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When two chains of quantum systems are driven at their ends by a two-mode squeezed reservoir, they approach
a steady state characterized by the formation of many entangled pairs. Each pair is made of one element of the first
and one of the second chain. This effect has been already predicted under the assumption of broadband squeezing.
Here we investigate the situation of finite-bandwidth reservoirs. This is done by modeling the driving bath as the
output field of a nondegenerate parametric oscillator. The resulting non-Markovian dynamics is studied within
the theoretical framework of cascade open quantum systems. It is shown that the formation of pair-entangled
structures occurs as long as the normal-mode splitting of the arrays does not overcome the squeezing bandwidth
of the reservoir.
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I. INTRODUCTION

The ability to manipulate, engineer, and control entangle-
ment is of primary importance for the development of new
quantum technologies, which are expected to outperform the
corresponding classical implementations in many fields of
application, including quantum computation, communication,
metrology, and sensing. In particular, the manipulation of
entanglement over large quantum ensembles [1] and the
efficient transfer and distribution of quantum resources among
different systems [2] are fundamental tasks for the devel-
opment of scalable devices for quantum computation and
information processing [3]. In this context, a scheme was
recently proposed [4] for the efficient transfer of quantum
correlations from a broadband two-mode entangled reservoir
to nondirectly interacting chains of quantum systems. This
phenomenon is observed at the steady state of the open
incoherent dynamics in the framework of quantum reservoir
engineering [5,6]. Specifically, it was shown [4] that at the
steady state, many pairs of entangled subsystems replicate the
original entanglement of the reservoir, as illustrated in Fig. 1.
This mechanism appears to be general, holding both for arrays
of linearly coupled harmonic oscillators and two-level systems.

In the present work we generalize the previous investigation
by relaxing the broadband condition of the reservoir. Indeed,
for finite bandwidth the resulting dynamics of the arrays is
in general non-Markovian. In order to study this problem we
consider in detail the specific physical system producing the
entangled reservoir. In this way, the full coupled dynamics
of the arrays and of such system is Markovian and can be
efficiently analyzed in the standard approach of cascade open
quantum systems [7–10]. We will study the dynamics of
two distinct arrays of linearly coupled harmonic oscillators
interacting locally with the output field of a nondegenerate
parametric oscillator. The latter is one of the most efficient
sources of entangled fields and it is routinely used in many
applications of quantum technologies [11–15]. Its output is
a continuous squeezed field whose statistical properties can
be controlled through the characteristic parameters of the
oscillator, essentially the strengths of the nonlinearity and of

the dissipation. We show that the pair-entanglement replication
mechanism previously found in the case of a broadband
reservoir continues to hold also in the more realistic scenario
of finite bandwidth. This finding is thus quite promising for the
actual realizability of the mechanism in concrete experimental
setups.

The paper is organized as follows. In Sec. II we introduce
the model in terms of quantum Langevin equations. In Sec. III
we analyze the basic dynamics of the output field of the
nondegenerate parametric oscillator (Sec. III A) and of the
two arrays (Sec. III B). A relevant result of this analysis is
the identification of the regimes in which one recovers the
broadband Markovian dynamics considered previously [4].
In Sec. IV, we report numerical results for the steady-state
entanglement between the two arrays. In Sec. V we analyze
the feasibility of the scheme with realistic experimental
parameters. Finally, in Sec. VI we draw our conclusions and
discuss some possible outlooks.

II. THE MODEL

We analyze the dynamics of two independent, nondirectly
interacting one-dimensional arrays (chains) of N linearly
coupled harmonic oscillators. In Fig. 1 we illustrate a specific
realization in terms of electromagnetic field modes confined
inside cavities. One of the ends of each array is incoherently
coupled, with rate ζa , to the output field of a nondegenerate
parametric oscillator. The coupling is nonreciprocal and
realizes a cascade configuration [7–10,16], in which the arrays
have no effect on the dynamics of the parametric oscillator.
This situation can be realized using nonreciprocal devices,
such as standard optical circulators based on the Faraday effect
[16,17]. The creation and annihilation operators for the two
arrays are aξ,j and a

†
ξ,j , where the index ξ takes the values I or

II and distinguishes between the two arrays, while j indicates
the element in each array, as shown in Fig. 1. The oscillators
in each chain are resonant, but the frequency of the two
chains can be different. In each array, cavities are coupled with
nearest-neighbor strength ηj and lose excitations at a rate κj .
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FIG. 1. (Color online) Two arrays of cavities are driven at their
ends by two-mode squeezed light. Arrows denote the interarray pairs
of cavities that become entangled at steady state when the squeezing
bandwidth is sufficiently large.

The two arrays are assumed to be symmetric; i.e., they have the
same interaction strengths ηj and loss rates κj . Deviations from
this symmetric condition have been previously investigated
[4] showing that the replication mechanism is significantly
resilient to random asymmetries. The total Hamiltonian for
the two arrays in the interaction picture is

Ha =
∑

ξ∈{I,II }

N−1∑
j=1

ηj (aξ,j
†aξ,j+1 + aξ,j+1

†aξ,j ). (1)

The two modes of the nondegenerate parametric oscillator are
bξ and b

†
ξ , where ξ ∈ {I,II } indicates, respectively, the modes

whose output drives the array I and II , and they are resonant
at the frequencies of the cavities of the corresponding arrays.
Moreover, they mutually interact with coupling strength α.
Throughout the present work the nonlinear coupling strength
α is assumed, without loss of generality, to be real and positive.
A different assumption would correspond to a different
squeezing phase, but the overall entanglement dynamics will
remain unaffected. The corresponding parametric Hamiltonian
reads

Hb = iα(bI
†bII

† − bI bII ). (2)

The two modes are further coupled to the output modes which
drive the arrays with rate ζb; see Fig. 1. The output field

operators are r
(out)
ξ and r

(out)
ξ

†
and they fulfill the standard

bosonic field commutation relations [r (out)
ξ (t),r (out)

