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We investigate the quantum mechanics of a single particle constrained to move along an arbitrary smooth
reference curve by a confinement that is allowed to vary along the waveguide. The Schrödinger equation is
evaluated in the adapted coordinate frame and a transverse-mode decomposition is performed, taking into account
both curvature and torsion effects and the possibility of a cross-section potential that changes along the curve
in an arbitrary way. We discuss the adiabatic structure of the problem, and examine nonadiabatic couplings that
arise due to the curved geometry, the varying transverse profile, and their interplay. The exact multimode matrix
Hamiltonian is taken as the natural starting point for few-mode approximations. Such approximate equations
are provided, and it is worked out how these recover known results for twisting waveguides and can be applied
to other types of waveguide designs. The quantum waveguide Hamiltonian is recast into a form that clearly
illustrates how it generalizes the Born-Oppenheimer Hamiltonian encountered in molecular physics. In analogy
to the latter, we explore the local gauge structure inherent to the quantum waveguide problem and suggest the
usefulness of diabatic states, giving an explicit construction of the adiabatic-to-diabatic basis transformation.
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I. INTRODUCTION

Structures that are designed to controllably guide waves
along certain directions in space are abundant in physics and
essential for a large number of technological applications.
Waveguides are routinely used to channel electromagnetic,
optical, acoustic, and nowadays also quantum mechanical
waves. Quantum waveguide models arise in the description
of electrons in nanowires (cf. [1] and references therein) or
guided on a chip [2], neutrons propagating along fibers [3,4],
and undulated optical slab waveguides [5,6], but on a more
abstract level can also provide insights into the dynamics of
chemical (see, e.g., [7,8]) or nuclear [9] reactions. Experi-
ments dedicated to the investigation of quantum waveguide
systems include magnetoresistance measurements [10] that
have been interpreted as indications of resonances due to
bound states in the curved quantum wire [11] and studies
of microwave resonators simulating the Schrödinger equa-
tion [9,12–15]. With the advent of flexible and highly con-
trollable technology for trapping and manipulating ultracold
atoms and degenerate quantum gases, new experimental
realizations of quantum waveguides were put forward, in
particular, making use of highly miniaturized atom chip
magnetic traps [16,17]. Ultracold bosons have been explored
in the context of atom optics [18], and experiments have
demonstrated the possibility of controllably guiding them in
elongated potentials [19–21], through beam splitters [22,23],
and trapping them in ring-shaped geometries [24–27] or in
the evanescent light field around an ultrathin optical nanofiber
[28–30]. Promising applications making use of bosonic quan-
tum waveguides range from sensitive interferometry [31,32]
to quantum information processing [33] and atomtronic de-
vices [34], such that their structural and dynamical properties
have attracted much attention [35]. A point of particular recent
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interest is probing and tailoring the transverse (“vibrational”)
state of a guided matter wave [36–38].

Beyond the context of cold atoms, there is a substantial
literature on theoretical approaches to the quantum waveguide
problem. Circumventing conceptual problems in the quanti-
zation procedure of ideally constrained systems [39], a single
quantum particle in the presence of a potential that strongly
grows when leaving a given curve was studied in [40,41],
taking the limit of the confining potential being uniform along
the curve and becoming infinitely strong and thin. It was
shown that in this limit the wave function (after a suitable
rescaling) factorizes into a longitudinal and a transverse part,
where the longitudinal factor experiences an effective attrac-
tive geometric potential term proportional to the square of
the local curvature. This finding stimulated a large number
of mathematically rigorous studies considering this ultrathin
waveguide limit in more detail and proving the existence of
geometrically induced bound states due to the curvature (see
the reviews [42–45] and references therein). Furthermore, it
was shown that local deformations in the transverse shape of
a hard-wall waveguide potentially also lead to the existence
of bound states [46,47]. When going beyond the ultrathin
waveguide limit with a slowly (if at all) varying transverse
profile, the adiabatic factorization of the wave function breaks
down and different transverse modes are nonadiabatically
coupled to each other, due both to curvature and torsion and to
local variations in the cross-section profile of the waveguide.
Individually, these effects have been addressed theoretically
using the transverse-mode decomposition technique, mapping
the problem to a set of coupled differential equations. On
the one hand, in [42] this was worked out for the special
case of a circular hard-wall transverse potential that does
not change along the waveguide, serving as the starting point
for a perturbative expansion of the eigenvalue spectrum (see
also [48,49]). On the other hand, for a straight waveguide
with a spatially varying cross section, the transverse-mode
decomposition has been performed in [50,51], while only a
lowest-order correction to this including weak curvature was
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suggested in [35]. The decomposition method is also applied
in recent works [52,53].

The transverse-mode decomposition for the quantum
waveguide is reminiscent of the Born-Oppenheimer expan-
sion [54–56] in molecular physics. Making use of the formal
similarity between the problems as discussed, e.g., in [57],
some of the mathematical techniques developed for the Born-
Oppenheimer problem (recently summarized in [58]) have
been carried over to the realm of the quantum waveguide.
This goes, in particular, for the so-called space-adiabatic
perturbation theory reviewed in [59,60], which allows the
construction of effective Hamiltonians governing the time
evolution inside almost invariant subspaces that to lowest order
in the perturbation parameter coincide with the adiabatically
decoupled single-mode spaces. Going beyond this lowest
order, the almost invariant subspace is modified by a prescribed
“tilt” admixing other modes [61]. Assuming a particular
scaling behavior of the various length scales, the first few
orders of this adiabatic perturbation theory expansion for the
quantum waveguide problem have been worked out in [62,63]
(see also the recent work Ref. [64]). While this perturbation
scheme is mathematically rigorous and insightful from a
formal point of view, it can be expected that in many situations
the plain transverse eigenstates will persist to play a crucial
role as immediate, intuitive points of reference, also since they
are accessible to direct measurements [65–67]. Knowledge
of the nonadiabatic coupling matrix elements between them
determined by the interplay of curved geometry and cross-
section deformations provides a natural starting point for
understanding, and ultimately engineering, the longitudinal
dynamics and transverse profiles of guided waves.

In the present work, we put forward a theory that details
these nonadiabatic couplings between transverse modes for a
quantum waveguide of essentially arbitrary curvature and tor-
sion and an arbitrary cross-section potential which is allowed
to vary along the longitudinal direction. This is achieved by
means of a transverse-mode decomposition. The known results
of either the cross section being constant or the waveguide
being straight are recovered by this comprehensive approach
in a natural way. In particular, in the absence of curvature the
molecular Born-Oppenheimer Hamiltonian with one nuclear
degree of freedom is reobtained as a limiting case, and we pro-
vide its generalization due to the curved geometry. Having set
up the exact theory with infinitely many transverse modes, we
explore the conditions for adiabatic decoupling using suitable
series expansions of the matrix elements. Beyond the adiabatic
limit, the nonadiabatic couplings will not become uniformly
large, but rather predominantly couple certain sets of trans-
verse modes such that few-mode approximations are appropri-
ate, and we explicate the corresponding coupled-mode equa-
tions and effective potential terms arising there. Finally, it has
been shown that the molecular multimode Born-Oppenheimer
problem exhibits a local U(N ) gauge symmetry [68,69], and
we investigate how this generalizes in the presence of curvature
and torsion. This analogy immediately suggests the usefulness
of the concept of a diabatic basis [70] in the waveguide prob-
lem, and we give an explicit construction of the adiabatic-to-
diabatic basis transformation matrix. Besides providing a full
transparent picture of nonadiabatic effects in quantum waveg-
uides, the coupled-mode equations given here could also form

the starting point for numerical computations, since even today
simulations of the full three-dimensional Schrödinger equation
including the waveguide potential are challenging [71].

The paper is aimed at being self-contained and is there-
fore structured as follows. Section II introduces the waveg-
uide setup and the construction of the adapted coordinate
frame. Section III evaluates the Schrödinger equation (or,
equivalently, the Gross-Pitaevskii equation for noninteracting
condensed bosons [72]) in this frame, and subsequently the
transverse-mode decomposition is performed. In Sec. IV, the
obtained multimode matrix Hamiltonian is recast into a form
that is manifestly Hermitian and generalizes the molecular
Born-Oppenheimer matrix Hamiltonian, such that in Sec. V
established few-mode approximation schemes can be applied
to the quantum waveguide and are worked out for simple
examples. Section VI gives a detailed study of the local U(N )
gauge structure of the problem and introduces the diabatic
basis. Some calculations omitted from the main text are given
in Appendices A and B.

II. PARAMETRIZATION OF CURVES
AND ADAPTED COORDINATE FRAME

In this section we provide key features of space curves
needed in this work and of the adapted coordinate frame that
in the following is used to conveniently parametrize the tubular
region of space containing the quantum waveguide. The shape
of the waveguide will generally be parametrized by a smooth
reference curve �a : R → R3, combined with a potential V⊥
that varies and eventually steeply ascends when moving away
from this curve. We take the space curve �a to be parametrized
by its arc length u1 and assume that a comoving orthonormal
tripod of vectors �t = ∂ �a/∂u1 (tangential), �n (normal), �b
(binormal) adapted to the curve exists, whose propagation
along u1 is determined by Frenet-Serret-type equations of
motion (the dot denotes the derivative with respect to u1

throughout this work)⎛
⎜⎜⎝

�̇t(u1)

�̇n(u1)

�̇b(u1)

⎞
⎟⎟⎠ =

⎛
⎜⎝

0 κ(u1) 0

−κ(u1) 0 τ (u1)

0 −τ (u1) 0

⎞
⎟⎠

⎛
⎜⎝

�t(u1)

�n(u1)

�b(u1)

⎞
⎟⎠, (1)

with arbitrary, but smooth, curvature κ(u1) and torsion τ (u1).
This generically holds for regular curves, with a globally
nonvanishing curvature, but we can also allow for κ to have
zeros and change sign along u1. The vectors �n, �b and any
rotation of them �e2 = cos θ �n + sin θ �b, �e3 = − sin θ �n + cos θ �b,
with arbitrary θ = θ (u1), span the normal plane perpendicular
to the tangential vector �t at each position along the curve.
Then, one can parametrize a region of space in the vicinity of
the curve by coordinates �u = (u1,u2,u3) via �r(�u) = �a(u1) +
u2�e2(u1) + u3�e3(u1), where the ranges of u2 and u3 have to
be restricted sufficiently to make the coordinate mapping one
to one. The local natural basis of this curvilinear coordinate
system is found to be (�e1,�e2,�e3), with �e2,�e3 as defined above
and the basis vector �e1 (prior to normalization) given by

�e1 = (1 − κu2 cos θ + κu3 sin θ ) �t
+ (θ̇ + τ ) (−u2 sin θ − u3 cos θ ) �n
+ (θ̇ + τ ) (u2 cos θ − u3 sin θ ) �b. (2)
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From this, one immediately sees that the natural basis vectors
of the new coordinate system are orthogonal for nonzero
values of u2, u3 (i.e., away from the curve) if and only
if θ̇ (u1) + τ (u1) = 0 is chosen. This defines the so-called
Tang frame [73] employed throughout this work. Let us next
introduce polar coordinates (ρ,ϑ) in the normal plane by
setting u2 = ρ cos ϑ,u3 = ρ sin ϑ . We focus here on the case
of an open curve, rendering the mapping of u1 onto the curve
unique. However, many of the results below are independent
of this assumption.

