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Controlling the likelihood of rogue waves in an optically injected semiconductor laser
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Extreme and rare events are nowadays the object of intensive research. Rogue waves are extreme waves that
appear suddenly in many natural systems, even in apparently calm situations. Here we study numerically the rogue
wave dynamics in an optically injected semiconductor laser with external periodic forcing that is implemented
via direct modulation of the laser pump current. In the region of optical injection parameters where the laser
intensity is chaotic and occasional ultrahigh pulses occur, our aim is to control the system by applying a weak
modulation. We find that for an adequate range of frequency and amplitude parameters, the modulation can
completely suppress the extreme pulses. We also show that the interplay between modulation and an external
source of noise can significantly modify their probability of occurrence. These results can motivate a range of
experimental and theoretical investigations in other natural systems.
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I. INTRODUCTION

Extreme, rare, and devastating events such as tsunamis,
market crashes, earthquakes, population extinctions, etc. are
nowadays receiving a great deal of attention. A major challenge
is to predict them and, if possible, to control them, making safer
environments and systems. In oceanography, ultrahigh waves,
referred to as rogue waves (RWs), have been extensively
studied [1-4], and they have also been observed in many
other systems [5-8]. Rogue waves, as opposed to tsunamis
or solitons, can disappear in a short spatial length and not
necessarily propagate for large distances.

Laboratory controlled experiments have allowed one to
understand hydrodynamic RWs in terms of solutions of the
nonlinear Schrodinger equation (NLSE) [9,10]. A variety of
these solutions have been used to explain RWs in different
systems. However, the need of a better and more accurate
understanding of extreme phenomena has stimulated the
research on families of solutions in systems of coupled wave
equations such as the vector NLSE [11], coupled Gross-
Pitaevskii equations [12], or Hirota systems [13]. In this
context, several waves resonant interaction [14,15] has been
proposed as a mechanism of generation of RWs highlighting
the existence of preferred length or time scales in the
system [16].

In an optical system RWs were first reported by Solli et al.
[17] using a microstructured optical fiber, in which extremely
broadband radiation was generated from a narrow-band input.
Since then, RWs have been observed in many optical systems
(see [18] for arecentreview). In vertical cavity surface emitting
lasers, Ti:sapphire lasers, Raman lasers, and mode-locked
lasers, rogue waves in the form of extreme intensity pulses,
with a probability higher than that predicted by Gaussian
statistics, have been observed experimentally and understood
in terms of laser model simulations [19-26].

Since in nonlinear systems the chaotic behavior can often
be suppressed by a weak periodic modulation of a control
parameter [27-31], a main objective of our work is to
investigate if rogue waves can also be controlled via a small
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periodic perturbation. Another relevant open question is the
influence of noise. Since the interplay between noise and
modulation can lead, in nonlinear systems, to stochastic
resonance phenomena [32], another goal of our work is to
analyze the interplay of noise and modulation in the statistics
of the RW events.

With these purposes we study numerically the generation of
RWs in an optically injected semiconductor laser with a peri-
odic external forcing via a direct modulation of the laser pump
current. We use the rate-equation model previously studied
in [20,26]. In this system, without modulation deterministic
RWs were found in simulations of noiseless rate equations
[20]. We show here that for an adequate range of frequency
and amplitude parameters, current modulation can completely
suppress the RWs. We also show that the interplay between
noise and modulation can significantly modify the likelihood
of RWs, since depending on the modulation frequency and
noise strength RWs can be either enhanced or diminished. By
shedding light into the role of periodic forcing in a laser system
that generates RWs, our findings can motivate experimental
and theoretical investigations in other natural systems.

II. MODEL

The dynamics induced in a cw optically injected single-
mode laser can be reproduced by a set of two rate equations
for the slow envelope of the complex electric field E and the
carrier density N as [33,34]

dE . .
r =k(l+ia)(N—-1)E +iAwE
+/Puj + VDEQ), (1)
dN
— =yl =N - |E|*], )

where « is the field decay rate, « is the linewidth enhancement
factor, yy is the carrier decay rate, and w(t) is the time-
dependent injection current parameter (normalized such that
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the threshold current for the solitary laser for constant u is
umn = 1). Av = Aw/2m is the optical frequency detuning and
Py is the optical injection strength. £ (¢) is a complex Gaussian
white noise of strength D representing optical noise, due to
spontaneous emission fluctuations, or due to incoherent exter-
nal optical injection. In the next sections we will consider a
sinusoidal current modulation, w(f) = o + Mmod SIN(Wmodt),
where g is the dc bias current, (moq iS the modulation
amplitude, and fi 04 = Wmod/27 is the modulation frequency.