ξ ′ (t ′)
†
] =

δξ,ξ ′δ(t − t ′).
The cascade quantum dynamics is conveniently described

in terms of Heisenberg quantum Langevin equations for the
field operators [7,8]. Then, the equations of motion for each

array read

ȧξ,1(t) = −(κ1 + ζa) aξ,1(t) − iη1 aξ,2(t)

−
√

2κ1 a
(in)
ξ,1 (t) −

√
2ζa r

(out)
ξ (t),

ȧξ,j (t) = −κj aξ,j (t) − iηj−1 aξ,j−1(t) − iηj aξ,j (t),

−√
2κj a

(in)
ξ,1 (t) for j ∈ {2 . . . N − 1},

ȧξ,N (t) = −κN aξ,N (t) − iηN−1 aξ,N−1(t) −
√

2κN a
(in)
ξ,N (t),

(3)

with ξ ∈ {I,II }. Here a
(in)
ξ,j are the zero-average input noise

operators for each cavity, whose only nonvanishing correlation

function is 〈a(in)
ξ,j (t)a(in)

ξ ′,j ′
†
(t ′)〉 = δξ,ξ ′δj,j ′δ(t − t ′). We remark

that in Eq. (3) the operator for the output field of the
nondegenerate parametric oscillator, r

(out)
ξ , acts as a source

term in the equation for the first cavity of each array. The
equations of motion for the field operators of the parametric
oscillator are

ḃI (t) = −(κ0 + ζb) bI (t) + α b
†
II (t)

−
√

2κ0 b
(in)
I (t) −

√
2ζb r

(in)
I (t),

ḃII (t) = −(κ0 + ζb) bII (t) + α b
†
I (t)

−
√

2κ0 b
(in)
II (t) −

√
2ζb r

(in)
II (t), (4)

where b
(in)
ξ and r

(in)
ξ are the corresponding input noise oper-

ators, whose correlation functions satisfy 〈b(in)
ξ (t)b(in)

ξ ′
†
(t ′)〉 =

〈r (in)
ξ (t)r (in)

ξ ′
†
(t ′)〉 = δξ,ξ ′δ(t − t ′). The noise operator r

(in)
ξ ac-

counts for the modes of the reservoir which are involved in
the driving process. The operator b

(in)
ξ accounts for the other

possible dissipation channels, with decay rate κ0, whose output
field is lost and cannot be used to drive the two arrays. The
output field operators corresponding to each input operator
are related to the system operators (parametric oscillator and
arrays) through the standard relations [7,8]

r
(out)
ξ (t) = r

(in)
ξ (t) +

√
2ζb bξ (t), (5)

a
(out)
ξ,j (t) = a

(in)
ξ,j (t) + √

2κjaξ,j (t), (6)

b
(out)
ξ (t) = b

(in)
ξ (t) +

√
2κ0bξ (t). (7)

In particular Eq. (5) can be used to eliminate the output field
in the equations for the arrays and to make explicit their
dependence on the operators of the parametric oscillator and
on the corresponding input noise field.

III. DYNAMICS

The dynamics described by the linear equations (3), (4),
and (5) is Gaussian; hence it is completely determined by
the equations for the average and the correlations of the field
operators (first and second statistical moments). In particular,
assuming that the initial fields averages are zero, they will
remain zero at all times. This is the situation that we assume
through the rest of this article. Hence, in the following, we
will focus our investigation on the analysis of the correlation

033803-2



NON-MARKOVIAN DYNAMICS AND STEADY-STATE . . . PHYSICAL REVIEW A 89, 033803 (2014)

matrix of the array operators Ca(t), whose elements are
defined, in terms of the vector of the 4N field operators
a = (aI,1 · · · aI,N ,aII,1 · · · aII,N ,a

†
I,1 · · · a†

I,N ,a
†
II,1 · · · a†

II,N ),
as

{Ca(t)}j,k = 〈{a(t)}j {a(t)}k〉. (8)

This matrix contains all the information about the state of
the arrays and can be used, for example, to analyze the
entanglement properties of the steady state. In particular,
we will be interested in the bipartite entanglement of pairs
of interarray cavity modes, quantified by the logarithmic
negativity.

The logarithmic negativity, EN , for two generic bosonic
modes can be computed as follows. Given a generic correla-
tion matrix C for two modes the corresponding logarithmic
negativity EN can be easily evaluated as [18]

EN = max{0, − log2 ν−}, (9)

where ν− denotes the smallest symplectic eigenvalue of the
matrix 1

2T (C + CT )T T with

T =

⎛⎜⎝1 0 1 0
i 0 −i 0
0 1 0 1
0 −i 0 i

⎞⎟⎠ . (10)

In the following sections we will use this definition to
compute both the logarithmic negativity of two cavity modes
E (cav)

N [jI ,jII ], where jI and jII are the cavity indices of the first
and second array, respectively, and the logarithmic negativity
of the two modes of the reservoir E (PO)

N .

A. Spectral properties of the output field of the nondegenerate
parametric oscillator

Before considering in detail the results for the steady
state of the open dynamics for the two arrays, in this
subsection we describe the main features of the steady state
of the nondegenerate parametric oscillator which are useful
in the following. The open dynamics of a nondegenerate
parametric oscillator (see [19–22] for a detailed discussion)
is described by the quantum Langevin equation (4) which
admits a steady-state solution only if the rates for the decay
processes are sufficiently large to counterbalance the effects
of the parametric amplification. In this case the parametric
oscillator is said to work below threshold. The condition for
this regime is

α < ζb + κ0,

where ζb + κ0 accounts for the total dissipation rate. This
condition will always be assumed in the following.