In the Tang frame, global orthogonality of the
basis vectors ensures that the metric tensor g having
entries gij = (∂�r/∂ui) · (∂�r/∂uj ) is diagonal, with
g11 = |g| = (1 − κu2 cos θ + κu3 sin θ )2, g22 = g33 = 1.
Thus, the inverse of g is also diagonal with entries
g11 = |g|−1, g22 = g33 = 1. It is obvious that for an arbitrary
reference curve �a the coordinates u1,u2,u3 will not form a
good parametrization of the full R3, but only of a tubular
region around the curve. The local necessary condition for
the coordinate transformation to be injective reads |g| �= 0.
Since we want points with u2 = u3 = 0, i.e., lying on
the reference curve �a itself, to be included in the region
of space where our parametrization is well-defined, this
translates to 1 − κρ cos(ϑ + θ ) > 0 in polar coordinates.
A simple sufficient condition for this to hold is given by
ρ < 1/|κ|. This condition is not necessary, though. In
particular, at each position u1, there is one direction ϑ

in the normal plane for which cos(ϑ + θ ) vanishes and
ρ can be chosen arbitrarily large without conflicting with
the (local) injectivity of the coordinate mapping. This free
direction is the direction of the binormal vector �b. If the
whole curve lies in a plane, the coordinate system can be
extended infinitely far in the direction normal to this plane.
On the other hand, generally the global shape of the curve
can lead to stronger limitations on the allowed range of
u2,u3 than the local condition: If the curve comes close
to self-intersecting, this can cause overlap of the tubular
regions around the curve, inflicting injectivity of the coordinate
transformation.

III. TRANSVERSE-MODE DECOMPOSITION

In this section we project the quantum waveguide problem
onto a system of coupled longitudinal equations by means
of the transverse-mode decomposition, where in contrast
to earlier works we allow for both nonvanishing curvature
and torsion and a transverse profile that may change along
the waveguide. Our starting point is the three-dimensional
Schrödinger equation for the single-particle wave function
�(�r,t) in the presence of an external potential V ,

i�∂t�(�r,t) = H0�(�r,t) =
[
− �

2

2M
	R3 + V (�r)

]
�(�r,t),

(3)

and we transform it to the Tang frame coordinates. Restricting
the support of the wave function to the corresponding tubular
region around the curve is achieved by applying a strongly
confining potential V and ultimately Dirichlet boundary
conditions. As a consequence, the particle cannot explore
regions in space to which the Tang frame cannot be extended.
Tunneling between different segments of the curve through the
ambient space is therefore prohibited in our model.

The Jacobian of the above coordinate transformation
is given by

√|g|; thus, the volume element reads dV =√|g|du1du2du3. It is well known that the Tang frame
Schrödinger equation greatly simplifies if the square root of
the coordinate transformation’s Jacobian is absorbed into the
full wave function, i.e., if one works with χ (�u,t) := |g|1/4�

instead of �, such that
∫

dV |�|2 = ∫
du1du2du3|χ |2. Impor-

tantly, the Dirichlet boundary conditions for � immediately
carry over to Dirichlet boundary conditions for χ . The effective
Hamiltonian H for the transformed wave function χ is now
defined via H = |g|1/4H0|g|−1/4, such that i�∂tχ = Hχ . Only
the kinetic part will be affected by this transformation. To eval-
uate it, we need to express the Laplace-Beltrami operator in the
adapted coordinate frame, 	R3 = gij

2|g| (∂i |g|)∂j + (∂ig
ij )∂j +

gij ∂i∂j , where ∂i denotes the derivative with respect to ui .
Then it is straightforward to calculate all the derivatives and
we obtain the explicit form of the Schrödinger equation for χ :

i�∂tχ = − �
2

2M(1 − κu2 cos θ + κu3 sin θ )2

{
∂2

1 + (1 − κu2 cos θ + κu3 sin θ )2
(
∂2

2 + ∂2
3

) + κ2

4

+ 2
κτ (u2 sin θ + u3 cos θ ) + κ̇(u2 cos θ − u3 sin θ )

1 − κu2 cos θ + κu3 sin θ
∂1 + 5

4

[κτ (u2 sin θ + u3 cos θ ) + κ̇(u2 cos θ − u3 sin θ )]2

(1 − κu2 cos θ + κu3 sin θ )2

+ 1

2

(2κ̇τ + κτ̇ )(u2 sin θ + u3 cos θ ) + (κ̈ − κτ 2)(u2 cos θ − u3 sin θ )

1 − κu2 cos θ + κu3 sin θ

}
χ + V χ. (4)

The terms in Eq. (4) have been discussed in [74]. For a
curve with vanishing torsion, τ ≡ 0, one can recover the
two-dimensional result as expected. Given τ = 0, then θ̇ = 0,
so θ is constant along the curve. Choosing it to be θ ≡ 0 (in
which case the Frenet tripod coincides with the basis vectors of
the Tang frame along the curve, �n = �e2, �b = �e3), one recovers
the well-known result of [75].

We now proceed to the transverse-mode decomposition,
paralleling the adiabatic separation of slow and fast degrees

of freedom as it is, e.g., applied in the Born-Oppenheimer
method in molecular physics. Let us assume that the external
potential separates in the form V = V1(u1) + V⊥(�u⊥; u1),
where V⊥ contains the waveguide potential that confines
the particle to essentially follow the curve and limits the
wave function support to the region of well-defined Tang
frame coordinates. This potential term depends on the trans-
verse coordinates �u⊥ = (u2,u3) and, in general, also paramet-
rically on the arc length parameter u1. This u1 dependence
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models arbitrary smooth deformations of the waveguide along
the curve, ranging from modest variations in the cross section
to more extreme changes in the structure of V⊥; for example,
fading between different single- and multiwell structures as
are relevant, e.g., for beam-splitting applications [76–78]. On
top, there can be an extra potential V1 that only depends on
the arc length coordinate u1. The crucial observation is now
that the full Hamiltonian H exactly contains the
canonical transverse Hamiltonian H⊥(u1) = −�

2/(2M)∇2
⊥ +

V⊥(�u⊥; u1) for the fast degrees of freedom, which parametri-
cally depends on u1 only through V⊥. Here ∇2

⊥ = ∂2
2 + ∂2

3 has
been introduced. Keeping u1 fixed and diagonalizing H⊥(u1)
is the direct analog of diagonalizing the molecular electronic
Hamiltonian with the nuclei clamped at their positions. We as-
sume now that for each u1 the transverse Hamiltonian has been
diagonalized, yielding eigenvalues En(u1) and orthonormal

eigenfunctions φn(�u⊥; u1) according to

H⊥(u1)φn(�u⊥; u1) = En(u1)φn(�u⊥; u1), (5)

satisfying the orthonormality relation
∫

du2du3φ
∗
mφn =:

〈φm|φn〉 = δmn at each u1. Throughout this work the notation
〈· · · | · · · 〉 is reserved for the scalar product in the normal plane.
We assume a transverse potential V⊥(�u⊥; u1) such that both the
transverse eigenvalues and eigenfunctions smoothly depend
on u1, and their derivatives with respect to the arc length
parameter are well defined. Any stationary wave function can
now be expanded as χ (�u) = ∑

n ψn(u1)φn(�u⊥; u1), where the
sum runs over the complete set of transverse modes. From now
on we focus on the stationary Schrödinger equation Hχ = Eχ ,
with E denoting the total energy eigenvalue. This is reduced
to a set of coupled ordinary differential equations for the
longitudinal modes by projecting with 〈φm|, yielding the exact
result

Eψm(u1) = [V1(u1) + Em(u1)] ψm(u1) − �
2

2M

∑
n

{
〈φm| 1

(1 − κn̂)2
|φn〉∂2

1 + 2〈φm| 1

(1 − κn̂)2
|∂1φn〉∂1 + 〈φm| 1

(1 − κn̂)2

∣∣∂2
1 φn

〉

+〈φm|2κ̇ n̂ + 2κτ b̂

(1 − κn̂)3
|φn〉∂1 + 〈φm|2κ̇ n̂ + 2κτ b̂

(1 − κn̂)3
|∂1φn〉 + κ2

4
〈φm| 1

(1 − κn̂)2
|φn〉

+ 1

2
〈φm| (κ̈ − κτ 2)n̂ + (2κ̇τ + κτ̇ )b̂

(1 − κn̂)3
|φn〉 + 5

4
〈φm| (κ̇ n̂ + κτ b̂)2

(1 − κn̂)4
|φn〉

}
ψn. (6)

Here we have introduced n̂ and b̂, which denote the projection
of a vector �u⊥ = u2�e2 + u3�e3 in the normal plane onto the
local Frenet normal vector �n(u1) and binormal vector �b(u1),
respectively, i.e.,

n̂ := �n · �u⊥ = u2 cos θ − u3 sin θ = ρ cos(θ + ϑ),
(7)

b̂ := �b · �u⊥ = u2 sin θ + u3 cos θ = ρ sin(θ + ϑ),

where for convenience also the expressions in polar coordi-
nates have been given. It is interesting to note that while in
the construction of orthogonal adapted coordinates we had to
work in terms of the Tang frame vectors �e2, �e3 spanning the
normal plane, the normal and binormal of the Frenet tripod
reenter the formalism, and we see below that matrix elements
of powers of n̂ and b̂ are of crucial importance when estimating
which terms in the system of coupled ordinary differential
equations (6) give the dominant contributions.