The model equations were numerically solved using the
same parameters as in [20,26]: « = 300 ns~!, o =3, YN =
1 ns™!, Py = 60 ns™2, and the other parameters were varied.
Time traces of 10 usec of the laser intensity, I = |E?|,
generated from random initial conditions have been simulated.

As RWs are ultrahigh pulses when compared with the
average height of all the pulses, they are characteristic of
the tail of “L-shaped” probability density functions (PDFs).
Thus a suitable method to detect them is based on the analysis
of the first- and second-order moments of the PDF of the
intensity pulse heights. Following [20,26] we consider that a
pulse is a RW if its height is higher than a threshold, 7, thatis a
function of the mean value of the intensity, (), and its standard
deviation, ;. Here we use T = (/) 4 607;. Similar results were
obtained with a higher threshold (8o; instead of 60;) even
though the number of detected RWs was considerably smaller.
In order to properly choose the threshold we have taken into
account that too high thresholds have the drawback of detecting
a small number of extreme pulses, requiring long simulation
times, while too small thresholds could detect pulses that do
not belong to the tail of the distribution of pulse heights. We
found that the use of 60; was an adequate compromise between
these two facts.

III. RESULTS

A. Influence of optical noise in the occurrence of rogue waves

We begin by discussing the role of optical noise in the
occurrence of RWs in the injected laser, without current
modulation, i.e., w = ug. Zamora-Munt et al. [26] have
shown that optical noise (representing spontaneous emission,
or incoherent optical injection) can be employed either to
enhance or to suppress the probability of RW occurrence. Our
analysis confirmed this observation but also revealed certain
parameter regions where the influence of noise depends on the
noise strength: while weak noise reduces the number of RWs,
stronger noise significantly increases it.

This effect is shown in Fig. 1, which displays in color code
the number of RWs in the parameter space (119, Av) for four
different values of the noise strength. Note that the color code
is in logarithmic scale, such that white regions correspond
to zero detected RWs and dark regions (dark red online)
correspond to several hundreds of detected RWs. Figure 1(a)
shows the deterministic case (D = 0). The RWs detected
under this condition will be referred to as deterministic optical
RWs. With weak noise strength (D = 10~* ns~! representing
internal spontaneous emission) the number of detected RWs
decreases, as shown in panel 1(b), in good agreement with
the observations in [26]. Figures 1(c) and 1(d) present the
results obtained with higher noise strength (D = 1073 ns~!
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FIG. 1. (Color online) Number of detected RWs in the parameter
space (pump current io; detuning Av), when no current modulation
is applied. The color code is plotted in logarithmic scale in order to
increase the contrast of the regions with a small number of RWs. In the
white regions no RWs are detected. The noise strength is D = 0 (a),
10~ ns™! (b), 1073 ns~! (c), and 1072 ns~! (d). The dots labeled
as A and B indicate the parameters used in the next section: for
point A, uo = 2.4 and Av = 0.22 GHz; for point B, o = 2.4 and
Av = —0.24 GHz.
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and D = 1072 ns™!, representing external incoherent optical
injection). It can be noticed that the dark regions (color online)
are wider, revealing regions of purely noise-induced RWs,
and also, in regions where deterministic RWs occur, it can
be noticed that the number of RWs generally increases with
respect to the deterministic situation.
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FIG. 2. (Color online) Power spectral density (a), (c), and (e) and
intensity time trace (b), (d), and (f), when no current modulation
is applied. The parameters po = 1.8 and Av = 0.22 GHz (a), (b),
o = 2.4and Av = 0.22 GHz (¢), (d) (these parameters are indicated
with label A in Fig. 1), and @y = 2.4 and Av = —0.24 GHz (e), (f)
(these parameters are indicated with label B in Fig. 1). The horizontal
line indicates the RW threshold. The noise strengthis D = 10~* ns~!.