The output field is completely characterized by the two-time
correlation matrix C(out)

r (t,t ′) whose elements are defined, in
terms of the elements of the vector of the four output field

operators rout = (r (out)
I ,r

(out)
II ,r

(out)
I

†
,r

(out)
II

†
), as{

C(out)
r (t,t ′)

}
j,k

= 〈{rout(t)}j {rout(t
′)}k〉. (11)

The corresponding steady-state correlation matrix C(out)
r,st (t − t ′)

depends only on the difference of the time arguments, and can

be expressed as

C(out)
r,st (τ ) = δ(τ ) Y + α ζb

2

∑
ι=±

e−ᾱι |τ |

ᾱι

Wι, (12)

where the parameters ᾱ± are the decay rates of the field corre-
lation functions. In turn, as discussed below, they determine the
bandwidth over which the statistical properties of the reservoir
are of the same order of magnitude. They are defined as

ᾱ± = ζb + κ0 ± α. (13)

In Eq. (12), the 4 × 4 matrixY has only two nonzero elements:

{Y}1,3 = {Y}2,4 = 1. (14)

It corresponds to the correlation matrix for two modes in
vacuum, and it is asymmetric and nonvanishing because of
the noncommutativity of the corresponding field operators.
Moreover, W± is the 4 × 4 matrix

W± =

⎛⎜⎝ 0 1 ∓1 0
1 0 0 ∓1

∓1 0 0 1
0 ∓1 1 0

⎞⎟⎠ , (15)

and the part of Eq. (12) that contains these matrices accounts
for a finite number of excitations and for the correlations of
the two modes. The corresponding spectral density matrix
C̃(out)

r (ω) = ∫ ∞
−∞ dτ eiωτ C(out)

r,st (τ ) is given by

C̃(out)
r (ω) = Y +

∑
ι=±

α ζa

ᾱ2
ι + ω2

Wι. (16)

It is the sum of two Lorentzians whose bandwidths are
ᾱ+ and ᾱ−, respectively, and it is related to the correlation
functions of the output field in frequency space and,
hence, to the spectrum of the squeezed reservoir as
follows. Let as define the vector of operators in frequency
space r̃out(ω) = (r̃ (out)

I (ω),r̃ (out)
II (ω),r̃ (out)

I
†(ω),r̃ (out)

II
†(ω)),

with r̃
(out)
ξ (ω) = 1√

2

∫ ∞
−∞ dτ eiωτ r

(out)
ξ (τ ), which implies

that {r̃ (out)
ξ (ω)}† = r̃

(out)
ξ

†(−ω). Then 〈{r̃out(ω)}j {r̃out(ω′)}k〉 =
δ(ω + ω′) C̃(out)

r (ω). We note that, since the system Hamiltonian
is defined in interaction picture, the frequency ω is not an
absolute frequency, but it is defined relative to the frequencies
of the modes of the nondegenerate parametric oscillator,
which in turn are equal to the frequencies of the cavity modes.
Being relative, it can take both positive and negative values. In
particular the mode at ω = 0 in the interaction picture, r̃ (out)

ξ (0),
corresponds to the spectral component of the output field at the
frequency of the cavities of the array ξ in the original picture.

The spectral density matrix in Eq. (16) can be used
to construct the squeezing spectrum, that is, the noise
spectral density associated with the collective quadrature

X = (r (out)
I + r

(out)
I

† − r
(out)
II − r

(out)
II

†
)/

√
2 ≡ uT rout, where

u = (1,−1,1,−1)T . It is given by

S(ω) = uT C̃(out)
r (ω) u

= 1 − 4 α ζb

ᾱ2+ + ω2
. (17)

According to our definitions, the output field is two-mode
squeezed when S(ω) < 1. Specifically, Eq. (17) indicates that

033803-3



S. ZIPPILLI AND F. ILLUMINATI PHYSICAL REVIEW A 89, 033803 (2014)

the spectral components of the output field are squeezed
over a bandwidth ᾱ+, with maximum squeezing attained
at the central frequency ω = 0. On the other hand, the
orthogonal quadrature Y = vT rout, with v = i(1,−1,−1,1)T ,
is antisqueezed; namely, its variance is larger than 1. Indeed,
the corresponding noise spectrum is given by

T (ω) = 1 + 4 α ζb

ᾱ2− + ω2
, (18)

which exhibits antisqueezing over a bandwidth ᾱ−. It is inter-
esting to point out that squeezed and antisqueezed quadratures
are characterized by nonequal bandwidths, which can be even
quite different. In particular, this is true when the squeezing is
maximum. Indeed, maximum squeezing is obtained in the limit
ᾱ− → 0, namely, at the threshold of the parametric oscillator.
In this case, perfect suppression of the fluctuations of the
squeezed quadrature is observed at the central frequency ω =
0, that is, S(0) ∼ 0; then, as already remarked, the squeezing
extends over a finite bandwidth ᾱ+. On the other hand, in order
to satisfy the Heisenberg uncertainty relation, the fluctuations
of the orthogonal antisqueezed quadrature must diverge at the
central frequency and the corresponding bandwidth vanishes.

Two-mode squeezing is a strong sufficient condition
for entanglement in continuous-variable systems [14,15]. In
particular, the squeezing spectrum at a given frequency ω

measures the entanglement between the spectral component
at frequency ω of the first mode, and the spectral component
at frequency −ω of the second one. The corresponding
logarithmic negativity E (PO)

N (ω) can be evaluated applying the
definition in Eq. (9) to the correlation matrix C̃(out)

r (ω) defined
in Eq. (16). In our case, the smallest symplectic eigenvalue
ν−(ω), evaluated for each spectral component, is indeed equal
to the value of the corresponding squeezing spectrum

ν−(ω) = S(ω). (19)

Correspondingly, maximum entanglement is found for the
spectral components at the central frequency ω = 0, and the
entanglement extends over a bandwidth ᾱ+.

