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Lee-Yang cluster expansion approach to the BCS-BEC crossover: BCS and BEC limits
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It is shown that a cluster expansion technique, which is usually applied in the high-temperature regime
to calcutate virial coefficients, can be applied to evaluate the superfluid transition temperature of the
Bardeen-Cooper-Schrieffer (BCS)–Bose-Einstein condensation (BEC) crossover à la Lee and Yang. The transition
temperature is identified with the emergence of the singularity in the sum of a certain infinite series of cluster
functions. In the weak-coupling limit, we reproduce the Thouless criterion and the number equation of Nozières
and Schmitt-Rink, and hence the transition temperature of the BCS theory. In the strong-coupling limit, we
reproduce the transition temperature of BEC of noninteracting tightly bound dimers.
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I. INTRODUCTION

This paper concerns the application of a cluster expansion
technique to the Bardeen-Cooper-Schrieffer (BCS)–Bose-
Einstein condensation (BEC) crossover of a dilute gas of
two-component Fermi particles with zero-range interaction, as
has been realized using ultracold atomic gases [1–3]. Here, the
zero-range means that the range of the interparticle potential
r0 is much shorter than the inverse Fermi wave number k−1

F ,
the s-wave scattering length a, and the thermal de Broglie
length λ := (2π�

2/mkBT )1/2, i.e., r0 � k−1
F ,λ, |a|, where m

is the mass of a particle and T is the temperature. It is widely
held that this system possesses a universal property that the
equation of state depends only on a, kF , and λ and that the
phase diagram is characterized by the temperature T/TF and
the dimensionless interaction parameter (kF a)−1, where TF

is the Fermi temperature. Therefore, this system provides a
simple universal model for understanding various degenerate
Fermi systems such as a quark-gluon plasma [4], neutron
stars [5], excitons [6], and high-Tc superconductors [7].
There are many theoretical approaches to the phase transition
based on unbiased quantum Monte Carlo techniques [8], a
functional renormalization group method [9], and Feynman
diagrammatic techniques [10,11].

In this paper, we provide an approach to the phase transition
of this system based on cluster expansion in terms of the
fugacity z := exp[μ/(kBT )] [12], where μ is the chemical
potential. Although the cluster expansion approach is usually
applied at high temperatures [13–21], we show that it can be
applied to evaluate the transition temperature for the onset of
quantum condensation of the BCS-BEC crossover à la Lee and
Yang. The method of Lee and Yang [22–28] allows systematic
evaluation of the higher-order cluster integrals in terms of the
cluster functions (Ursell functions) which can be expressed
in terms of the quantum-mechanical problem with Boltzmann
statistics. We show that the proposed theory correctly captures
the physics in the weak-coupling, strong-coupling, and high-
temperature regimes (see Fig. 1). We can evaluate the transition
temperature by analyzing an emergence of the singularity of an
infinite series of cluster functions. We identify a certain infinite
series of cluster functions, the sum of which has the following
three properties: (i) in the weak-coupling limit (the so-called

BCS limit), it gives the Thouless criterion [29] and hence
the transition temperature of the BCS theory and the number
equation of the BCS-BEC crossover theory of Nozières and
Schmitt-Rink (NSR) [10,11]; (ii) in the strong-coupling limit
(the so-called BEC limit), it reproduces the thermodynamic
function of noninteracting tightly bound dimers; and (iii) in
the high-temperature regime T � TF for an arbitrary s-wave
scattering length (kF a)−1, it reproduces the exact second virial
coefficient and thus Tan’s contact [30–32] up to the same order.
All of these suggest that our theory provides a good starting
point to describe the entire BCS-BEC crossover.