In order to investigate the influence of periodic modulation,
it is crucial to previously understand the characteristic time
scales of the chaotic dynamics induced by optical injection. In
the parameter region where RWs occur the main characteristic
time scale is the laser relaxation oscillation frequency, which
in the solitary laser increases linearly with /i — g, while
in the optically injected laser it also depends on the injection
parameters [35,36].

Figure 2 presents typical examples of the power spectral
density (PSD) and the corresponding intensity time trace,
for two values of the laser bias current, o = 1.8 and 2.4,
and two values of the injection detuning, Av = 0.22 GHz
and —0.24 GHz. These parameters were chosen such that
the intensity presents chaotic oscillations [20]. The PSD,
Figs. 2(a), 2(c), and 2(e), displays a peak at a frequency close to
the relaxation oscillation frequency of the solitary laser, f,, =
V2k(uw — 1)/yn /27 (for no =1.8, fio =3.5 GHz, while
for wo =2.4, fio =4.5 GHz). For j = 1.8 the intensity
oscillations are of small amplitude and the probability to
observe a RW is very small; see Fig. 2(b). For py = 2.4, if
Av = 0.22 GHz irregular oscillations dominate the dynamics
but occasionally an ultrahigh pulse whose amplitude is above
the RW threshold occurs; see Fig. 2(d). These parameters
are indicated with label A in Fig. 1, and have been chosen
because for these parameters a high number of RWs were
detected (about 300 in 10 usec). With a negative detuning
(Av = —0.24 GHz, indicated with label B in Fig. 1) frequent
high pulses occur, but they are not RWs as they are below the
threshold; see Fig. 2(f).

Comparison between Figs. 2(a), 2(b), and 2(c) tells us that
it is difficult to identify specific features in the PSD spectrum
which could be unambiguously associated to the appearance of
RWs (as the PSD does not provide information about the pulse
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heights). Nevertheless, from these PSDs we can infer that the
relevant frequency interval to modulate the system (see below)
is 0-5 GHz, as the modulation response of a semiconductor
laser is limited by the relaxation oscillation frequency [34].

B. RW suppression by weak current modulation

In this section we adopt the parameter settings correspond-
ing to points A and B in Fig. 1, and apply a sinusoidal
modulation of amplitude 104 and frequency fioq. For point A
(for which RWs appear in the absence of modulation), the
number of detected RWs as a function of the modulation
frequency, fiod, and the modulation amplitude (normalized to
the dc value, wg), is displayed in Fig. 3 for three levels of noise,
D =0,10"*ns"!, and 1073 ns~!. As in the previous section,
we note here that the color code is in logarithmic scale, such
that white regions correspond to zero detected RWs and the
dark regions (dark red online) correspond to several hundreds
of detected RWs.

In Fig. 3(a) one can notice that the addition of weak current
modulation leads to a substantial reduction of the number
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FIG. 3. (Color online) Number of detected RWs in the parameter
space (modulation frequency fmoq; normalized modulation amplitude
Mmod/ o). The color code is plotted in logarithmic scale in order to
increase the contrast of the regions with a small number of RWs. In
the white regions no RWs are detected. The parameters are such that
the intensity dynamics displays deterministic RWs in the absence of
noise and modulation: oy = 2.4 and Av = 0.22 GHz [point labeled
A in Fig. 1(a)]. The noise strength is D = 0 (a), 10~* ns~! (b), and
103 ns! (c).
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of deterministic RWs. Moreover, the RWs are completely
suppressed for modulation frequencies close to f;, (4.5 GHz
for o = 2.4). This effect is seen also when noise is included
in the simulations; see Figs. 3(b) and 3(c). In addition, for
weak modulation amplitude and zero or weak noise, at least
two other modulation frequencies for which the number of
RWs decreases can be seen in Fig. 3: one at about 1 GHz and
the other at about 2.5 GHz.