B. Reduced non-Markovian dynamics for the two arrays

To gain insight into the system dynamics and in order to
draw a clear comparison with the case of a broadband squeezed
reservoir [4], in this subsection we discuss the reduced
non-Markovian dynamics of the two arrays that is obtained
after tracing out the degrees of freedom of the parametric
oscillator. We anticipate that no approximation is performed
in the derivation of the reduced dynamical equations; hence the
corresponding dynamics of the arrays is equal to that obtained
directly from the full model in Eqs. (3), (4), and (5).

The equations (4) and (5) for the nondegenerate parametric
oscillator do not depend on the degrees of freedom of the
arrays. Therefore, they can be solved and used to obtain a
set of closed equations for the dynamics of the arrays alone.
The resulting equation for the correlation matrix of the arrays
Ca(t), whose definition was given in Eq. (8), is linear with a
time-dependent source term of the form

∂

∂t
Ca(t) = Ma Ca(t) + Ca(t) MT

a + Na(t), (20)

where Ma is the 4N × 4N matrix of coefficients correspond-
ing to the homogeneous part of the system of equations (3); it is
a tridiagonal matrix whose elements, along the main diagonal,
are

{Ma}1+,1+ = −(ζa + κ1) for  ∈ {0,N,2N,3N},
{Ma}j+,j+ = −κj for  ∈ {0,N,2N,3N}

and j ∈ {2 . . . N}, (21)

while the nonzero elements along the first upper and lower
diagonals are

{Ma}j+,j++1 = {Ma}j++1,j+ = −{Ma}j++2N,j++2N+1

= −{Ma}j++2N+1,j++2N = −iηj

for  ∈ {0,N} and j ∈ {1 . . . N − 1}. (22)

The time-dependent inhomogeneous source term Na(t) in
Eq. (20) is a 4N × 4N matrix defined as

Na(t) = Qa + 2ζa

∫ t

0
dτ

[
eMa (t−τ )Z C(out)

r (τ,t) ZT

+Z C(out)
r (t,τ ) ZT eMa

T (t−τ )
]
, (23)

where Qa is a matrix whose nonzero elements are
{Qa}j+,2N+j+ = 2κj for  ∈ {0,N} and j ∈ {1 · · · N}. The
quantity C(out)

r (t,t ′) is the 4 × 4 correlation matrix already
defined in Eq. (11). Finally, Z is the 4N × 4 matrix defined as

Z =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
...
0

1
...
0

1
...
0

1
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (24)

where the missing entries are all zeros.
In particular, if we assume that the parametric oscillator is,

at the initial time of the arrays dynamics, in its stationary state,
then the result in Eq. (12) can be used to express Na(t) as

Na(t) = Qa + 2ζa ZYZT − α ζb ζa

∑
ι={+,−}

1

ᾱι

×
[

1 − e(Ma−ᾱι)t

Ma − ᾱι

ZWιZT

+ZWιZT 1 − e(MT
a −ᾱι)t

MT
a − ᾱι

]
, (25)

whereY andWι are defined in Eqs. (14) and (15), respectively.
The first two terms of this expression account for the
dissipations of the arrays, while the last term is due to the effect
of the entangled reservoir. It depends on both the properties

033803-4



NON-MARKOVIAN DYNAMICS AND STEADY-STATE . . . PHYSICAL REVIEW A 89, 033803 (2014)

of the output field of the parametric oscillator (through the
parameters ᾱ±) and of the two arrays (through the matrixMa).

In the following, we are interested in the steady state of
the arrays. The corresponding correlation matrix C(st)

a can be
computed from Eq. (20). Defining the linear operatorLa which
operates on a generic correlation matrix C as LaC = Ma C +
C MT

a , the steady state can then be expressed formally as

C(st)
a = −L−1

a N0, (26)

where N0 is the time-independent part of Eq. (25), namely,

N0 = Qa + 2ζa ZYZT − α ζb ζa

∑
ι={+,−}

1

ᾱι

×
[

1

Ma − ᾱι

ZWιZT + ZWιZT 1

MT
a − ᾱι

]
. (27)

We finally note that Eq. (20) is equivalent to the following
non-Markovian master equation in Lindblad form for the
reduced density matrix ρa of the two arrays:

ρ̇a = −i[Ha, ρa] +
∑
j,k

{Ka(t)}j,k

×[2ak ρa aj − aj ak ρa − ρa aj ak], (28)

where Ha is the Hamiltonian of the two arrays, Eq. (1), and
the time-dependent Kossakowski matrixKa(t), responsible for
the non-Markovian character of the dynamics, is defined as

Ka(t) = 1
2J Na(t) J , (29)

with J the 4N × 4N symplectic matrix

J =
(

12N

−12N

)
, (30)

where 12N is the 2N × 2N identity matrix, and the missing
blocks are null matrices.

1. Broadband limit

Equations (20) and (28) allow for a direct analysis of the
limit of infinite bandwidth. This corresponds to the situation
in which the parameters ᾱ±, defined in Eq. (13), are the largest
in the system dynamics. Since, by definition, ᾱ+ > ᾱ−, this
limit is obtained when ᾱ− is much larger then the eigenvalues
of Ma , that is, in particular, when

ᾱ− � ζa,κj ,ηj . (31)

In this limit, the steady-state correlation matrix of the reservoir,
Eq. (12), takes the form

C(out)
r,st (τ ) = δ(τ )

(
Y + α ζb

∑
ι=±

Wι

ᾱ2
ι

)
(32)

and Eq. (25) reduces to

Na(t) = Qa + 2ζa ZYZT + 2α ζb ζa

∑
ι={+,−}

ZWιZT

ᾱ2
ι

. (33)

Hence the corresponding master equation for the reduced
density matrix of the arrays is equal to the one introduced

in [4]:

ρ̇a = −i[Ha,ρa]

+
N∑

j=1

κj

∑
ξ=I,II

(2aξ,j ρaa
†
ξ,j − a

†
ξ,j aξ,j ρa − ρaa

†
ξ,j aξ,j )