We mention here recent cluster expansion studies of
evaluating the low-order cluster integrals (or the virial co-
efficients) [13–21]. These studies have an advantage over a
Feynman diagrammatic technique because the fugacity z is a
controllable small parameter when the system is dilute and
at high temperatures. In addition, the equation of state of a
homogeneous Fermi gas in the unitary limit [(kF a)−1 = 0] has
recently been measured by using a two-component mixture
of 6Li atoms [33–35]. These experiments demonstrate that
the low-order (third-order) cluster expansion quantitatively
describes the equation of state down to temperatures as low
as the Fermi temperature (T � TF ), which corresponds to z <

1 [14,20,34,35]. Although the low-order cluster expansion well

FIG. 1. Schematic phase diagram of the BCS-BEC crossover
as a function of the temperature T/TF and the inverse scattering
length (kF a)−1. In this paper, we establish the theory, which correctly
captures the physics in (i) the weak- and (ii) strong-coupling limits at
and above the transition temperature and (iii) in the high-temperature
regime for any (kF a)−1 based on the Lee-Yang cluster expansion
method.
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describes the region z < 1, a perturbative cluster expansion
calculation cannot describe the phase transition, because a
thermodynamic function, which is obtained by a low-order
cluster expansion calculation, is a polynomial of z and thus
has no singularity corresponding to the phase transition point.
In fact, the fugacity at the superfluid phase transition zc

is greater than 10 [34,35]. Therefore, to analyze the phase
transition, we should take into account higher-order terms
appropriately. In the present study, we demonstrate that a
cluster expansion method can be used to evaluate the transition
temperatures of the BCS-BEC crossover, at least in the weak-
and strong-coupling limits.

This paper is organized as follows. In Sec. II, we formulate
the cluster expansion method for the case of (pseudo) spin-
1/2 Fermi systems. In Sec. III, we describe our model
and apply the cluster expansion method of Lee and Yang
to this model. We calculate the second cluster integral for
an arbitrary s-wave scattering length, which reproduces the
standard Beth-Uhlenbeck result [13] and Tan’s contact up to
the same order [36,37]. Our method can thus treat effects of
quantum-mechanical scattering and a bound state at least at the
level of the second cluster integral. In Sec. IV, we apply the
Lee-Yang method to evaluate the transition temperature for the
onset of quantum condensation of the BCS-BEC crossover. In
the weak-coupling limit, we reproduce the Thouless criterion
and the number equation of the BCS-BEC crossover theory by
NSR. In the strong-coupling limit, we reproduce the BEC of
dimers below a transition temperature. In Sec. V, we summa-
rize the main results of this paper. The details of the Lee-Yang
method and the proofs of several formulas are described in the
appendices to avoid digressing from the main subject.

II. LEE-YANG CLUSTER EXPANSION METHOD

In this section, we describe the cluster expansion of the
equation of state [12] and that of Tan’s contact [36,37], and we
define the cluster functions U (N↑,N↓). By using the method of
Lee and Yang [22,23,25,28], these cluster expansions can be
expressed in terms of the primary or contracted ζ -graphs (ζ =
0,1,2, . . . ) which are computed from the cluster functions.
The definitions of the primary and contracted ζ -graphs and
the details of the method of Lee and Yang are described in
Appendix A.

A. Cluster expansion of the equation of state and Tan’s contact

We consider a system of two-component (or pseudo-spin-
1/2) fermions with the same mass m and confined in a finite
volume V = L3 with periodic boundary conditions. When N↑
particles have spin ↑ and N↓ particles have spin ↓, the partition
function is

Z
(N↑,N↓)
V :=

∑
i

e−βEi , (1)

where β = 1/kBT is the inverse temperature and Ei is the
energy eigenvalue of the Hamiltonian H (N↑,N↓). We assume
that the chemical potential μ is independent of the (pseudo-)

spin states σ = ↑,↓. The grand partition function is

�V :=
∞∑

N↑=0

∞∑
N↓=0

zN↑+N↓Z
(N↑,N↓)
V , (2)

where z = eβμ is the fugacity and we define Z
(0,0)
V := 1.

According to the principles of statistical mechanics, the equi-
librium pressure p, the particle-number density ρ = ρ↑ + ρ↓,
and the energy per unit volume ε of the system are given by

βp = lim
V →∞

1

V
ln �V , (3)

ρ = lim
V →∞

1

V
z

∂

∂z
ln �V , (4)

and

ε = − lim
V →∞

1

V

∂

∂β
ln �V . (5)

By eliminating z in Eqs. (3) and (4), we obtain the equation of
state [12].