In Fig. 3 one can also observe that the number of detected
RWs depends in a nonmonotonous way on the noise strength.
Comparing with the deterministic case [Fig. 3(a)], noise of
moderate strength leads to a global reduction of the number
of RWs [Fig. 3(b)]. However, for stronger noise the number of
detected RWs increases and the region of complete suppression
(white region) shrinks [Figs. 3(c) and 3(d)]. Taken together,
these results indicate that current modulation with frequency
close to the resonance frequency of the laser can be combined
with an optimal noise level in order to minimize the occurrence
of RWs. Further increasing the noise level, beyond the values
considered in Fig. 3, will also lead to a suppression of RWs,
as in the limit of very high noise the dynamics will be fully
dominated by the noise.

The suppression of RWs due to current modulation can
be understood in the following terms: the modulation induces
more frequent high (but not extremely high) pulses, which
results in an increase of the RW threshold. The effect is more
apparent in Fig. 4(f), which corresponds to modulation just at
the relaxation oscillation frequency at 4.5 GHz: the number
of relatively large peaks in the time series increases, but at
the same time the peaks take less extreme values (i.e., not
so large, not so small) than in the other subfigures, so that
no RWs appear [in agreement with Fig. 3(b)]. In Figs. 4(b),
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FIG. 4. (Color online) Influence of current modulation for pa-
rameters such that RWs occur without modulation (point labeled A
in Fig. 1 with Av = 0.22 GHz and ¢ = 2.4). Power spectral density
(PSD, left column) and intensity time series (right column) when the
modulation frequency is fioa = 2.5 GHz (a), (b), 3.5 GHz (c), (d),
4.5 GHz (e), (f), and 5.5 GHz (g), (h). The modulation rela-
tive amplitude iS fmoa/Mo = 0.16 and the noise strength is D =
10~* ns~!. Without modulation the PSD and the intensity time series
are displayed in Figs. 2(c) and 2(d).

PHYSICAL REVIEW A 89, 033804 (2014)

4(d), and 4(h), however, a more pronounced modulation of the
peaks (leading to both larger and smaller peaks) is apparent
which might be due to the beating between the modulation
and relaxation oscillation frequencies. In these cases some
RWs appear, but in a number much smaller than in the case of
the unmodulated system [see Fig. 3(b)]. These considerations
are confirmed by the distribution of pulse heights included in
Fig. 7 below [see left-column subfigures: Figs. 7(c), 7(e), 7(g),
and 7(i) just correspond to the four cases shown in Fig. 4,
and can be compared with Fig. 7(a) which corresponds to the
unmodulated case]. Thus, with modulation the pulses of high
amplitude become regular, and the risk of anomalous, ultrahigh
pulses is significantly reduced or even completely suppressed.
This indicates that adding an external weak periodic forcing is
a suitable method to create small discharges that can prevent
extreme phenomena by simply inducing them periodically on
a smaller scale. Just to give a phenomenological description
about the role of the modulation, we can think of controlled
small avalanches in a snow-covered mountain in order to
reduce the amount of accumulated snow that could feed a
large and dangerous avalanche.

C. Rogue waves induced by current modulation

Let us now consider the influence of modulation for
parameters where, without modulation, no RWs occur. We
choose point B in Fig. 1. The influence of the modulation
parameters in the deterministic case (D = 0) is presented
in Fig. 5(a), where one can observe that almost for all the
range of modulation frequencies considered RWs are detected,
except, as before, for modulation frequencies close to the
laser relaxation oscillation frequency. However, the number of
detected RWs is in general not very large; for relatively large
modulation amplitudes and low noise [upper part in Figs. 5(a)
and 5(b)] the number of RWs approaches, but remains below,
the number found in point A [compare with the upper part of
Figs. 3(a) and 3(b)].

As in point A, in point B including weak noise diminishes
the number of RWs [Fig. 5(b)], an effect which is more clearly
observed at low modulation frequencies. For example, notice
in Fig. 5(b), that for fi0qa & 1 GHz, the number of RWs
detected is smaller than in Fig. 5(a). With a stronger noise
the RW regions expand, as shown in Fig. 5(c) and RWs are
observed even without modulation ((meq = 0).