+ ζa(n̄ + 1
∑

ξ=I,II

(2aξ,1ρaa
†
ξ,1 − a

†
ξ,1aξ,1ρa−ρaa

†
ξ,1aξ,1)

+ ζa n̄
∑

ξ=I,II

(2a
†
ξ,1ρaaξ,1 − aξ,1a

†
ξ,1ρa − ρaaξ,1a

†
ξ,1)

− 2ζa m̄(aI,1ρaaII,1 + aII,1ρaaI,1

− aI,1aII,1ρa − ρaaI,1aII,1 + H.c.), (34)

where the parameters n̄ and m̄ account, respectively, for the
number of excitations and for the correlations of the reservoir,
and are given by

n̄ = α ζb

(
1

ᾱ2−
− 1

ᾱ2+

)
, m̄ = α ζb

(
1

ᾱ2−
+ 1

ᾱ2+

)
. (35)

Specifically, according to Eq. (32), they fulfill the relations〈
r

(out)
ξ

†
(t) r

(out)
ξ (t ′)

〉
st = n̄ δ(t − t ′),

(36)〈
r

(out)
I (t) r

(out)
II (t ′)

〉
st = m̄ δ(t − t ′),

where the label st indicates that the averages are performed
over the steady state.

Therefore, in this limit we recover all the results of [4] and,
in particular, when κj = 0, the exact steady-state solution of
Eq. (34) takes the form

ρ(st)
a =

N⊗
j=1

Uj �I,j ⊗ �II,j U
†
j , (37)

where �ξ,j is the thermal state

�ξ,j =
∞∑

n=0

1

1 + n̄T

(
n̄T

1 + n̄T

)n

|n〉〈n|,

with n̄T = 1
2 [

√
(2n̄ + 1)2 − 4m̄2 − 1] average photons, and it

is the same for all the cavities. Moreover Uj is a squeezing
transformation for the two modes aI,j and aII,j , and it is
defined as

Uj = e(−1)j s0 (aI,j aII,j −a
†
I,j a

†
II,j ),

where the squeezing parameter s0 can be expressed as

tanh(s0) = n̄ − n̄T

m̄
. (38)

Correspondingly, in the steady state, the correlation functions
for the arrays are

〈a†
ξ,j aξ ′,j ′ 〉st = n̄ δj,j ′ δξ,ξ ′ ,

〈aξ,j a
†
ξ ′,j ′ 〉st = (n̄ + 1) δj,j ′ δξ,ξ ′ ,

(39)
〈aI,j aII,j ′ 〉st = 〈a†

I,j a
†
II,j ′ 〉st = (−1)j+1m̄ δj,j ′ ,

〈aξ,j aξ,j ′ 〉st = 〈a†
ξ,j a

†
ξ,j ′ 〉st = 0,
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and, hence, the logarithmic negativity for each pair of
cavities with equal indices along the two arrays is given by
E (cav)

N [j,j ] = − log2(2n̄ + 1 − 2m̄) = − log2(1 − 4αζb/ᾱ+),
which is equal to the logarithmic negativity between the
modes of the reservoir.

In the next section we analyze numerically the validity
of this limit, and how the results of [4] are modified when
condition (31) is not fulfilled.

A final remark is in order. Equation (31) implies that
if the parametric oscillator is very close to the threshold
condition (ᾱ− ∼ 0), that is, as discussed in Sec. III A, when
the entanglement is maximum, then the broadband assumption
is no longer valid even if the squeezing spectrum is relatively
broad (its bandwidth is, in fact, given by ᾱ+).

IV. RESULTS

In this section we analyze numerically the entanglement
properties of the steady state of the two arrays. We charac-
terize the steady state in terms of the logarithmic negativity
E (cav)

N [jI ,jII ] for the modes jI and jII of first and second
array, respectively, which is evaluated applying the general
definition, Eq. (9), to the reduced correlation matrix of each
pair of cavity modes which, in turn, is obtained form the
full steady-state correlation matrix defined in Eq. (26). In
particular, we analyze the normalized logarithmic negativ-
ity E

(cav)
N [jI ,jII ] = E (cav)

N [jI ,jII ]/(E (cav)
N [jI ,jII ] + 1), which

takes values between 0 and 1.
We are interested in identifying parameter regimes in which

the entanglement replication mechanism described in [4] is
still visible even if the assumptions assumed in [4] are not
strictly satisfied. According to the mechanism of entanglement
replication described in [4], at the steady state the cavities with
equal indices along the two arrays are entangled with their
logarithmic negativity equal to that of the driving two-mode
squeezed field. This result is exact if the driving entangled
reservoir is broadband. As discussed in Sec. III B 1 this limit
is expressed by the condition Eq. (31).

The behavior of the entanglement for the pairs of cavities
with equal indices as a function of the bandwidth of the driving
reservoir is reported in Fig. 2, in the ideal situation in which
only the first cavity in each array can dissipate (ζa �= 0) and all
other cavities are lossless (κj = 0,∀j ). Here the maximum of
the entanglement of the reservoir, namely the value of E (PO)

N (0)
(see Sec. III A), is fixed by keeping constant the ratio α/ζb.
Figure 2 shows how the amount of replicated entanglement
reduces with decreasing bandwidth. At large values of ζb the
bandwidth is large and the entanglement of the pairs of cavities
with equal indices approaches the value of the entanglement of
the reservoir. On the other hand, as ζb is lowered, the interarray
pair entanglement is reduced correspondingly.

