.944. It is
also shown that the profile has an asymmetric shape compared
to the case of rs = 1, which is symmetric, as in Fig. 6(b).
Figure 7(b) shows the intensity profile of the surface modes.
Above the cutoff wave number, the intensity is localized at the
first interface and has low intensity at the second interface, as
shown in Fig. 7(b). However, for a higher normalized wave
number, k‖d = 6, the intensity is peaked at the end interface
and very low at the first interface, as shown in Fig. 7(c).
The characteristics of the field and intensity profiles due to
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FIG. 7. (Color online) The intensity distribution for N = 5 and
rs = 0.9, with a normalized wave number (a) k‖d = 2, (b) k‖d = 4.6,
and (c) k‖d = 6.

the structure parameters and wave numbers are important
in studying the deexcitation rate since the dipole emitter
embedded in the layer is coupled to the electric-field operator,
as will be shown. In the next sections, the field quantization
and the evaluation of the deexcitation rate are considered.

V. FIELD QUANTIZATION

To quantize the electromagnetic field of the structure, we
follow the procedure given in [5,17]. The electromagnetic field
Hamiltonian is given by

Hfield = 1

2
ε0

∫
[εi |Ê|2 + c2|B̂|2]d3r, (20)

where εi = εs or εb. The electric-field operator Ê is written in
quantized form as

Ê(r,t) =
∫

d2k‖C0(k‖)[E(r‖,z,k‖)a(k‖) + H.c.], (21)

where a(k‖) and a†(k‖) are boson operators satisfying the
commutation relation

[a(k‖),a†(k′‖)] = δ(k‖ − k′‖). (22)

The electric-field vector E(r‖,z,k‖) is defined in the different
regions as follows. In the region z < 0,

E(s) = C0(k‖)Bs

(
r̂‖ − i

k‖
βs

ẑ

)
eβszei(k‖·r−ωt). (23)

Within layer n, the expression for the electric-field vector is

E(n) = C0(k‖)(r̂‖F (n) + ẑG(n))ei(k‖·r−ωt), (24)

where

F (n) = Ane
β(z−nd) + Bne

−β(z−nd), (25)

G(n) = ik‖
β

(Ane
β(z−nd) − Bne

−β(z−nd)). (26)

Finally, in the region z > Nd, the electric-field vector is

E(N) = C0(k‖)AN (k‖)

(
r̂‖ + i

k‖
β

ẑ

)
eβzei(k‖·r−ωt). (27)

C0(k‖) is an overall factor such that the field Hamiltonian
reduces to the canonical form

Hfield=1

2

∫
d2k‖�ω(k‖)[a(k‖)a†(k‖) + a†(k‖)a(k‖)]. (28)

It is straightforward to show that we have

C0(k‖) =
(

�ω

(2π )3ε0d(IS + IL + IB)

)1/2

, (29)

where

IS = εs

2βsd

(
1 + k2

‖
β2

s

)
, (30)

IL =
N−1∑
n=0

εb

2βd|Bs |2
[
|An|2

(
1 + k2

‖
β2

)
(1 − e−2βd )

+ |Bn|2
(

1 + k2
‖

β2

)
(e2βd − 1)

+
(

1 − k2
‖

β2

)
(AnB

∗
n + BnA

∗
n)

]
, (31)

IB = εb

2βd

∣∣∣∣AN

Bs

∣∣∣∣
2(

1 + k2
‖

β2

)
. (32)

VI. DEEXCITATION RATE

A dipole emitter of dipole moment vector μ embedded
within a finite charge-sheet dielectric structure is shown in
Fig. 1. The interaction Hamiltonian of the dipole coupled to
the electromagnetic fields of the layer structure is

H = �ω0ππ † − (π + π †)μeg · Ê(0,z) + Hfield, (33)

where the dipole emitter is represented as a two-level system of
states |e〉 and |g〉 with an excitation energy �ω0 = (Ee − Eg),
and we define μeg = 〈e|μ|g〉 as the (real) dipole moment
vector matrix elements between states |e〉 and |g〉, π and π †

are the atomic ladder operators acting on |e〉 and |g〉, Ê is the
electric-field operator, and Hfield is the unperturbed Hamilto-
nian of the electromagnetic field satisfying the electromagnetic
boundary conditions at the interfaces of the structure.