IV. HERMITIAN MATRIX FORMULATION

In this section, we study the system of Eqs. (6) in more
detail. We show that it can be cast into a more compact infinite-
dimensional matrix form, where also the Hermitian nature of
the Hamiltonian is manifest. The nonadiabatic coupling matrix
elements are analyzed, and series expansions are given that
allow for their simple approximate evaluation in the limit of a
thin waveguide. In the following we employ the shorthand

D := (1 − κu2 cos θ + κu3 sin θ )−2 = (1 − κn̂)−2, (8)

such that Ḋ = 2 κ̇ n̂+κτ b̂
(1−κn̂)3 , where the Tang frame condition θ̇ =

−τ was used. Then the kinetic terms involving derivatives with
respect to u1 in the right-hand side of Eq. (6) can be written in
the alternative form (see Appendix A)

〈φm|D|φn〉∂2
1 + 2〈φm|D|∂1φn〉∂1 + 〈φm|Ḋ|φn〉∂1

+〈φm|D∣∣∂2
1 φn

〉 + 〈φm|Ḋ|∂1φn〉
= ∂1〈φm|D|φn〉∂1 − δmn∂

2
1 + [(∂11 + F)2]mn + Gmn,

(9)

where 1 denotes the identity matrix and the matrices F and G
are defined via

Fmn := 1

2
(〈φm|D|∂1φn〉 − 〈∂1φm|D|φn〉) , (10)

Gmn := 1

2

(〈∂1φm|Ḋ|φn〉 + 〈φm|Ḋ|∂1φn〉 + 〈
∂2

1 φm

∣∣D|φn〉

+ 〈φm|D∣∣∂2
1 φn

〉) −
∑

k

FmkFkn. (11)

Here
∑

k is summed over the complete set of transverse eigen-
states. These definitions immediately imply F ∗

mn = −Fnm,
G∗

mn = Gnm, such that G and iF are Hermitian matrices.
Furthermore, we introduce the Hermitian matrices V, D, and
C, defined by

Vmn := δmn[V1(u1) + Em(u1)],
(12)

Dmn := 〈φm|D|φn〉 = 〈φm| 1

(1 − κn̂)2
|φn〉,
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Cmn := κ2

4
〈φm| 1

(1 − κn̂)2
|φn〉

+ 1

2
〈φm| (κ̈ − κτ 2)n̂ + (2κ̇τ + κτ̇ )b̂

(1 − κn̂)3
|φn〉

+ 5

4
〈φm| (κ̇ n̂ + κτ b̂)2

(1 − κn̂)4
|φn〉. (13)

By construction we know that the multiplication operator
D > 0 globally, which implies that the matrix D is not
only Hermitian, but also positive-definite, which becomes
important below.

Introducing the momentum operator p1 = −i�∂1 and the
(infinite-dimensional) column vector of longitudinal wave
functions �ψ(u1) := (ψ1,ψ2, . . . )T we can now obtain the
compact final form of the stationary Schrödinger equa-
tion in matrix representation, equivalent to the system of
Eq. (6):

E �ψ = H �ψ :=
{

V + 1

2M
[p1(D − 1)p1

+ (p11 − i�F)2 − �
2G − �

2C]

}
�ψ. (14)

As desired, the matrix Hamiltonian H is immediately seen
to be Hermitian with respect to the scalar product in the
projected space ( �ψ | �ψ ′) := ∫

du1 �ψ†(u1) �ψ ′(u1), as p1 and all
matrix operators in H are Hermitian with respect to the scalar
product (· · · | · · · ). We should remark that, rather unusually, the
Hamiltonian of Eq. (14) features two kinetic terms. The first
one, p1(D − 1)p1, vanishes in the limit of a straight waveguide
with κ ≡ 0, implying D ≡ 1 globally, and has no counterpart
in the molecular Born-Oppenheimer problem. On the other
hand, if the transverse potential is u1 independent, we can
choose F ≡ 0, and both terms can be merged to p1Dp1. In
fact, it is always possible to merge the kinetic terms into one,
at the price of also changing the scalar part of the matrix
Hamiltonian in a suitable way. This is explored in Sec. V and
Appendix A.

So far, we have not made any specific assumptions on
the shape of the waveguide. Generally, the exact matrix
Hamiltonian H will have both diagonal and off-diagonal
elements, such that the various transverse modes are intimately
coupled. As a generic feature of a quantum waveguide, we can
expect, however, that there is a separation in length scales,
such that the potential V⊥ strongly localizes the wave function
in the normal plane and forces it to stay close to the reference
curve. In the limit of the waveguide becoming ultrathin the
transverse modes decouple. We are now in a position to
systematically study the nonadiabatic couplings elements as
well as the adiabatic decoupling limit of the exact, general
multimode equation. To obtain further insight into the coupling
matrixelements, we need the following expansions which are

easily derived from the geometric series:

1

(1 − ξ )2
=

∞∑
l=0

(l + 1)ξ l,
1

(1 − ξ )3
=

∞∑
l=0

(l+1)(l+2)

2
ξ l,

1

(1 − ξ )4
=

∞∑
l=0

(l + 1)(l + 2)(l + 3)

6
ξ l, ξ ∈ (−1,1).

(15)

The strategy is to use these to expand the coupling matrix
elements in the multimode Hamiltonian into powers of suitable
small parameters, such that approximations can be obtained by
simply truncating the series or using more refined perturbative
schemes. In particular, the problem of finding the coupling
matrix elements will be reduced to calculating matrix elements
of products and powers of the projected position operators in
the normal plane, n̂ and b̂. For the special case of a Dirichlet
waveguide of constant cross section, such expansions have
been given in [42]. Let us start with the matrix D from the
kinetic part of the Hamiltonian. Assuming that the limit of
the sum and the integration with respect to u2,u3 can be
interchanged, we can write for its matrix elements

Dmn = 〈φm| 1

(1 − κn̂)2
|φn〉 = δmn +

∞∑
l=1

(l + 1)κl〈φm|n̂l|φn〉.

(16)

The first term δmn simply reflects the orthonormality of
the transverse modes. The terms in the remaining sum are
proportional to κl multiplied by a matrix element of the lth
power of the transverse position operator projected onto the
Frenet normal, n̂l . If the confining potential in the normal
direction is very tight and strong, such that it localizes the
transverse modes on a length scale much smaller than the
radius of curvature 1/κ , then κl〈φm|n̂l|φn〉 will be suppressed
with increasing l, and in the lowest-order approximation
Dmn ≈ δmn becomes diagonal, such that the transverse modes
decouple. While quite different arguments for this decoupling
limit have been given, often on the basis of Eq. (4) only
and arguing u2, u3 to be negligible by themselves, a crucial
advantage of the above approach is that it transparently
highlights the role of the transverse modes: Which of the terms
κl〈φm|n̂l|φn〉 can be neglected at which level of precision is, in
general, not only a matter of a simple length scale comparison,
but also depends on the shape of the wave functions φm, φn.
Given the potential V⊥, these can be calculated explicitly, and
one can precisely monitor which terms in the expansion of each
matrix element Dmn should be kept and which can be safely
ignored. In particular, by symmetry reasons certain matrix
elements of n̂l may vanish exactly, which cannot be captured
by a simple scaling analysis.

In a similar fashion, we proceed for C. Expanding its matrix
elements we find

Cmn = κ2

4

[
δmn +

∞∑
l=1

(l + 1)κl〈φm|n̂l|φn〉
]

+ 1

4

∞∑
l=0

(l + 1)(l + 2)κl〈φm|[(κ̈ − κτ 2)n̂ + (2κ̇τ + κτ̇ )b̂]n̂l|φn〉

+ 5

24

∞∑
l=0

(l + 1)(l + 2)(l + 3)κl〈φm|(κ̇ n̂ + κτ b̂)2n̂l|φn〉. (17)
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If, as discussed above, strong and tight confinement in the
normal direction is assumed and all products of κl and a matrix
element containing n̂l are neglected for l � 1, this expansion
breaks down to

Cmn ≈ κ2

4
δmn + κ̈

2
〈φm|n̂|φn〉 + κ̇τ 〈φm|b̂|φn〉 + κ

2
τ̇ 〈φm|b̂|φn〉

+ 5

4
κ̇2〈φm|n̂2|φn〉 + 5

4
κ2τ 2〈φm|b̂2|φn〉, (18)

indicating that even if the extension of the waveguide in the
normal direction is small compared to the radius of curvature
1/κ , C may contain relevant off-diagonal couplings. If, as
can be explicitly checked once the transverse potential is
specified, the last five terms on the right-hand side of Eq. (18),
which contain matrix elements of powers of n̂ and b̂ and are
therefore suppressed in the ultrathin waveguide limit, can also
be neglected, only the diagonal contribution κ2/4 remains.
This leading-order term is independent of the transverse modes
and thus the details of the confinement V⊥. This attractive,
purely geometric potential term in the decoupled single-mode
longitudinal equations was first identified in [40], under the
assumption of the extension of the wave function away from
the curve along any direction in space being small compared
to any other length scale in the system. Keeping the full
matrix elements as done above has the advantage of preserving
limiting cases that go lost in the standard procedure where a
single confinement length scale in the normal plane is assumed.
In particular, it makes it possible to see that in the special case
of vanishing (or very small) torsion τ and change of torsion τ̇ ,
the binormal direction is (essentially) unrestricted; i.e., matrix
elements of b̂ and b̂2 do not have to be small to obtain adiabatic
decoupling.