The arrows on the upper part of Fig. 2 correspond to
the results of Figs. 3, 4, and 5. Figure 3 corresponds to
the rightmost arrow. Here both ᾱ+ and ᾱ− are larger then
the parameters of the arrays (ηj , κj , and ζa), the broadband
condition is satisfied, and we observe a substantial entangle-
ment replication. Specifically, the plot in Fig. 3(a) reports the
steady-state pairwise entanglement of all the interarray pairs
of cavities (including those with different indices) for two
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FIG. 2. (Color online) Logarithmic negativity for interarray pairs
of cavities with equal indices along two equal arrays of N = 10
cavities each, as a function of the emission rate ζb of the parametric
oscillator, when the ratio α/ζb = 0.648 is kept constant in order to
fix the value of the entanglement at the central frequency of the
output field, i.e., the reservoir that drives the two arrays. The inset
specifies the index of the cavities corresponding to each curve. The
gray solid thick line indicates the value of the entanglement at the
central frequency of the reservoir. The other parameters are ηj = ζa ,
∀j ∈ {1, . . . N}, and κj = 0, ∀j ∈ {0, . . . N}. The arrows on the top
part of the plot indicate the parameters corresponding, respectively,
to the results of Figs. 3, 4, and 5.

equal arrays of N = 10 cavities each. We observe that only the
cavities with equal indices are strongly entangled, in agreement
with the predictions of the broadband model [4]. The fact
that in this case the squeezing bandwidth of the reservoir is
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FIG. 3. (Color online) (a) Logarithmic negativity for pairs of
cavity modes in two equal arrays of N = 10 cavities: jI and jII are the
indices of the cavities of the first and the second array, respectively.
(b) Logarithmic negativity for the pairs of normal modes: kI and kII

are indices of the normal modes of the first and the second array,
respectively, with increasing order in each index corresponding to
modes of increasing frequency. (c) Entanglement E

(PO)
N (ω) (solid

black line) and two-mode squeezing spectrum S(ω) (dashed blue line)
of the output field of the parametric oscillator. The system parameters
are ηj = ζa , ∀j ∈ {1, . . . N}, κj = 0, ∀j ∈ {0, . . . N}, ζb = 10ζa , and
α = 6.48ζa (ᾱ+ = 16.48ζa , ᾱ− = 3.52ζa). These results correspond
to the rightmost arrow in Fig. 2.
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FIG. 4. (Color online) As in Fig. 3 with ζb = ζa and α = 0.648ζa .
These results correspond to the central arrow in Fig. 2.

large can be seen looking at Fig. 3(c). Here, the values of
the logarithmic negativity E

(PO)
N (ω) = E (PO)

N (ω)/[E (PO)
N (ω) +

1] and of the squeezing spectrum S(ω) of the output field
of the parametric oscillator are compared with the range of
frequencies, indicated by the vertical lines, that corresponds to
the frequencies of the normal modes of the arrays. The latter
are evaluated as the imaginary part of the eigenvalues of the
matrix Ma defined in Eqs. (21) and (22). In detail, this plot
shows that the bandwidth of the squeezing is significantly large
compared to the normal-mode splitting of the arrays and that all
the normal modes feel a reservoir with roughly the same level
of entanglement. In this case, the Markovian description of
Ref. [4] is accurate. The corresponding entanglement for pairs
of normal modes of the arrays is reported in Fig. 3(b). Here,
the indices kξ , with ξ ∈ {I,II }, indicate the normal modes of
the arrays, where kξ = 1 and and kξ = 10 are the lowest and
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FIG. 5. (Color online) As in Fig. 3 with ζb = 0.1ζa and
α = 0.0648ζa . These results correspond to the leftmost arrow in
Fig. 2.

higher frequency modes respectively. We observe that a mode
of the first array at frequency, say, ωkI

relative to the frequency
of the cavities in array I is entangled with the reciprocal
mode of the second array with opposite frequency ωkII

=
ωN−kI

= −ωkI
. This can be understood by observing that, as

discussed in Sec. III A, the driving two-mode field exhibits
a similar structure of entanglement between the different
spectral components. Namely, the spectral component of the
first mode of the squeezed reservoir at frequency ω relative to
the frequency of the cavities is entangled with the component
of the second mode at relative frequency −ω, and the normal
modes of the cavities simply reproduce this same feature.

When the bandwidth of the correlations of the squeezed
reservoir is reduced as in Fig. 4, corresponding to the central
arrow in Fig. 2, the replication mechanism is no longer optimal
and the entanglement of the pairs of cavities with equal indices
is reduced. In terms of the normal modes it corresponds to
maximum entanglement between the normal modes whose
frequency is closer to the central frequency of the reservoir,
as illustrated in Fig. 4(b). When the bandwidth is further
reduced, as in Fig. 5, which corresponds to the leftmost arrows
in Fig. 2, only few normal modes close to resonance with
the driving squeezed reservoir (the central modes) become
entangled [Fig. 5(b)]. As the normal modes can be expressed
in terms of the modes of all the cavities, correspondingly the
original entanglement of the reservoir is redistributed among
all pairs of cavities, at the price of its magnitude being strongly
reduced, as illustrated in Fig. 5(a).

In Sec. III A, we have shown that the correlation functions
of the reservoir are characterized by two time scales associated
with the parameters ᾱ±, where ᾱ+ determines the bandwidth
of the squeezed quadrature (and hence of the entanglement) of
the field emitted by the parametric oscillator, and the parameter
ᾱ− determines the bandwidth of the antisqueezed quadrature.
Figure 6 shows the entanglement of pairs of cavity modes as
a function of ᾱ+ when ᾱ− is fixed to a small value. In this
situation, the broadband condition, Eq. (31), is not satisfied.
Hence, the Markovian master equation used in [4] is not valid
in the entire range of parameters of Fig. 6. Nevertheless, we
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FIG. 6. (Color online) Logarithmic negativity for the pairs of
cavities with equal indices along two equal arrays of N = 10 cavities,
as a function of the parameter ᾱ+, when ᾱ− = 0.01ζa is kept constant.
The inset specifies the index of the cavities corresponding to each
curve. The gray line indicates the value of the entanglement at the
central frequency of the reservoir. The other parameters are ηj = ζa ,
∀j ∈ {1, . . . N}, and κj = 0, ∀j ∈ {0, . . . N}.
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FIG. 7. (Color online) As in Fig. 6 with κ0 = 0.5ζb.

observe that entanglement replication is still in order as long
as the squeezing bandwidth ᾱ+ is sufficiently large. This result
shows that the entanglement replication is not strictly based
on the Markovian nature of the dynamics.