We define the thermal de Broglie length by λ :=
(2πβ�

2/m)1/2 and expand λ3βp and λ3ρ in terms of the
fugacity z as

λ3βp =
∞∑

n=1

bnz
n, (6)

λ3ρ =
∞∑

n=1

nbnz
n. (7)

The set of Eqs. (6) and (7) gives the cluster expansion of the
equation of state. From the knowledge of the cluster integrals
up to the lth order b1, . . . ,bl , we can find the virial coefficients
up to the same order [12].

For a noninteracting Fermi system, the Hamiltonian is
H

(N↑,N↓)
ideal = −∑N↑+N↓

i=1
�

2

2m
∇2

i and the grand partition func-
tion is

ln �V,ideal = 2
∑

k

ln
[
1 + ze−β�

2k2/(2m)
]

= −2
V

λ3
Li 5

2
(−z). (8)

Here Lil(x) := ∑∞
n=1 xn/nl is the polylogarithm. Then, the

equilibrium pressure pideal is given by

λ3βpideal = −2 Li 5
2
(−z). (9)

Therefore, we obtain

λ3β�p =
∞∑

n=2

�bnz
n, (10)

where �p := p − pideal and �bn := bn − 2(−1)n+1/n5/2.
From Eqs. (2), (3), and (6), we find b1 = 2 and �b1 = 0.
The remaining problem is to calculate �bn (n � 2).

In Sec. III and IV, we consider a zero-range interaction
which is characterized by the s-wave scattering length a.
Then, bn and �bn (n � 2) depend only on λ/a from the
dimensional analysis. In addition, the Fermi system with the
zero-range interaction satisfies a set of universal exact relations
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known as Tan’s relations [30–32]. Let us define 〈n̂kσ 〉 to
be the statistical average of the number of particles with
definite momentum k and spin σ = ↑,↓ in a finite volume
over the grand canonical ensemble. Here, 〈nkσ 〉 is normalized
as limV →∞

∑
k,σ 〈n̂kσ 〉 /V = ρ and can be shown to have the

following 1/k4 tails at large momentum:

C ≡ lim
λk→∞

k4〈n̂k↑〉 = lim
λk→∞

k4〈n̂k↓〉, (11)

where C is the so-called Tan’s contact. All of Tan’s relations
are governed by Tan’s contact; e.g., the pressure and the energy
per unit volume are related as [31,32]

p − 2

3
ε = �

2C

12πma
. (12)

By using Eq. (12), the cluster expansion of Tan’s con-
tact [36,37] can be obtained as follows. From Eqs. (3), (5),
and (6), we obtain

ε = − ∂

∂β
(βp) = 3

2
p − 1

2aλ2β

∞∑
n=2

cnz
n, (13)

where we use the so-called contact coefficients [37]:

cn := dbn

d(λ/a)
= d�bn

d(λ/a)
. (14)

Comparing Eqs. (12) and (13), we obtain the cluster expansion
of Tan’s contact:

C = 8π2

λ4

∞∑
n=2

cnz
n. (15)

In Sec. IIID, we show how to calculate the second-order
contact coefficient c2.

B. Cluster functions for a system obeying Boltzmann statistics

By using the method of Lee and Yang [22,23], the cluster
expansion of the thermodynamic function for a system of
particles obeying Fermi-Dirac statistics can be computed from
the knowledge of the cluster functions for the same system
obeying Boltzmann statistics. We first introduce the functions

〈r′
1, . . . ,r

′
N |W (N↑,N↓)|r1, . . . ,rN 〉

=
∑

i

ψi(r′
1, . . . ,r

′
N )ψ∗

i (r1, . . . ,rN )e−βEi , (16)

where (r1, . . . ,rN ) := (r1, . . . ,rN↑ ; rN↑+1, . . . ,rN ),
(r′

1, . . . ,r
′
N ) := (r′

1, . . . ,r
′
N↑ ; r′

N↑+1, . . . ,r
′
N ), particles

1, . . . ,N↑ have spin ↑, and particles N↑ + 1, . . . ,N↑ + N↓ =:
N have spin ↓. Here, ψi(r1, . . . ,rN ) and Ei are the normalized
eigenfunction and the corresponding eigenvalue of H (N↑,N↓)

in the Hilbert space obeying Boltzmann statistics (i.e., the
particles in this Hilbert space are distinguishable). The
summation in Eq. (16) extends over all eigenvalues in this
Hilbert space.1 The momentum representation of Eq. (16) is