If the potential V⊥ is independent of u1, and the transverse
modes are correspondingly also chosen to be u1 independent,
then D and C are the only terms in the Hamiltonian that can

induce nonadiabatic couplings. Introducing a single formal
small parameter that comes with each power of n̂ or b̂, then
the above expansions naturally lead to a perturbation theory
beyond the lowest decoupled order, as detailed in [42,48,49]
and similarly in [79]. This approach has its limitations, though,
since generally κ , τ , their derivatives and the various matrix
elements of n̂, b̂ may induce very different length scales.

We now turn to the matrix elements in the Hamiltonian that
contain derivatives of the transverse modes. These enter the
multimode equations if the transverse potential (as seen from
the Tang frame) changes when moving along the curve, i.e.,
when changing u1. For Fmn we immediately find

Fmn = 〈φm|∂1φn〉 + 1

2

∞∑
l=1

(l + 1)κl

× (〈φm|n̂l|∂1φn〉 − 〈∂1φm|n̂l|φn〉), (19)

where ∂1〈φm|φn〉 = 0 has been used. Assuming again that
the normal confinement is tight such that for any l � 1
products of κl and matrix elements 〈φm|n̂l|∂1φn〉 (now between
one transverse mode and one mode’s first derivative) can
be neglected, this reduces to Fmn ≈ 〈φm|∂1φn〉, which is the
familiar, plain Born-Oppenheimer-type result in the absence
of any curvature. Even in the limit of a straight waveguide,
there will be off-diagonal derivative couplings between the
transverse channels if the shape of the waveguide changes
along u1. Only if this modulation is “spatially slow” and
the modes are energetically well separated, the couplings can
be neglected Fmn ≈ 0, which is the essence of the adiabatic
approximation [see also Eq. (21) and the discussion below].
Beyond the ultrathin limit, the derivative couplings known
from the molecular Born-Oppenheimer framework are modi-
fied by the curvature, in particular allowing for nonvanishing
derivative couplings between modes for which 〈φm|∂1φn〉 itself
vanishes due to symmetry (e.g., parity) reasons.

Finally, we consider the matrix G. In a straightforward
calculation, we find for its matrix elements

Gmn = κ̇

2

∞∑
l=1

l(l + 1)κl−1(〈∂1φm|n̂l|φn〉 + 〈φm|n̂l|∂1φn〉) + τ

2

∞∑
l=1

l(l + 1)κl(〈∂1φm|n̂l−1b̂|φn〉 + 〈φm|n̂l−1b̂|∂1φn〉)

+1

2

∞∑
l=1

(l + 1)κl
(〈
∂2

1 φm

∣∣n̂l|φn〉 + 〈φm|n̂l
∣∣∂2

1 φn

〉) + 1

4

∑
k

∞∑
l,l′=0

′
(l + 1)(l′ + 1)κl+l′

× (〈φm|n̂l|∂1φk〉〈∂1φk|n̂l′ |φn〉 + 〈∂1φm|n̂l|φk〉〈φk|n̂l′ |∂1φn〉 − 〈φm|n̂l|∂1φk〉〈φk|n̂l′ |∂1φn〉 − 〈∂1φm|n̂l|φk〉〈∂1φk|n̂l′ |φn〉),
(20)

where the primed sum means that l = l′ = 0 is excluded.
Here the identities ∂1〈φm|φn〉 = 0, ∂2

1 〈φm|φn〉 = 0, and∑
k |φk〉〈φk| = 1 have been employed. Neglecting, as before,

any products of κl and matrix elements of n̂l for l � 1, and in
a second step also matrix elements of n̂ multiplied by κ̇ and
matrix elements of b̂ multiplied by κτ , one finds that the lowest
order of Gmn vanishes. This coincides with the corresponding
result from the molecular Born-Oppenheimer framework: In
the ultrathin waveguide limit, the only coupling is through

nonzero Fmn. Beyond this limit, G includes both diagonal
corrections and off-diagonal couplings which depend on the
curvature, its first derivative, and the torsion.

If couplings are present, a natural question to ask is which
modes are dominantly coupled to which. A general question to
this answer cannot be expected as long as V⊥ is not specified.
The coupling elements in D and C emerge from matrix
elements such as 〈φm|n̂l|φn〉. For important model classes
of V⊥, such as box or harmonic oscillator confinement [80],
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one can explicitly check that there is a tendency for the
matrix elements to be most significant for values of m, n,
for which Em and En are not too far apart, i.e., modes
that are close in energy are predominantly coupled, as is
also expected from perturbation theory. On the other hand,
symmetry selection rules can suppress certain couplings, even
if these were expected from the simple energetic argument.
In a more general way, the leading-order derivative coupling
term can be argued to be centered around the diagonal
(in terms of neighboring energies) using the off-diagonal
Hellmann-Feynman argument [81],

〈φm|∂1φn〉 = 〈φm|Ḣ⊥|φn〉
En − Em

, Em �= En, (21)

indicating that as long as H⊥ is slowly varying with u1,
to leading order the derivative coupling Fmn between two
states is suppressed by their energy difference. We remark
that in writing Eq. (21) we assume that the u1 derivative of
H⊥ is well defined, which is stronger than assuming that its
eigenmodes and eigenvalues are differentiable with respect
to u1. For instance, if V⊥ contains a hard-wall potential of
spatially varying shape, imposing different Dirichlet boundary
conditions as a function of u1, Ḣ⊥ may not be a meaningful
notion, but all the Em and φm may well be differentiable with
respect to u1 such that the overall formalism applies.

V. FEW-MODE APPROXIMATIONS:
BEYOND THE ADIABATIC APPROACH

In this section we focus on cases in which nonadiabatic
corrections within a certain subset of transverse modes need
to be taken into account, while the coupling to modes outside
of this set is negligible. In this common situation, one may
approximately resort to a restriction of the matrix Hamiltonian
obtained above to the set of coupled modes. The coupled
equations resulting from such a few-mode approximation are
worked out in the following, leading to the emergence of new
effective potential terms. These are explicated for the simple
case of a twisting waveguide and a shifting-based waveguide
design to be introduced below.

The expansions presented in the previous sections indi-
cate that, in the limit of the waveguide confinement being
sufficiently tight and strong in all spatial directions and only
slowly varying along u1 (with no pair of transverse modes
coming close to degeneracy), the following lowest-order
approximations hold:

F ≈ 0, G ≈ 0, D ≈ 1, C ≈ κ2

4
1,

Vmn = δmn (V1 + Em) . (22)

This implies that all matrices entering the Hamiltonian H are
approximately diagonal, such that the various modes are fully
decoupled, and each of them approximately is governed by

Eψm =
[
− �

2

2M
∂2

1 + V1(u1) + Em(u1) − �
2κ2

8M

]
ψm. (23)

The different ψm are uncoupled and the mode’s transverse
eigenvalue Em enters the effective Schrödinger equation in the
form of a potential energy term. Additionally, the equation
contains the attractive geometric potential proportional to κ2.

The analog of this approximation in the framework of molec-
ular physics is the plain, lowest-order Born-Oppenheimer
approximation: There is no vibrational coupling between the
different electronic configurations, and the nuclei experience
the electronic eigenvalue as an adiabatic potential energy
surface. The geometric potential, on the other hand, originates
from the curved geometry of the waveguide and is absent
in the molecular problem. Let us remark that, in fact, not
only the term D − 1 in the Hamiltonian is neglected in the
Born-Oppenheimer-type approximation leading to Eq. (23),
but rather the combination p1 (D − 1) p1, involving the longi-
tudinal momentum also. Thus, the validity of the lowest-order
adiabatic approximation is not only limited by the smallness of
the transverse length scales with respect to curvature, torsion,
and their derivatives, but also by the longitudinal momentum:
If the latter becomes too large, this may tend to lead to mode
coupling even for only weakly curved waveguides. The same
is true for the derivative couplings in F, which also come in
combination with the longitudinal momentum p1.

When going beyond the lowest-order terms in the ultrathin,
slowly varying waveguide limit, the matrices in H are no
longer diagonal. Accordingly, different modes ψm are coupled
and one needs to go back to the infinite-dimensional matrix
Schrödinger equation (14). Of course, one cannot hope to
work with an infinite number of transverse modes φm in
practice. Fortunately, in many cases one is allowed to restrict
to a not-too-large finite subset of coupled transverse modes,
since typically the non-negligible off-diagonal couplings will
not be distributed uniformly: There will often be dominant
couplings among certain subsets of transverse states, while
each subset as a whole is essentially decoupled from the
remaining modes. In the case of the derivative couplings
Fmn, we have seen in Eq. (21) that to leading order they are
suppressed by the energy difference between the modes φm

and φn, so if a subset of modes is energetically well separated
from the rest, the couplings leading out of this subset are small.
Similarly, the largest matrix elements of the position operator
projections 〈φm|n̂l|φn〉, 〈φm|b̂l|φn〉, etc., for small l, i.e., for low
orders in the thin waveguide expansions of Sec. IV, typically
also tend to cluster around the diagonal in terms of energy,
where, however, this assumption depends on the shape of the
transverse eigenmodes determined by V⊥ and when in doubt
can be checked explicitly once this is specified.

These considerations give rise to an approximation scheme
which drops the strict assumptions of Eqs. (22), but still asserts
that there is a tractable number of modes that are allowed to
be coupled to each other, but decoupled from the rest. Let S
denote the subset of mode indices labeling the modes that are
taken to be decoupled from the rest. Then approximately it
holds for all m ∈ S,

Eψm =
∑
n∈S

Hmnψn =
∑
n∈S

[
Vmn − �

2

2M
{∂1〈φm|D − 1|φn〉∂1

+ [(∂11 + F)2]mn + Gmn + Cmn}
]
ψn.