A similar situation, with an additional decay channel at
rate κ0 affecting the dynamics of the parametric oscillator, is
analyzed in Fig. 7. It corresponds, for example, to the case in
which both mirrors of the Fabry-Pérot cavity used to realize
the parametric oscillator have a finite transmissivity but only
the output from one mirror is efficiently controlled to drive the
arrays. In this case part of the quantum correlations which are
built up by the parametric oscillator are lost in the uncontrolled
output and the actual reservoir experienced by the arrays is not
in a pure squeezed state but in a mixed squeezed thermal state.
In Fig. 7 we observe the onset of entanglement replication as
long as the squeezing bandwidth is of the same order or larger
than the characteristic frequencies of the arrays. Specifically,
although the maximum entanglement of the reservoir (the
thick, gray line in Fig. 7) is significantly reduced with respect
to the situation illustrated in Fig. 6, the qualitative behavior of
the entanglement is similar and, in the limit of large bandwidth
(large ᾱ+), the entanglement of the cavities replicates the
entanglement of the reservoir. Also in this case we have verified
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FIG. 8. (Color online) Logarithmic negativity for the pairs of
cavities with equal indices along two equal arrays of N = 10
cavities, as a function of the rate ζa at which the array exchange
photons with the reservoir. The inset specifies the index of the
cavities corresponding to each curve. Here all the lines with j �= 1
are almost superimposed. The gray line indicates the value of the
entanglement at the central frequency of the reservoir. The other
parameters are ηj = 0.1ζb, ∀j ∈ {1, . . . N}, κj = 0, ∀j ∈ {0, . . . N},
and α = 0.648ζb.
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FIG. 9. (Color online) Logarithmic negativity for the pairs of
cavities with equal indices along two equal arrays of N = 10 cavities,
as a function of the coupling strength η ≡ ηj , ∀j ∈ {1, . . . N}. The
inset specifies the index of the cavities corresponding to each curve.
The gray line indicates the value of the entanglement at the central
frequency of the reservoir. The other parameters are ∀j ∈ {1, . . . N},
κj = 0, ∀j ∈ {0, . . . N}, ζb = 10ζa , and α = 0.648ζb.

that, when the bandwidth of the reservoir is sufficiently large,
only the modes with equal indices are entangled.

So far we have analyzed the steady-state entanglement as
a function of the parameters of the parametric oscillator. We
will now study the steady-state entanglement as a function
of the parameters of the arrays when the properties of the
parametric oscillator are kept fixed. In particular, we consider
the oscillator’s parameters given in Fig. 3, corresponding to the
situation of good entanglement replication, and we increase
either the exchange rate of photons ζa between the driving
reservoir and the arrays or the cavity-cavity coupling strengths
ηj inside each array. When ζa is increased, as shown in Fig. 8,
only the entanglement of the first pair of cavities is affected,
and it decays to zero. Indeed, a large value of ζa means a large
linewidth of the first cavity in each array. Hence, the system
behaves effectively as if the external reservoir would interact
directly with the second element in each array. All other pairs
of interarray cavities with equal indices remain unaffected and
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FIG. 10. (Color online) As in Fig. 3 with N = 9, ηj = 300ζa ,
∀j ∈ {1, . . . N}, κj = 0, ∀j ∈ {0, . . . N}, ζb = 10ζa , and α = 6.48ζa .
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FIG. 11. (Color online) (a) As in Fig. 2 with κN = ζa . (b) As in
Fig. 8 with κN = ζa (κN is varied together with the parameter ζa). (c)
As in Fig. 2 with κj = 0.1ζa for j ∈ {1, . . . N}. The arrow on the top
part of plot (c) indicates the parameters corresponding to the results
in Fig. 12.

continue to replicate the entanglement of the reservoir. On the
other hand, when ζa is fixed and the couplings ηj are increased,
as shown in Fig. 9, then all pairs of cavities are affected;
correspondingly, the replicated entanglement decreases for all
pairs.

A particular situation is achieved when ζa is sufficiently
small and ηj is sufficiently large. In this case it is possible
to have just a single normal mode resonant with the driving
squeezed field. In Fig. 10 this is realized using arrays with
an odd number of cavities such that there is always a normal
mode at zero frequency. Hence when ηj is large, the central
normal modes of the two arrays are the only modes that
interact with the reservoir and they get efficiently entangled, as
shown in Fig. 10(b). Due to the particular symmetric situation
considered, the central normal modes can be expressed as a
linear combination with equal weight of the cavity modes with
odd indices. Correspondingly, all the cavity modes with odd
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FIG. 12. (Color online) As in Fig. 3 with ζb = ζa and κj = 0.1ζa

for j ∈ {1, . . . N}. These results correspond to the arrow in Fig. 11(c).

indices are entangled in pairs, as shown in Fig. 10(a), again at
the price of a rather small value of the replicated entanglement.

In general, when further sources of dissipation are present,
entanglement replication is further degraded, and the pairwise
steady-state entanglement can never attain the value of the
maximum entanglement of the squeezed reservoir, as shown
in Fig. 11. Nevertheless, the qualitative behavior described
previously is still observed. In Figs. 11(a) and 11(b), we report
the situation in which the two arrays are open at both ends
with the decay rate of the last cavity of each array equal to
the rate at which the first cavity exchanges photons with the
driving reservoir: κN = ζa . In this case E

(cav)
N [j,j ] saturates

to values smaller than the value of the driving field when the
squeezing bandwidth of the reservoir increases. In particular,
all but the first and the last pairs saturate to the same value of
entanglement; see Fig. 11(a). It is also interesting to note, see
Fig. 11(b), that in this situation only the entanglement of the
first and of the last pairs depends on the dissipation rates of the
arrays, while the entanglement for all the other pairs remains
constant. The behavior of the first pair at large ζa is similar
to that discussed in Fig. 8, while the decay of E

(cav)
N [j,j ] for

the last pair is due to the fact that at large κN the last pair is
effectively decoupled from the rest of the two arrays.