Figure 6 displays the PSD and the intensity time series for
the same modulation amplitude and frequencies as in Fig. 4,
and one can see that indeed the effect of weak modulation in
point B is the same as in point A: all comments made for Fig. 4
also apply to Fig. 6. To further confirm these observations,
Fig. 7 displays the distribution of pulse heights in point A (left
column) and point B (right column). The complete suppression
of RWs is observed in panels (g) and (h), where fi0d & fro-

IV. CONCLUSIONS

In this work we have investigated the dynamics of an
optically injected semiconductor laser subjected to periodic
forcing, which was implemented via a sinusoidal modulation
of the laser bias current. The focus of the study was the gen-
eration of ultrahigh pulses, referred to as rogue waves (RWs),
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FIG. 5. (Color online) Number of detected RWs in the parameter
space (modulation frequency fiy.q; normalized modulation amplitude
Imod/ o). The color code is plotted in logarithmic scale in order to
increase the contrast of the regions with a small number of RWs. In
the white regions no RWs are detected. The parameters are such
that the intensity dynamics, in the absence of modulation, does
not display RWs: pop =2.4 and Av = —0.24 GHz (point labeled
B in Fig. 1). The noise strength is D = 0 (a), 10~* ns~! (b), and
1073 ns~! (¢).

and specifically, the role of noise and modulation (and of the
interplay between them) on the dynamics.

Concerning noise, its effect depends on the noise strength:
while moderate noise strength decreases the number of RWs
(in good agreement with a previous study [26]), stronger
noise increases the likelihood of RWs and enhances the
parameter region where they occur (see Fig. 1). Regarding the
modulation, in parameter regions where there are deterministic
RWs, the main effect of the modulation is to stabilize the
irregular pulsing dynamics, and as the pulse heights become
more regular the number of RWs decreases [see Fig. 3(a)]. On
the other hand, in parameter regions where no deterministic
RWs occur without modulation, with modulation a few RWs
can be induced, in particular at definite frequency ranges below
the relaxation oscillation frequency (see Fig. 5). For relatively
large modulation amplitudes and low noise the number of
RWs is in general rather insensitive to the behavior (presence
or absence of RWs) of the unmodulated system.
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FIG. 6. (Color online) Influence of current modulation for pa-
rameters such that no RWs occur without modulation (point labeled
B in Fig. 1 with Av = —0.24 GHz and py = 2.4). Power spectral
density (PSD, left column) and intensity time series (right column)
when the modulation frequency is fi0.a = 2.5 GHz (a), (b), 3.5 GHz
(c),(d),4.5 GHz (e), (f), and finoa = 5.5 GHz (g), (h). The modulation
relative amplitude is pmea/Mo = 0.16 and the noise strength is
D = 10~*ns~'. Without modulation the PSD and intensity time series
is displayed in Figs. 2(e) and 2(f).

Regarding the interplay between noise and modulation,
we found that noise of moderate strength can suppress or
reduce the number of modulation-induced RWs [compare
Figs. 5(a) and 5(b)]. At larger noise strengths, the tendency
for noise to induce RWs (as it occurs in the unmodu-
lated case) progressively shows up [compare Figs. 5(b)
and 5(c)]. In turn, modulation at frequencies close to the

0 5 10 15 0
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5 10 15
Amplitude (arb. units)

FIG. 7. (Color online) Pulse amplitude distribution in points A
(left column) and B (right column). In panels (a), (b) no modulation
is included; in (c)—(j) the parameters are as in Figs. 4 and 6. The
vertical line indicates the RW threshold. The complete suppression
of RWs is observed for a modulation frequency close to the relaxation
oscillation frequency, in panels (g) and (h).
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characteristic time scale of the pulsing dynamics significantly
diminishes and can even completely suppress noise-induced
rogue waves, in a wide domain of modulation amplitudes
[see white regions in Figs. 5(b) and 5(c) appearing for
frequencies close to the relaxation oscillation frequency of
the laser].

Summarizing, our results show that the occurrence of RWs
can be controlled via a weak periodic forcing of appropriate
modulation frequency and/or via incoherent optical injection
(noise) of appropriate strength. As we have shown here that
adding weak modulation results in an increased regularity of
the amplitude of the pulses, it would be interesting as a future
study to analyze the influence of current modulation in the
periodicity of the pulsating dynamics, in particular, to analyze
the effect of the modulation in the distribution of waiting times
between two consecutive RWs. We hope that our findings

PHYSICAL REVIEW A 89, 033804 (2014)

will motivate not only new experiments in this laser system,
but also, experimental and theoretical investigations in other
natural systems.
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