(24)

In molecular physics, the analog of this scheme is com-
monly referred to as Born-Huang or group-Born-Oppenheimer
approximation [56]. Now both the matrix square (∂11 + F)2
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and Gmn implicitly contain summations
∑

k over all transverse
modes also the ones not within the subset S. It is desirable to
recast these terms into a form in which modes outside of S
no longer appear and the full matrix F is replaced with its
restriction to the modes in S. We denote this smaller matrix by
F(S), and correspondingly 1(S) denotes the unit matrix whose
dimension equals the number of modes in S. Then one can
check for m,n ∈ S

[(∂11 + F)2]mn + Gmn

= [(∂11(S) + F(S))2]mn −
∑
k∈S

FmkFkn + 1

2

(〈∂1φm|Ḋ|φn〉

+ 〈φm|Ḋ|∂1φn + 〈
∂2

1 φm

∣∣D|φn〉 + 〈φm|D∣∣∂2
1 φn

〉)
, (25)

which, as desired, no longer depends on modes outside of S.
The scalar potential terms emerging here henceforth are called
the Born-Huang potential,

V BH
mn := − �

2

2M

[
−

∑
k∈S

FmkFkn + 1

2

(〈∂1φm|Ḋ|φn〉

+ 〈φm|Ḋ|∂1φn〉 + 〈
∂2

1 φm

∣∣D|φn〉 + 〈φm|D∣∣∂2
1 φn

〉)]
,

(26)

such that the effective coupled Schrödinger equation system
in the subset S [Eq. (24)] now reads

Eψm =
∑
n∈S

[
Vmn + V BH

mn − �
2

2M
{∂1〈φm|D − 1|φn〉∂1

+ [(∂11(S) + F(S))2]mn + Cmn}
]

ψn. (27)

One can immediately verify that in the limit of κ = 0, the Born-
Huang potential matrix reduces to V BH

mn = �
2/(2M)〈∂1φm|

(1 − ∑
k∈S |φk〉〈φk|)|∂1φn〉, reproducing the corresponding

result from the molecular framework (see, e.g., [56]).
When having restricted to a subset S, one can additionally

use truncations of the ultrathin waveguide expansions intro-
duced in Sec. IV to evaluate the matrix elements in Eq. (27),
such that only a finite number of matrix elements of n̂, b̂ and
their powers is required. Then the accuracy of the combined
approximation can be systematically checked by ensuring that
neither enlarging S nor taking into account higher-order terms
in the expansions alters the result. We now return to the task
of merging the two kinetic terms into one. For notational
simplicity, we suppress the superscripts (S) in the following.
In Appendix A it is shown that matrices F′ and V′BH exist such
that

− �
2

2M
[∂1(D − 1)∂1 + (∂11 + F)2] + VBH

= − �
2

2M
(∂11 + F′)D(∂11 + F′) + V′BH, (28)

where the skew-Hermitian matrix F′ is implicitly fixed by 2F =
F′D + DF′ and then the Hermitian matrix V′BH is obtained as

V′BH = VBH − �
2

2M

{
F2 + 1

2
(∂1[F′,D]) − F′DF′

}
. (29)

The matrix equation 2F = F′D + DF′ will be encountered
again below in Sec. VI, where we show that it has a unique
solution F′ and also give a way of constructing this solution
from F and D. Even if the right-hand side of Eq. (28) is
appealing due to its compact symmetric form, it has the
drawback that the terms F and VBH on the left-hand side
are, in general, much simpler to obtain than their primed
counterparts. When discussing transformations of the matrix
Hamiltonian induced by unitary transformations in the space
of transverse wave functions in Sec. VI, we see, however,
that the primed matrices transform in a more natural way.
Depending on the context, it may be advantageous to work in
either representation, both being, of course, fully equivalent.

Let us now apply Eq. (27) to the special case of only one
single mode decoupled from the rest,S = {m}. If all transverse
modes are taken to be u1 independent, this reproduces
the “adiabatic operator” introduced in [42]. If we allow
for the transverse mode to change along u1, we can invoke the
ultrathin waveguide limit again and keep only the lowest-order
terms of the expansions introduced in the previous section,
leading to Dmm ≈ 1, Cmm ≈ κ2/4, Fmm ≈ 〈φm|∂1φm〉, while
V BH

mm ≈ �
2/(2M)[〈∂1φm|∂1φm〉 + 〈φm|∂1φm〉2]. The lowest-

order single-mode effective Schrödinger equation then reads

Eψm =
[
V1(u1) + Em(u1) − �

2

2M
(∂1 + 〈φm|∂1φm〉)2

− �
2κ2

8M
+ �

2

2M
(〈∂1φm|∂1φm〉 + 〈φm|∂1φm〉2)

]
ψm.

(30)

Assuming that the transverse wave function φm is chosen real
at each u1, the term 〈φm|∂1φm〉 vanishes, and there are three
contributions due to the quantum waveguide: (i) the attractive
geometric potential, proportional to κ2; (ii) the transverse
eigenenergy Em(u1), acting as a potential energy surface for
the longitudinal motion; (iii) a repulsive contribution due to
the change of the transverse wave function, proportional to the
norm 〈∂1φm|∂1φm〉 = ‖∂1φm‖2. The first term is responsible for
the emergence of bound states in regions of large curvature,
while the second term can support bound states at minima
of the transverse energy Em(u1), for instance at “bulges” of
Dirichlet waveguides. The last term in Eq. (30) is absent
in the Born-Oppenheimer-type Eq. (23) and arises from the
Born-Huang potential. It has been identified before for the
special setting of a waveguide whose cross section preserves
its shape along u1 but twists with respect to the Tang
frame [45,82,83] (as explored in more detail below) and also in
its general lowest-order form in [62]. Again we can make the
connection to the Born-Huang approximation of molecular
physics here: If φm is chosen real throughout, Fmm ≡ 0,
Ḟmm ≡ 0, then the effective potential term in the Hamiltonian
reads +�

2/(2M)〈∂1φm|∂1φm〉 = −�
2/(2M)〈φm|∂2

1 φm〉, repro-
ducing the diagonal contribution of the longitudinal kinetic
energy operator, as expected [56].

Applications of the lowest-order single-mode Born-Huang
approximation: Twisting and shifting

In this section we specify the single-mode Born-Huang
approximation [Eq. (30)] for two scenarios where the confining
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potential V⊥ depends on u1 in particular ways. First, we
assume that V⊥ preserves its shape along the curve, but
rotates with respect to the Tang frame. This has been termed
“twisting,” and we briefly illustrate here how the more general
Eq. (30) reproduces the known lowest-order result. The relative
angle between some fixed axis of the rotating potential and
the Tang frame will be denoted by the smooth function
α(u1). Of course, α is only well defined up to a constant;
i.e., one is free to choose α(u1,0) = 0 at some position
u1,0. Introducing the rotation operator in the normal plane
R⊥[α] = exp (−(i/�)αJ⊥), withJ⊥ denoting the correspond-
ing angular momentum operator, the twisting assumption
means that the transverse Hamiltonian at a given position
u1 reads H⊥(�u⊥; u1) = R⊥ [α(u1)] H⊥(�u⊥; u1,0)R−1

⊥ [α(u1)].
Thus, the transverse eigenmodes φm(�u⊥; u1,0) at the reference
position u1,0 can be continued to eigenmodes for arbitrary
u1 by setting φm(�u⊥; u1) := R⊥ [α(u1)] φm(�u⊥; u1,0). The
transverse eigenvalues Em will be independent of u1 then.
Starting from a real wave function at u1,0, this choice will
ensure that the mode remains real along u1. From this we find
〈φm|∂1φm〉 = −(i/�)α̇(u1)〈φm|J⊥φm〉, while 〈∂1φm|∂1φm〉 =
(α̇2/�

2)〈φm|J 2
⊥φm〉. Note that the matrix elements of J⊥ and

J 2
⊥ do not change along u1 and can therefore be evaluated at

any desired position. In polar coordinates of the normal plane
J⊥ = −i�∂ϑ and assuming a real transverse wave function
φm, we have 〈φm|J⊥φm〉 = 0, such that the only contribution
of the twisting to the effective potential in Eq. (30) is

Vtwist(u1) = �
2α̇(u1)2

2M
‖∂ϑφm‖2, (31)

reproducing the known result from the literature [45,82,83]:
The longitudinal wave function is repelled by regions of strong
twist (large absolute value of α̇), and the strength of the
repulsion is controlled by the shape of the transverse potential
through the norm of the angular derivative ‖∂ϑφm‖2. This also
implies that a local minimum of |α̇| creates a minimum in the
effective potential that can lead to the existence of bound states
as has been seen in [84].

The second case we discuss here addresses a potential V⊥
that preserves its shape along u1, but is shifted in the normal
plane by a smooth displacement function �d(u1) without
changing its orientation relative to the Tang frame basis
vectors. This gives rise to a waveguide as sketched for a simple
two-dimensional case in the left panel of Fig. 1. Formally,
it means that, with respect to some reference position
u1,0 where �d(u1,0) vanishes, the transverse Hamiltonian
reads H⊥(�u⊥; u1) = T [ �d(u1)]H⊥(�u⊥; u1,0)T −1[ �d(u1)]. Here
T [ �d(u1)] = exp[−(i/�) �d(u1) · �p⊥] and �p⊥ denote the
displacement and momentum operators in the normal plane,
respectively. Again, the transverse eigenmodes φm(�u⊥; u1,0)
can be continued to eigenmodes for arbitrary u1 by setting
φm(�u⊥; u1) = T [ �d(u1)]φm(�u⊥; u1,0) and the transverse
eigenvalues Em will be independent of u1. One thus obtains

〈φm|∂1φm〉 = − i

�

�̇d(u1) · 〈φm| �p⊥|φm〉,
(32)

〈∂1φm|∂1φm〉 = �
−2| �̇d(u1)|2〈φm|[�e(u1) · �p⊥]2|φm〉,

FIG. 1. (Color online) (Left) An alternative type of quantum
waveguide, obtained using a straight planar reference curve combined
with a u1-dependent displacement of the confining potential. This
results in a repulsive effective potential proportional to ḋ(u1)2. (Right)
A corresponding waveguide with the reference curve in its center and
a u1-independent confining potential perpendicular to it, resulting in
an attractive effective potential proportional to κ2 and independent of
the transverse mode under consideration.

where �e(u1) is a unit vector parallel to �̇d(u1). Since [T , �p⊥] =
0, the matrix elements are again independent of u1 and need to
be evaluated at one reference point only. As before, the matrix
element 〈φm| �p⊥|φm〉 vanishes if φm is chosen real. In this case
the shift-induced Born-Huang potential in Eq. (30) reads

Vshift(u1) = | �̇d(u1)|2
2M

〈φm|[�e(u1) · �p⊥]2|φm〉

= �
2| �̇d(u1)|2

2M
‖[�e(u1) · ∇⊥]φm‖2. (33)

In analogy to the twist-induced potential discussed before,
this contribution is always repulsive, and it is so most strongly
in regions where the displacement of the transverse potential
from the reference line changes most quickly, i.e., where the
norm of the derivative of �d with respect to u1 is largest. On
the other hand, the shape of the transverse mode may also be
important if the unit vector �e(u1) changes its direction relative
to the Tang frame axes when moving along u1: Then, different
projections of the transverse momentum squared enter in the
matrix element for different u1, and for anisotropic transverse
wave functions this will generally make a difference. Local
minima of Vshift(u1), for instance due to a minimum of the norm
of �̇d at fixed �e, can again be expected to support bound states.