Finally, in Fig. 11(c) we consider the situation in which
all the cavities are lossy. In this case the maximum replicated
entanglement is smaller than that of the driving field and it
is different for each pair. We note that even if all the cavities
dissipate and thus the replicated entanglement is reduced, in
any case, as long as the squeezing bandwidth is sufficiently
large, only the interarray pairs of cavities with the same indices
can get entangled, regardless of the effect of additional decay
channels affecting the dynamics of the cavities. An example
is shown in Fig. 12 which corresponds to the parameters
indicated by the arrow in the upper part of Fig. 11(c).

V. EXPERIMENTAL IMPLEMENTATION

Investigation of the effects of a finite bandwidth is important
because the experimental realization of broadband squeezing
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FIG. 13. (Color online) Spectrum of the squeezed (solid, blue
line) and antisqueezed (dashed, red line) quadratures, measured in
dB and evaluated, using Eqs. (17) and (18), as 10 × log10[S(ω)] and
10 × log10[T (ω)], respectively. The parameters are α = 0.8 GHz,
ζb = 1.1 GHz, and κ0 = 0.05 GHz. This behavior is in agreement
with the experimental findings of Ref. [23].

is extremely challenging. Recently, squeezing of light at
telecommunication wavelength with a bandwidth of several
GHz and with noise reduction of ∼3 dB (∼10 dB when
corrected for detector inefficiency) has been reported in [23].
Equations (17) and (18) yield results consistent with those
of Ref. [23], as shown in Fig. 13, when α = 0.8 GHz,
ζb = 1.1 GHz, and κ0 = 0.05 GHz.

Arrays of cavities in the range of telecom wavelengths
are actively investigated in various physical implementations.
Realization of cavity arrays looks particularly promising using
photonic crystals. Exploiting the latter, in Ref. [24–26] cavity
arrays of high quality factor Q (Q ∼ 106) have been studied
experimentally: the reported cavity decay rates are of the order
of ∼1 GHz, while the cavity-cavity coupling strengths range
from 60 to 2000 GHz. They are controlled by realizing different
intercavity spacings, where larger spacing corresponds to
smaller couplings. These parameters, when combined with
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FIG. 14. (Color online) As in Fig. 3 with N = 5, ηj = 1 GHz,
∀j ∈ {1, . . . N}, ζa = 0.1 GHz, κj = 0.1 GHz, ∀j ∈ {1, . . . N}, α =
0.8 GHz, ζb = 1.1 GHz, and κ0 = 0.05 GHz.

the squeezing source of Ref. [23], are surely too large for
an experimental verification of the entanglement replication
mechanism. Specifically, while it seems reasonable that the
coupling strengths can be in principle reduced by increas-
ing the spacing of the arrays using present-day technology
[24–26], significant experimental effort is likely to be required
in order to reduce the decay rate of the cavities. On the other
hand, photonic-crystal-based nanocavities with larger quality
factors are expected to be realizable in the near future [27,28].
In order to approach the regime in which entanglement replica-
tion is expected to take place, the decay rates should be reduced
by roughly one order of magnitude. Employing the range of
parameters identified in Fig. 13 for the source of squeezing,
we report in Fig. 14 the entanglement patterns at the steady
state of two arrays, each with N = 5 cavities, when the decay
rates are set at κj = 0.1 GHz. From this analysis one sees that
entanglement replication takes place and is sufficiently sizable.

VI. CONCLUSIONS

We have analyzed the dynamics of nondirectly interacting
chains of quantum harmonic oscillators when they are locally
driven by a common reservoir of entangled particles. In the
limit of a broadband reservoir the dynamics of the arrays
can be described within the framework of a Markovian
master equation. The steady state is then characterized by the
formation of many interchain pairs of entangled oscillators.
Each pair is made of one element of the first array and of the
corresponding element, at the same position, of the second
array. Ideally, each pair is entangled with the same degree
of entanglement of the reservoir, regardless of the length of
the arrays and of the position of each pair in the arrays,
as originally discussed in Ref. [4]. In the present work we
have investigated how the pairwise entanglement is affected
when the reservoir has a generic (finite) bandwidth. We have
considered arrays of linearly coupled optical cavities, and we
have modeled the driving entangled reservoir as the two-mode
output field of a nondegenerate optical parametric oscillator.
This choice is physically motivated in that it allows one
to vary the statistical properties of the reservoir by varying
experimentally the characteristic parameters of the parametric
oscillator, that is, the nonlinear coupling strength α and the
decay rate ζb.

As the bandwidth of the squeezing is reduced, the degree
of entanglement replication is lowered and the entanglement
of the interarray pairs cannot reproduce the one originally
shared by the modes of the reservoir. In all cases, steady-state
pairwise entanglement between cavities with the same indices
along the two arrays takes place as long as the bandwidth of the
squeezing is not smaller than the typical frequency scales of
the arrays which are set by the cavity-cavity coupling strengths
ηj and by the cavity decay rates ζa and κj .

It is also interesting to remark that although the correlations
of the operators of the parametric oscillator below threshold
are characterized by two time scales, a short time scale 1/(ζb +
α) related to the squeezed quadrature and a large time scale
1/(ζb − α) related to the antisqueezed quadrature, only the
first one is relevant for the onset of entanglement replication.
In particular, even when 1/(ζb − α) is so large as to prevent
a Markovian description of the dynamics, the entanglement
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replication can take place as long as 1/(ζb + α) is sufficiently
small.

In future investigations we plan to study situations involving
systems of qubits, either by doping each cavity with a two-level
system or by considering spin chains directly driven by an
entangled reservoir.
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