1Thus, the sum in Eq. (16) is different from that in Eq. (1), which
runs over all eigenvalues in the Hilbert space obeying Fermi-Dirac
statistics.

defined by

〈k′
1, . . . ,k

′
N |W (N↑,N↓)|k1, . . . ,kN 〉

= 1

V N

∫
[0,L)3N

(
N∏

α=1

d3rαd3r′
α

)
ei

∑N
α=1(k′

α ·r′
α−kα ·rα )

×〈r′
1, . . . ,r

′
N |W (N↑,N↓)|r1, . . . ,rN 〉, (17)

where ki ,k′
i ∈ (2π/L)Z3.

We define the matrix elements of cluster functions U (N↑,N↓)

in the momentum representation as

〈k′|W (1,0)|k〉 ≡ 〈k′|U (1,0)|k〉 = δk,k′e−βk2/(2m),

〈k′|W (0,1)|k〉 ≡ 〈k′|U (0,1)|k〉 = δk,k′e−βk2/(2m),

〈1′,2′|W (2,0)|1,2〉 ≡ 〈1′,2′|U (2,0)|1,2〉
+ 〈1′|U (1,0)|1〉 〈2′|U (1,0)|2〉,

〈1′; 2′|W (1,1)|1; 2〉 ≡ 〈1′; 2′|U (1,1)|1; 2〉
+ 〈1′|U (1,0)|1〉 〈2′|U (0,1)|2〉,

〈1′,2′|W (0,2)|1,2〉 ≡ 〈1′,2′|U (0,2)|1,2〉
+ 〈1′|U (0,1)|1〉 〈2′|U (0,1)|2〉,

〈1′,2′,3′|W (3,0)|1,2,3〉 ≡ 〈1′,2′,3′|U (3,0)|1,2,3〉
+ 〈1′|U (1,0)|1〉〈2′,3′|U (2,0)|2,3〉
+ 〈2′|U (1,0)|2〉〈3′,1′|U (2,0)|3,1〉
+ 〈3′|U (1,0)|3〉〈1′,2′|U (2,0)|1,2〉
+ 〈1′|U (1,0)|1〉〈2′|U (1,0)|2〉
× 〈3′|U (1,0)|3〉, etc. (18)

Here, 1 := k1, 1′ := k′
1, etc. The two-particle cluster function

〈1′; 2′|U (1,1)|1; 2〉 is explicitly calculated in Sec. III B and
Appendix C.

C. Thermodynamic function and reduced density matrices in
terms of Lee-Yang ζ -graphs

The thermodynamic function and the N -particle reduced
density matrices can be calculated from the cluster functions
U (N↑,N↓) through the primary ζ -graphs and contracted ζ -
graphs introduced by Lee and Yang [23]. In this section, we
show the main results which are used for later discussions.
The details are shown in Appendix A, where we use graph
rules [28] different from those of Lee and Yang [23]. The
relations between them are listed in Appendix C of Ref. [28].

In terms of the primary or contracted 0-graphs, we can write
the grand partition function as

ln �V =
∑

[all different primary 0-graphs]

= ln �V,ideal + P, (19)

where

P =
∑

[all different contracted 0-graphs]. (20)

Here, the definitions of the primary and contracted 0-graphs are
given in Appendix A. The important point is that each primary
or contracted 0-graph is computed from the cluster functions
U (N↑,N↓). By using Eq. (3) (or β�p = limV →∞ P/V ) and
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(a) (b) (c)

(d) (e) (f)

(1) (2)

(1)(3) (6)

(2)

FIG. 2. Primary 0-graphs up to the third-order terms in fugacity
z. The graph in panel (a) contributes to the first-order term. The
graphs in panels (b) and (c) contribute to the second-order term. The
graphs in panels (d), (e), and (f) contribute to the third-order term.
The symmetry number is shown under each graph.