Note that this u1-dependent displacement can lead to
interesting consequences even in the most simple case of a
straight reference line, i.e., κ ≡ 0. Consider for simplicity the
planar case here, where the u3 direction separates, and V1 = 0.
Within the lowest-order single-mode Born-Huang approxima-
tion single-mode approximation, the effective Hamiltonian for
the longitudinal motion reads

Hmm = p2
1

2M
+ ḋ(u1)2

2M
〈φm|p2

2|φm〉, (34)
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where p2 = −i�∂2 is the momentum operator of the normal
coordinate u2. Although this Hamiltonian also describes a
curved waveguide, it is crucially different from the waveguides
usually studied: Here, slices through the potential that confines
the particle to stay inside the waveguide look the same when
taken perpendicular to a straight reference curve outside the
waveguide itself (see Fig. 1). This is, of course, fundamentally
different from a situation where slices through the confining
potential look the same when taken perpendicular to a
reference curve of nonzero κ inside the waveguide, as is
usually assumed and captured by a u1-independent V⊥ in the
formalism. Both ways of designing the waveguide produce
effective potential terms in the single-mode approximation
Hamiltonian and—beyond this adiabatic limit—also different
nonadiabatic coupling mechanisms. In the former, shifting-
based design, the effective potential depends on the expectation
value of p2

2 in the transverse mode under consideration; thus,
different transverse components of the full wave function
will experience different shift-induced repulsive potentials. In
the latter, ribbon-type setting, where the confining potential
is carried along perpendicularly to the central curve, the
effective potential depends on the curvature only, i.e., on a
geometric property of the curve traced out by the center of the
waveguide and independent of the transverse modes. While
this is a desirable feature from a conceptual point of view,
it is conceivable that some of the waveguides encountered in
experiments are more of the shift-induced than of the idealized
ribbon-type design, leading to the necessity of a different
theoretical description.

VI. TRANSVERSE BASIS TRANSFORMATIONS
AND GAUGE-THEORETICAL STRUCTURE

This section is devoted to an analysis of basis transforma-
tions in the space of transverse modes which, as will be seen,
can be understood as local gauge transformations. Indications
of gauge theory being relevant for constrained quantum
systems have been presented in [82,85–88]. We show that the
quantum waveguide Hamiltonian exhibits a local U(N ) gauge
structure, naturally extending the one that has been identified
in the molecular Born-Oppenheimer Hamiltonian [68,69]. We
work out the transformation leading to the so-called diabatic
basis, in which certain nonadiabatic couplings are eliminated
from the formalism.

To start, we recall that in the derivation of the multimode
Hamiltonian of Eq. (14) we have made use of the expansion

χ = ∑
m ψmφm, where φm were taken to be the eigenfunctions

of the transverse Hamiltonian H⊥. This adiabatic basis is
a convenient choice because it leads to a diagonal matrix
V, comprising the potential energy surface terms Em(u1).
However, this choice is not unique. Any unitary transformation
of the transverse modes φm → φ̃m preserves the orthonor-
mality 〈φ̃m|φ̃n〉 = δmn, and one could equally well expand
χ = ∑

m ψ̃mφ̃m, leading to a coupled Schrödinger equation
for the modes ψ̃m, governed by a matrix Hamiltonian H̃. In
the molecular Born-Oppenheimer framework whose lowest-
dimensional version is included in our formalism as a limiting
case, it is well known that such unitary basis transformations
can be understood as gauge transformations [68,69]. In
particular, there is one distinct choice of basis that minimizes
certain undesired couplings and is of central importance both
conceptually and in numerical applications: the so-called
diabatic basis (see, e.g., [70] and references therein). In the
following we develop a generalized theory and corresponding
concepts to take into account the effects induced by curvature
and torsion.

Our starting point is Eq. (27). We assume that a subset
S = {1, . . . N} of relevant adiabatic modes has been singled
out that can be taken to be decoupled from the rest. Then,
within the space of these functions at each u1 we can perform
a unitary transformation to a different set of orthogonal
basis functions φ̃n. We introduce the local unitary N × N

transformation matrix A(u1) via

φ̃n(�u⊥; u1) =
N∑

j=1

A∗
nj (u1)φj (�u⊥; u1), n= 1, . . . ,N, (35)

The choice of the complex conjugate matrix element A∗
nj =

A
†
jn in Eq. (35) is purely conventional and will simplify some

expressions below. Of course, the φ̃n will, in general, no longer
be eigenstates of H⊥, leading to a more complicated form of
the matrix elements Ṽmn = V1δmn + 〈φ̃m|H⊥|φ̃n〉 than in the
adiabatic basis. Still, it can be advantageous to work in such
a rotated basis to get rid of (potentially singular) nonadiabatic
coupling terms that can be handled much more easily in the
new frame. To see this, let us look more closely at the derivative
couplings in the matrix F. Extending the usual off-diagonal
Hellmann-Feynman argument, we take the derivative of the
transverse Schrödinger equation [Eq. (5)] with respect to u1 to
find after some manipulation that

Fmn = 1

2

〈φm|{D,Ḣ⊥}|φn〉 + 〈φm|[D,H⊥]|∂1φn〉 − 〈∂1φm|[D,H⊥]|φn〉 − (Ėm + Ėn)〈φm|D|φn〉
En − Em

(36)

for Em �= En, where {a,b} := ab + ba denotes the anticom-

mutator. This equation holds in general, while for our class
of Hamiltonians H⊥ one furthermore has the simplifications
{D,Ḣ⊥} = 2DV̇⊥ and [D,H⊥] = −�

2/(2M)[D,∇2
⊥]. In the

limit of a straight waveguide, D = 1, the expression for Fmn

reduces to Eq. (21). Equation (36) suggests that the Fmn

nonadiabatic coupling between different transverse modes

can become arbitrarily large if at some position of the curve
two transverse eigenvalues come arbitrarily close (or cross).
Generically, tuning u1 as the single parameter in the transverse
Hamiltonian H⊥ will not lead to degeneracies in the spectrum,
as stated by the classical no-crossing theorem [89], but it
is more generic to encounter avoided crossings where two
eigenvalue bands almost touch. In the vicinity of an (avoided)
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crossing, one will encounter very large (and potentially,
as a function of u1, also quickly varying) couplings Fmn

which indicate that the adiabatic basis is not well suited
for a description of the problem. After a suitable basis
transformation A(u1), the transformed couplings F̃mn can
vanish (or become very small) and will not show the singular
behavior any more. The transformed basis with this property
is a diabatic (or quasidiabatic) one, and its functions φ̃m may
offer—beyond numerical advantages—also a more insightful
understanding of the relevant modes in the vicinity of the
avoided crossing [70].

In the following it is shown how the components of the
matrix Hamiltonian H transform under an arbitrary local
basis transformation A(u1), and the transformation that leads
to a vanishing F̃(S) is explicitly provided. From here on,
only N × N matrices restricted to S are considered, and the
superscript (S) is omitted. Having introduced the transformed
basis, for the full rescaled wave function χ there are now two
equivalent expansions χ = ∑N

n=1 ψnφn = ∑N
n=1 ψ̃nφ̃n, which

implies �̃ψ = A �ψ . It is readily observed that the multimode
Schrödinger equation is form invariant under the basis trans-

formation, i.e., E �̃ψ = H̃ �̃ψ , if the transformed Hamiltonian
H̃ = AHA†. In this section, along with constructing the
diabatic basis, we show that this form invariance under local
U(N ) transformations holds for the full Hamiltonian. First, we
note that the matrix representation in the transformed basis of
any operator O that does not act on A can simply be obtained
from the adiabatic one by conjugation with A,

Õmn := 〈φ̃m|O|φ̃n〉 = (AOA†)mn, (37)

where O denotes the matrix representation of O in the adiabatic
basis. This fixes, in particular, the transformation property of
V, D, and C. Next we turn to the derivative coupling matrix F.
In the transformed basis, we find

F̃mn = 1

2
(〈φ̃m|D|∂1φ̃n〉 − 〈∂1φ̃m|D|φ̃n〉)

=
N∑

j,k=1

[
AmjFjkA

†
kn + 1

2
(AmjDjkȦ

†
kn − ȦmjDjkA

†
kn)

]
,

(38)

which in matrix form reads F̃ = AFA† + 1
2 (ADȦ† − ȦDA†).

The strictly diabatic basis is characterized by F̃ = 0. In marked
contrast to the situation in polyatomic molecular systems, since
we consider one-dimensional open curves, a strictly diabatic
basis always exists. We demonstrate this in the following by
constructing the corresponding unitary transformation matrix
A explicitly. Without loss of generality, the derivative of A
can be written as Ȧ(u1) = A(u1)S(u1), where S(u1) is to be
determined. Preservation of the unitarity of A along u1 is
ensured if S is skew Hermitian, i.e., S† = −S, which implies
Ȧ† = −SA†. Inserting this yields

F̃ = AFA† − 1
2 (ADSA† + ASDA†) = 0

⇔ 2F = DS + SD = {D,S}. (39)

The latter is an instance of the Sylvester matrix equation and,
more specifically, a Lyapunov matrix equation [90]. It can be

uniquely solved for S without any further approximation in
the following explicit way [91]. Note that D is Hermitian
in our problem, so it can be diagonalized; i.e., there is a
unitary matrix Ud , such that UdDU−1

d = diag(d1, . . . ,dN ).
Since D > 0 globally, the matrix D is positive definite and
all its eigenvalues di are strictly positive. Then, setting S′ =
UdSU−1

d , we have the following equivalences:

2F = DS + SD

⇔ 2UdFU−1
d = diag(d1, . . . ,dN )S′ + S′diag(d1, . . . ,dN )

⇔ ∀ i,j : 2
[
UdFU−1

d

]
ij

= (di + dj )S ′
ij .