For an excited dipole emitter localized at r = (0,Z0), the
deexcitation rate is given by Fermi’s golden rule as


(0,Z0) = 2π

�

∫
d2k‖|〈e{0}|μ̂ · Ê|g{k‖}〉|2

×δ(�[ω0 − ω(k‖)]), (34)
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FIG. 8. (Color online) The deexcitation rates 
‖ and 
z in units
of � as functions of the dipole position for normalized wave
numbers for N = 5 and rs = 0.9 and (a) k‖d = 2, (b) k‖d = 6, and
� = 3.847 × 1012 s−1.

where the dipole moment operator μ̂ is defined here as μ̂ =
μeg(π + π †). The eigenstate |{0}〉 defines the corresponding
vacuum state, and |{k‖}〉 corresponds to the state of wave-
vector components k‖. The calculation of 
 is carried out
by converting the k‖ integral to an integral over ω in order to
satisfy ω(k‖) = ω0. This procedure yields the deexcitation rate
as follows:


(0,Z0) = 
‖ + 
z

=
(

2πμeg

�

)2
k‖
vg

|C0|2
( 〈μ‖〉2

μ2
eg

|F |2 + 〈μz〉2

μ2
eg

|G|2
)

,

(35)

where 〈μ‖〉 = 〈μeg · r̂‖〉 and 〈μz〉 = 〈μeg · ẑ〉 are dipole vector
components parallel and normal to the interfaces, respectively,
and μeg is defined by μ2

eg = μ2
‖ + μ2

z . 
‖ and 
z are the rates
parallel and normal to the interfaces. vg is the group velocity
at k‖ given by

vg =
(

∂ω

∂k‖

)
k‖

. (36)

Figure 8 displays the deexcitation rate for an emitter located
at various positions in the first layer from 0 to 100 nm.
Figures 8(a) and 8(b) correspond to the same parameters of the
finite charge-sheet system as in Fig. 7, with normalized wave
numbers of k‖d = 2 and 6, which correspond to ω0/� = 1.13
and 1.78, respectively. In Fig. 8(a), it can be seen that 
||,z
increases when the emitter position is close to the interfaces
and decreases towards the middle of the layer. This can

0 1 2 3 4
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0.4
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0.8

ω
0
/Ω

Γ z/Ω

r
s
 = 1

r
s
 = 0.9

r
s
 = 0.5

r
s
 = 2

FIG. 9. (Color online) The deexcitation 
z as a function of dipole
transition frequency for a dipole emitter located at Z0 = 0.1d for
several permittivity ratios rs = 1, 0.9, 0.5.

be compared to Fig. 7(a), where the intensity in the first
layer correlates with the variation of the deexcitation rate.
In Fig. 8(b), a higher value of 
||,z for k‖d = 6 occurs at the
dipole position near the first interface, which also corresponds
to the intensity profile shown in Fig. 7(c).

Figure 9 displays 
z as a function of the normalized dipole
transition frequency for an emitter located at Z0 = 0.1d for
the cases of rs = 1, 0.9, 0.5, and 2. For the case rs = 1, when
the bulk modes exist, 
z has a lower value and can be found
in the full range of the normalized frequency. For the cases
rs = 0.9, 0.5, and 2, 
z is enhanced via the surface modes. A
similar behavior is displayed by 
‖, but the details will not
be presented here. It is clear that the surface of the structure
greatly affects the deexcitation rate, which suggests that the
rate can be tuned by controlling the ratio rs .

The variations of 
z with the number of finite layers N =
5, 10, and 15 are presented in Fig. 10. It is seen that the
deexcitation rate can also be controlled by a suitable choice
of the number of layers N . As N increases, one can see the
width of the 
z spectrum as well as its peak are progressively
diminished, and we have checked that a similar behavior is
shown by 
‖. Thus the finite charge-sheet structure with the
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FIG. 10. (Color online) The deexcitation 
z spectrum for a dipole
emitter located at Z0 = 0.1d , rs = 0.9 for several N layers: N = 5,
10, and 15.
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surface layer rs �= 1 can effectively modify the deexcitation
rate.

VII. CONCLUSIONS

The primary aim of this paper is twofold. First, we have
aimed to highlight the flexibility of a system of finite ordered
truncated layered structures formed of charge sheets separated
by dielectric layers and sandwiched between thicker dielectric
slabs in allowing the tailoring of the system for specific
desirable outcomes to be achieved. Second, we were able
to investigate in detail the deexcitation process and its rate
for excited dipole emitters localized within the structure.
The tailoring is controlled by a number of readily adjustable
parameters of the system, most notably the dielectric ratio,
the number of layers, the areal electron density, and the
layer separation. The analytical technique for the evaluation
of the layer fields in terms of transfer-matrix methods is
seen to be both powerful and rather general. Significantly,

it is applicable to any number of layers. Much information
can be readily extracted from the formalism, and we have
seen how the frequency spectrum varies with parameters and
how the field components are distributed within the structure.
We have also verified that the formalism reproduces known
results for single and double layers and for a finite number
of layers. The study of the deexcitation process requiring
properly quantized modes which satisfy the electromagnetic
boundary conditions at every interface has not, as far as we
know, been articulated previously for finite layer structures.
Dipole emitters in the form of quantum dots, atoms, or
molecules localized within the structure and regarded as
two-level systems can be used as quantum bits, displaying
entanglement between emitters that would be a function of the
system parameters as well as the location of the emitters within
the structure. Pair correlations and dipole-dipole interactions
within such a structure are further applications we are
currently investigating, and the results will be reported in due
course.
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