Eq. (6), Eq. (19) gives the cluster expansion of the thermo-
dynamic function.

The examples of the Lee-Yang primary 0-graphs and P are
illustrated in Figs. 2 and 3(a), respectively. Here, solid lines
represent the primary graphs, and dotted lines represent the
contracted graphs and describe the effect of the Fermi-Dirac
statistics. To be concrete, we consider the geometric series

η0(k) :=
∞∑

n=0

[ − ze−β�
2k2/(2m)

]n = 1 − nF (k), (21)

where nF (k) := [1 + z−1eβ�
2k2/(2m)]−1 is the Fermi distribu-

tion function. The effect of Fermi-Dirac statistics emerges
through this geometric series. This sum is illustrated in
Fig. 3(b).

Similarly, in terms of the primary 1-graphs and 2-graphs, we
can write the single-particle and two-particle reduced density
matrices [25,28]. In particular, we have

〈n̂kσ 〉 =
∑

[all different primary 1-graphs] (22)

and

〈n̂k↑n̂k′↓〉 − 〈n̂k↑〉〈n̂k′↓〉
=

∑
[all different primary 2-graphs], (23)

where n̂kσ is the occupation number for particles with
momentum k and spin σ and 〈 〉 refers to the statistical

FIG. 3. (a) Sum over all different contracted 0-graphs (dotted
curves). The symmetry number is shown under each graph. (b)
Expression of η0(k) as the sum over different primary 1-graphs (solid
lines).

FIG. 4. Primary 1-graphs and 2-graph up to the second-order
terms in fugacity z. The graph in panel (a) contributes to the first-
order term in the primary 1-graphs. The graphs in panels (b) and
(c) contribute to the second-order term in the primary 1-graphs. The
graph in panel (d) contributes to the second-order term in the primary
2-graphs. The symmetry number is shown under each graph.

average over a grand canonical ensemble. The examples of
the Lee-Yang primary 1-graphs and 2-graphs are illustrated in
Fig. 4 up to the second-order terms in fugacity z.

III. TWO-PARTICLE CLUSTER FUNCTION AND
SECOND-ORDER CLUSTER EXPANSION

A. Model potential

As stated in the Introduction, we consider a dilute gas of
two-component fermions with zero-range attractive s-wave
interaction. There is no interaction between particles of
the same spin due to the Pauli exclusion principle, and
an interaction potential between particles of opposite spins
v(ri − rj ) is characterized by the s-wave scattering length a.
Our Hamiltonian is given by

H (N↑,N↓) = −
N∑

i=1

�
2

2m
∇2

i +
N↑∑
i=1

N∑
j=N↑+1

v(ri − rj ). (24)

There are several forms of the potential for the zero-
range interaction which reproduce the low-energy scattering
properties. One is the regularized s-wave pseudopotential [12]

v(r) = 4π�
2a

m
δ(r)

∂

∂r
(r ·), (25)

where r = |r|, with r := r2 − r1 being the relative coordinate.
To obtain the momentum representation of the pseudopoten-
tial, we introduce Tan’s � function [30],

δ(r)
∂

∂r
(re−ik·r) ≡ δ(r)�(k), (26)

which has the following two properties:

�(k) = 1 for |k| < ∞; (27)

1

V

∑
k

�(k)

k2
= 0. (28)
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The explicit form of the � function is given by Valiente [38]
as �(k) = 1 − k−1δ(k−1). Then, we obtain

〈k′
1; k′

2| v |k1; k2〉

:= 1

V 2

∫
V

d3R
∫

V

d3rei(K′ ·R+k′ ·r)v(r)e−i(K·R+k·r)

= 1

V
δK,K′

4π�
2a

m
�(k), (29)

where K = k1 + k2, K′ = k′
1 + k′

2, k = (k1 − k2)/2, and
k′ = (k′

1 − k′
2)/2. We note that the use of the s-wave

pseudopotential is equivalent to imposing the Bethe-Peierls
boundary condition [2,3]:

1

rψ

d

dr
(rψ)

∣∣∣
r→+0

= −1

a
. (30)

The Hamiltonian (24) with the s-wave pseudopotential (25)
supports continuous scattering states:

ψsc(r) = {2π2[1 + (ksca)2]}−1/2 1

r
[sin(kscr) − ksca cos(kscr)],

(31)

with the energy eigenvalue Esc = �
2k2

sc/m. Moreover, if a >

0, the Hamiltonian also supports one bound state,

ψb(r) = (2πa)−
1
2

1

r
e−r/a, (32)

with the binding energy Eb = −�
2/(ma2).