Since di + dj > 0 for all i,j , this yields the solution S as a
function of D,F via

S ′
ij = 2

di + dj

[
UdFU−1

d

]
ij
, S = U−1

d S′Ud , (40)

and this solution is unique and independent of the choice
of the unitary matrix Ud . It should be noted that stan-
dard numerical solvers for Sylvester matrix equations exist
which circumvent matrix diagonalization (see, e.g., [92]).
We also remark that if no few-mode restriction has been
performed, Eq. (39) immediately has the simple solution
Smn = 〈φm|∂1φn〉, since using completeness

∑
k |φk〉〈φk| = 1

one finds
∑

k (〈φm|∂1φk〉Dkn + Dmk〈φk|∂1φn〉) = 2Fmn. If,
however, one has restricted to a subset of modes S first, the
same only holds when assuming

∑
k∈S |φk〉〈φk| ≈ 1 in the

matrix product, which introduces an additional approximation.
Let us point out that indeed it is ensured that the matrix S

obtained in Eq. (40) is skew Hermitian, since this is true for
F and the prefactor 2/(di + dk) is real and symmetric. Once S
is found, given some initial condition A†(u1,0) the equation of
motion along u1 for the diabatic basis transformation A† can
immediately be integrated to the path-ordered exponential (or,
numerically, using a standard ODE solver),

A†(u1) = P exp

[
−

∫ u1

u1,0

du′
1S(u′

1)

]
A†(u1,0), (41)

where A†(u1,0) fixes the diabatic-to-adiabatic transformation at
a reference point u1,0, which is free to be chosen. An immediate
choice is A†(u1,0) = 1, such that the adiabatic and diabatic
bases coincide at u1,0. Note that in the limiting case of κ ≡ 0
everywhere, the matrix D simplifies to the unit matrix. Thus,
S = F immediately solves the Lyapunov equation (39) and
A†(u1) = P exp[− ∫ u1

u1,0
du′

1F(u′
1)]A†(u1,0) is recovered, as in

the framework of molecular physics [93], where transforming
to the diabatic basis via this explicit integration has been
used, for instance, to study the photodissociation of OH
molecules [94].

A remark is in order here. In contrast to the traditional
Born-Oppenheimer molecular setting, in our case the integra-
tion yielding A(u1) is performed along the one-dimensional
reference curve, which is also assumed not to be closed,
such that for any u1 there is only one integration path that
connects u1,0 and u1. This uniqueness property usually does
not hold in the high dimensional nuclear coordinate space
where the analogous integration needs to be performed in the
molecular Born-Oppenheimer problem, and one has additional
compatibility conditions to be fulfilled which turn out to be
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very restrictive, such that usually a strictly diabatic basis cannot
be constructed [56]. Similar complications occur when we
allow the curve to be closed. Then there are multiple values of
u1 corresponding to the same point along the curve, and it must
be ensured that the adiabatic-to-diabatic basis transformation
is still unique at each point (cf. [62]).

We next focus on the important special case of only two
modes (which we take to be real here) that are coupled to
each other, but decoupled from the rest. There is a simplified
way of constructing the diabatic basis transformation in this
case. Any real skew-Hermitian 2 × 2 matrix, such as F and
S, is determined by a single real parameter: It is a multiple of
the standard skew-symmetric matrix J = ( 0 1

−1 0), which in turn

has the property MJMT = det(M)J for any 2 × 2 matrix M.
Thus, with the real orthogonal matrix Ud that diagonalizes D,
it is found using Eq. (40),

F = F12J ⇒ S′ = 2F12

d1 + d2
det (Ud )J

⇒ S = 2F12

d1 + d2
det (Ud ) det

(
U−1

d

)
J = 2F12

D11 + D22
J, (42)

where in the final step it was used that d1 + d2 = D11 + D22 is
the invariant trace of D. This immediately gives S(u1) starting
from F(u1), D(u1). Furthermore, due to the property J2 = −1,
arbitrary powers of S at arbitrary u1 collapse and commute,
such that the path-ordered exponential can also be considerably
simplified [taking u1,0 = 0 and A†(u1,0) = 1 here]:

A†(u1) =
(

cos γ − sin γ

sin γ cos γ

)
,

(43)

γ (u1) := 2
∫ u1

0
du′

1
F12

D11 + D22
.

This provides a convenient way of constructing the diabatic
basis in the special case of only two real modes involved.

Let us now return to arbitrary basis transformations in
a subset S containing an arbitrary number of transverse
modes. The transformation properties of D, C, V, and F
have been discussed above, but we have not yet supplied
the transformed Born-Huang potential term. Its transformation
according to the basis change is more complicated than plain
matrix conjugation with A, since it involves derivatives of the
transverse wave functions. The Born-Huang potential in the
transformed basis reads (see Appendix B)

Ṽ BH
mn = [AVBHA†]mn − �

2

2M

[
A

(
−1

4
{D,S}2 + 1

2
{{D,S},F}

+ 1

2
(∂1[S,D]) − {S,F} + 1

2
{S2,D}

)
A†

]
mn

, (44)

where again Ȧ = AS defines the skew-Hermitian matrix S(u1).
In the limit of a straight waveguide, D = 1, this collapses to

− 1
4 {D,S}2 + 1

2 {{D,S},F} + 1
2 (∂1[S,D]) − {S,F} + 1

2 {S2,D}
= 0,

such that the transformed Born-Huang potential in this limit
is simply obtained by conjugating with A as expected from

the known result in molecular physics [56]. Equation (44)
indicates that the Born-Huang potential by itself is not form
invariant under general gauge transformations A, but picks up
a number of extra terms that only vanish in the limit of the
waveguide being straight. We show now that the same is true
for the kinetic terms in the Hamiltonian and that, in total, the
Hamiltonian is gauge invariant in the proper way. To see this,
we note that (see Appendix B)

− �
2

2M
[(∂1 + F̃)2 + ∂1(D̃ − 1)∂1]

= A
(

− �
2

2M
[(∂1 + F)2 + ∂1(D − 1)∂1]

)
A†

+ �
2

2M
A

(
−1

4
{D,S}2 + 1

2
{{D,S},F}

+ 1

2
(∂1 [S,D]) − {S,F} + 1

2

{
S2,D

})
A†, (45)

giving exactly the same extra terms as originating from the
transformation of the Born-Huang potential [see Eq. (44)],
but with opposite sign. Thus, these contributions cancel when
the full Hamiltonian is considered, and one indeed has the
expected property that the Hamiltonian is form-invariant under
local U(N ) transformations, i.e., H̃ = AHA†. Note, however,
that, as seen above, the individual terms in the Hamiltonian of
Eq. (27) have more involved transformation properties, only if
their sum is considered the form invariance is unveiled.

Finally, we remark that from the point of view of gauge
transformation properties, the alternative representation of
the matrix Hamiltonian with only one kinetic term as given
in Eq. (28) turns out to be the more natural object. Even
if F′, and consequently also C′, are only specified rather
implicitly from the solution of the Lyapunov equation, we
can study their behavior under gauge transformations (i.e.,
basis transformations in the transverse states). It turns out
that F′ transforms in a more generic way than F encountered
above, and also the Born-Huang potential V

′BH has the usual
tensorial transformation behavior; i.e., it is simply conjugated
with A. So from the point of view of gauge invariance, the
compact representation with only one kinetic term may be
thought of as the more generic one, since its individual terms
are form-invariant by themselves, not only in combination.

Let us now demonstrate these statements. First we have
D′ = D, so D̃′ = D̃ = ADA†. For F we know that F̃ =
AFA† − 1

2 A{D,S}A†. The Lyapunov equation 2F = {D,F′}
implicitly fixes F′, and the corresponding equation must
hold after the transformation. One can immediately check
that 2F̃ = {D̃,F̃′} is ensured by F̃′ = A(F′ − S)A† = AF′A† +
AȦ†, reproducing the transformation behavior of the derivative
coupling matrix in the molecular framework [68]. Then one
immediately sees that the covariant derivative ∂11 + F′ trans-
forms canonically, according to ∂11 + F̃′ = A(∂11 + F′)A†,
ensuring that each factor in the kinetic part of the Hamiltonian
(∂11 + F′)D(∂11 + F′) is form invariant under local gauge
transformations by itself (and, of course, so is the whole
product). This already ensures that V′BH is form invariant,
since we know that the full Hamiltonian is, and indeed one can
check that the transformation of C′ as defined in Appendix A
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gives extra terms canceling exactly those arising in the
transformation of VBH [cf. Eq. (44)]. Thus, the modified Born-
Huang potential V′BH that contains C′ transforms canonically,
by matrix conjugation with A. In total, we find that, of
course, the Hamiltonian is still invariant under local gauge
transformations after merging the two kinetic terms, but now
also its individual components are form-invariant, not only
their combination.

VII. BRIEF CONCLUSIONS

To summarize, we employed the transverse-mode decom-
position to obtain the exact multimode matrix Hamiltonian
for a quantum waveguide of arbitrary curvature, torsion, and
spatially varying transverse profile, identifying the adiabatic
limit and nonadiabatic coupling matrix elements. Series
expansions of the coupling matrix elements were provided
that may be truncated at low orders when approaching the
ultrathin waveguide limit. For the common scenario of a subset
of modes being nonadiabatically coupled to each other, but
decoupled from the rest, systematic few-mode approximation
schemes were given. The resulting effective potential terms
were worked out in simple special cases, reproducing the
known result for twisting and revealing a similar effect in shift-
induced waveguides. It was demonstrated that the quantum
waveguide exhibits a natural generalization of the local U(N )
gauge structure of the molecular Born-Oppenheimer problem,
and the possibility of a strictly diabatic basis was explored,
resulting in an explicit construction of the adiabatic-to-diabatic
basis transformation matrix. The theoretical framework put
forward here represents a general and very natural starting
point for future investigations of nonadiabatic coupling effects
in quantum waveguides. Promising applications include the
design of novel waveguide structures with enhanced control
over the longitudinal dynamics and the transverse-mode profile
of the guided matter waves.
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APPENDIX A: DERIVATION OF THE GENERALIZED
BORN-OPPENHEIMER KINETIC MATRIX OPERATOR

AND ALTERNATIVE REPRESENTATIONS

In this Appendix we give the detailed calculations post-
poned in Secs. IV and V, starting with the derivation of Eq. (9).
By the definitions of F and G [Eq. (11)], we have

[(∂11 + F)2]mn + Gmn

= δmn∂
2
1 + 2Fmn∂1 + Ḟmn +

∑
k

FmkFkn + Gmn

= δmn∂
2
1 + (〈φm|D|∂1φn〉 − 〈∂1φm|D|φn〉)∂1

+〈φm|Ḋ|∂1φn〉 + 〈φm|D∣∣∂2
1 φn

〉
,

implying

∂1〈φm|D − 1|φn〉∂1 + [(∂11 + F)2]mn + Gmn

= 〈∂1φm|D|φn〉∂1 + 〈φm|Ḋ|φn〉∂1 + 〈φm|D|∂1φn〉∂1

+〈φm|D|φn〉∂2
1 + (〈φm|D|∂1φn〉 − 〈∂1φm|D|φn〉)∂1

+〈φm|Ḋ|∂1φn〉 + 〈φm|D∣∣∂2
1 φn

〉
= 〈φm|Ḋ|φn〉∂1 + 2〈φm|D|∂1φn〉∂1 + 〈φm|D|φn〉∂2

1

+〈φm|Ḋ|∂1φn〉 + 〈φm|D∣∣∂2
1 φn

〉
,

which proves Eq. (9). Consequently, the ensuing matrix form
of the Hamiltonian contains two kinetic terms that read
∂1(D − 1)∂1 + (∂11 + F)2, and after a few-mode restriction
to the subset S becomes ∂1(D(S) − 1(S))∂1 + (∂11(S) + F(S))2

plus a scalar contribution which forms a part of the Born-
Huang potential, as indicated in the text. We now show that, as
claimed in Sec. V, these two kinetic terms can be merged
into one (which still has the property of being manifestly
Hermitian) at the price of also modifying the scalar part of
the Hamiltonian. To this end, we demand that [omitting the
superscripts (S)]

∂1 (D − 1) ∂1 + (∂11 + F)2 != (∂11 + F′)D′(∂11 + F′) + C′,

with matrices F′, D′, and C′ to be determined. Expanding both
sides and equating order by order in the derivative ∂1 yields
the system

D = D′, (A1)

Ḋ + 2F = Ḋ′ + F′D′ + D′F′, (A2)

F2 + Ḟ = F′D′F′ + D′Ḟ′ + Ḋ′F′ + C′, (A3)

which needs to be solved for D′, F′, C′ as functions of D, F.
Inserting Eq. (A1) into Eq. (A2) results in 2F = F′D + DF′,
which is the same Lyapunov equation encountered in the
adiabatic-to-diabatic basis transformation in Sec. VI and by the
same arguments can be uniquely solved for the anti-Hermitian
matrix F′ as desired. Finally, using the previous results,
Eq. (A3) can be recast:

C′ = F2 + 1
2 (Ḟ′D + F′Ḋ + ḊF′ + DḞ′) − DḞ′ − ḊF′ − F′DF′

= F2 + 1
2 (∂1[F′,D]) − F′DF′.

Here it can immediately be seen that C′ is Hermitian, as
required, since F, F′ are anti-Hermitian, D is Hermitian,
and the commutator of a Hermitian and an anti-Hermitian
matrix is Hermitian itself. Finally, we can absorb C′ into the
Born-Huang potential by setting V′BH := VBH − �

2/(2M)C′,
resulting in Eq. (29).

Restoring the superscript, the Lyapunov equation to be
solved reads 2F(S) = F′(S)D(S) + D(S)F′(S). As seen in Sec. VI,
if no few-mode restriction is performed and S is a complete
set of transverse modes, this immediately has the solution
F ′

mn = 〈φm|∂1φn〉. So without any few-mode restriction, the
derivative coupling F′ simply assumes the form known from
the molecular Born-Oppenheimer problem. If a subset S
of transverse modes is singled out first, this holds only
approximately after inserting

∑
k∈S |φk〉〈φk| ≈ 1 into the

Lyapunov equation. We have seen before that, by the same
reasoning, when looking for the adiabatic-to-diabatic basis
transformation without performing a few-mode approximation

033630-13



J. STOCKHOFE AND P. SCHMELCHER PHYSICAL REVIEW A 89, 033630 (2014)

first—which is, of course, not the generic scenario—the
Lyapunov equation can also be immediately solved for Smn =
〈φm|∂1φn〉, and the basis transformation has the same form as
in the absence of curvature. This is expected, since a complete
diabatic basis is just any complete basis of the normal plane
where no transverse mode depends on u1, i.e., which is not at
all adapted to changes along the waveguide. This is true both
with and without curvature and torsion.

APPENDIX B: DETAILED CALCULATION OF GAUGE
TRANSFORMATION PROPERTIES

In this Appendix we comprise the derivation of the trans-
formation properties of the kinetic terms in H and of VBH, as
discussed in Sec. VI. The evolution of A along u1 is determined
by a skew-Hermitian matrix S via Ȧ= AS, and the induced
transformation of D, V, and C is given by simple conjugation
with A. For the generalized derivative coupling matrix F, it
was found that F̃ = AFA† − 1

2 A{D,S}A†, which implies

A (∂1 + F) A† = AFA† + ∂1 + AȦ†

= ∂1 + F̃ − ASA† + 1
2 A{D,S}A†,

and, consequently,

A(∂1 + F)2A†

= (∂1 + F̃)2 + A
(−S + 1

2 {D,S})2
A†

+ {
∂1 + F̃,−ASA† + 1

2 A{D,S}A†}
= (∂1 + F̃)2 + A

(
S2 − 1

4 {D,S}2 − {F,S} + 1
2 {F,{D,S}})A†

+ 1
2 {∂1,A{D − 1,S}A†}.

For the other kinetic term, a similar calculation yields

∂1(D̃ − 1)∂1 = A∂1(D − 1)∂1A†

+ A
(

1
2 (∂1[D,S]) − 1

2 {D,S2} + S2)A†

+ 1
2 {∂1,A{D − 1,S}A†}.

So we find the result of Eq. (45) for the sum of the transformed
kinetic terms:

∂1(D̃ − 1)∂1 + (∂1 + F̃)2

= A
[
∂1(D − 1)∂1 + (∂1 + F)2 + 1

2 (∂1[D,S]) − 1
2 {D,S2}

+ 1
4 {D,S}2 + {F,S} − 1

2 {F,{D,S}}]A†. (B1)

Now we proceed to the Born-Huang potential, which in the
transformed basis reads

Ṽ BH
mn = − �

2

2M

[
−

∑
k

F̃mkF̃kn + 1

2

(〈∂1φ̃m|Ḋ|φ̃n〉

+ 〈φ̃m|Ḋ|∂1φ̃n〉 + 〈
∂2

1 φ̃m

∣∣D|φ̃n〉 + 〈φ̃m|D∣∣∂2
1 φ̃n

〉)]
.

We consider the terms in ṼBH individually. First, we find after
a straightforward calculation

Ṽ BH,0
mn := −

∑
k

F̃mkF̃kn

=
[

A
(

VBH,0 − 1

4
{D,S}2 + 1

2
{{D,S},F}

)
A†

]
mn

.

Similarly, for the second term,

Ṽ BH,1
mn := 1

2 (〈∂1φ̃m|Ḋ|φ̃n〉 + 〈φ̃m|Ḋ|∂1φ̃n〉)
= [

A
(
VBH,1 + 1

2 [S,D̊]
)
A†]

mn
,

where the matrix D̊ with entries D̊mn := 〈φm|Ḋ|φn〉 was
introduced. Finally, the third contribution reads

Ṽ BH,2
mn := 1

2

(〈
∂2

1 φ̃m

∣∣D|φ̃n〉 + 〈φ̃m|D∣∣∂2
1 φ̃n

〉)
= [

A
(
VBH,2 + 1

2 [Ṡ,D] + 1
2 {S2,D} + SL − L†S

)
A†]

mn
,

where we have introduced the shorthand notation Lij :=
〈∂1φi |D|φj 〉, such that 2F = L† − L.

We can simplify the result by noting that

[S,Ḋ] = [S,L + D̊ + L†] = [S,D̊] + 2(SL − L†S) + 2{S,F},
such that the full transformed Born-Huang potential reads

ṼBH = AVBHA† − �
2

2M

[
A

(
−1

4
{D,S}2 + 1

2
{{D,S},F}

+ 1

2
(∂1[S,D]) − {S,F} + 1

2
{S2,D}

)
A†

]
, (B2)

as provided in Eq. (44). The extra terms arising in Eqs. (B1)
and (B2) cancel when the kinetic and potential parts of the
Hamiltonian are summed.
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D. Guéry-Odelin, Phys. Rev. Lett. 109, 030403 (2012).

[24] J. A. Sauer, M. D. Barrett, and M. S. Chapman, Phys. Rev. Lett.
87, 270401 (2001).

[25] S. Gupta, K. W. Murch, K. L. Moore, T. P. Purdy, and D. M.
Stamper-Kurn, Phys. Rev. Lett. 95, 143201 (2005).

[26] A. S. Arnold, C. S. Garvie, and E. Riis, Phys. Rev. A 73, 041606
(2006).

[27] K. Henderson, C. Ryu, C. MacCormick, and M. G. Boshier,
New J. Phys. 11, 043030 (2009).

[28] G. Sagué, E. Vetsch, W. Alt, D. Meschede, and
A. Rauschenbeutel, Phys. Rev. Lett. 99, 163602 (2007).
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