B. Two-particle cluster function

The exact two-particle cluster function U (1,1) can be
obtained from the set of the energy eigenstates (31) and (32)
and the corresponding eigenvalues. Now, the two-particle
Hamiltonian is

H (1,1) = − �
2

2m
∇2

1 − �
2

2m
∇2

2 + v(r) = − �
2

4m
∇2

R + H (rel),

(33)

where

H (rel) = −�
2

m
∇2

r + v(r). (34)

The two-particle cluster function for a finite volume V is

〈k′
1; k′

2|U (1,1)|k1; k2〉 = 8π3

V
δK,K′e−β�

2K2/(4m)〈k′|u(rel)|k〉,
(35)

where

〈k′|u(rel)|k〉 := 〈k′|e−βH (rel) |k〉 − δk,k′e−β�
2k2/m. (36)

Here K := k1 + k2 and k := (k1 − k2)/2, and the Kronecker
delta δK,K′ , reflects the conservation of momentum.

The function 〈k′|u(rel)|k〉 describes an effect of interac-
tion (25) and can be calculated from the eigenfunctions and
eigenvalues of H (rel) as shown in Appendix C. The result is

〈k′|u(rel)|k〉 =
{

λ3

25/2π7/2
s(x ′,w)−s(x,w)

x ′2−x2 , for x �= x ′;
λ3

(2π)7/2
1
x

∂
∂x

s(x,w), for x = x ′,
(37)

where

s(x,w)

= 1

x2 + w2

(
we−x2 − 2√

π
xF (x) − wew2

erfc(−w)

)
.

(38)

Here we have introduced the dimensionless variables
x :=

√
β�2k2/m = λ|k|/√2π and w := √

β�/(
√

ma) =
λ/(

√
2πa), Dawson’s integral

F (x) = e−x2
∫ x

0
dtet2

, (39)

and the complementary error function

erfc (x) = 2√
π

∫ ∞

x

dte−t2
. (40)

The two-particle cluster function in the zero-range model
was first obtained in Ref. [26] for λ/a � 0 and Ref. [27] for
λ/a< 0. However, the expressions in Eqs. (35)–(38) hold
for either sign of λ/a and the two-particle cluster function
is smoothly connected at the unitary limit λ/a = 0.

C. Second-order cluster integral

The second cluster integral �b2 is calculated from the graph
illustrated as Fig. 2(c). The algebraic expression of Fig. 2(c)
is given in Appendix B 1. From Eq. (B2), we have

V

λ3
�b2 =

∑
k1,k2

〈k1; k2|U (1,1)|k1; k2〉. (41)

Using Eq. (35) with Eqs. (37) and (38), the right-hand side
(RHS) of Eq. (41) is rewritten as

8π3

V

∑
K

e−β�
2K2/(4m)

∑
k

〈k|u(rel)|k〉

= V

λ3

√
2ew2

erfc(−w). (42)

Thus, we obtain

�b2 =
√

2ew2
erfc(−w). (43)

This result is nothing but the Beth-Uhlenbeck formula [13].
From this result, it is confirmed that the cluster expansion
method can treat effects of quantum-mechanical scattering and
bound states at least at the level of the second cluster integral.

The third cluster integral �b3 can be calculated from the
graphs as illustrated in Figs. 2(e) and 2(f). The algebraic
expressions of Fig. 2(e) and 2(f) are given in Appendix B-1.
The calculation of the graph in Fig. 2(e) can be done in a
manner similar to that of �b2. However, the calculation of the
graph in Fig. 2(f) is not straightforward, because it includes the
functions U (1,2) and U (2,1), which are obtained by a solution
of a three-body problem. Recently, the calculation of the term
corresponding to Fig. 2(f) and hence of �b3 was carried out
by Leyronas [16] for an arbitrary λ/a. Here we comment on
the correspondence between the Lee-Yang primary 0-graphs
in Fig. 2 and the graphs used in Ref. [16]. Note that the
Lee-Yang primary 0-graphs represent the terms that appear in
ln �, but the graphs used in Ref. [16] represent the terms that
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appear in the number density. According to Eqs. (3) and (4),
the derivative of the former is equivalent to the latter. The
Lee-Yang primary 0-graphs in Figs. 2(a), 2(b), 2(c), and 2(f)
correspond to the graphs in Figs. 1, 2(a), 2(b), and 5 in
Ref. [16], respectively. The Lee-Yang primary 0-graphs in
Fig. 2(e) correspond to the sum of the graphs in Figs. 3 and 4
in Ref. [16].

D. Second-order contact coefficient

Since we have obtained �b2 in Eq. (43), we can calculate
the second-order contact coefficient c2 by using Eq. (14) as

c2 = 1√
2π

d

dw
�b2 = 2

π
+ 2√

π
wew2

erfc (−w) . (44)

Here, we calculate c2 by means of the thermodynamic quantity
b2. Besides thermodynamic quantities, Tan’s contact can be
calculated by means of the average occupation number 〈n̂kσ 〉
in the momentum space at the large momentum 1/k4 tail as in
Eq. (11) and by means of the pair correlation at short distances
as [30]

〈n̂↑(r)n̂↓(0)〉 = C

16π2

(
1

r2
− 2

ar

)
+ O(r0). (45)

Here, 〈n̂↑(r)n̂↓(0)〉 is the statistical average of the density-
density correlation with definite positions r with spin ↑ and
0 with spin ↓ in an infinite volume over the grand canonical
ensemble. We devote the rest of this subsection to rederiving
c2 by means of these two methods and demonstrating that
the cluster expansion method can give the 1/k4 asymptotic
behavior of 〈n̂kσ 〉 at large momentum and the 1/r2 asymptotic
behavior of 〈n̂↑(r)n̂↓(0)〉 at short distances, at least up to the
second order in fugacity.

We calculate 〈n̂k↑〉 at large momentum up to the second-
order terms in fugacity. According to Eq. (22), we have

〈n̂k↑〉 = ze−β�
2k2/(2m) − z2e−β�

2k2/m

+ z2
∑

q

〈k; q|U (1,1)|k; q〉 + O(z3), (46)

in which each term corresponds to the primary 1-graphs
in Figs. 4(a)–4(c). For λk � 1, i.e., x � 1, the asymptotic
behavior of Dawson’s integral is F (x) = 1/(2x) + O(1/x3).
Thus, we have

s(x) = −1

x2

[
1√
π

+ wew2
erfc(−w)

]
+ O

(
1

x4

)
. (47)

By substituting Eq. (47) into Eq. (35) and using Eq. (37), we
have∑

q

〈k; q|U (1,1)|k; q〉

= 26

(λk)4

[
1 + √

πwew2
erfc(−w)

] + O

(
1

(λk)6

)
. (48)

Therefore, we obtain

C ≡ lim
λk→∞

k4〈n̂k↑〉

= 26z2

λ4

[
1 + √

πwew2
erfc(−w)

] + O(z3). (49)

Comparing Eq. (49) with Eq. (15), we obtain c2, which agrees
with Eq. (44).

We calculate 〈n̂↑(r)n̂↓(0)〉 at a short distance up to the
second-order terms in the fugacity. According to the Fourier
transform of Eq. (23), we have

〈n̂↑(r)n̂↓(0)〉 − 〈n̂↑(r)〉〈n̂↓(0)〉= z2〈r; 0|U (1,1)
∞ |r; 0〉+ O(z3),

(50)

in which the first term on the RHS corresponds to the Fourier
transform of the primary 2-graphs in Fig. 4(d) (see Eq. (17)
in Ref. [28]). By using 〈n̂↑(r)〉 = 〈n̂↓(0)〉 = z/λ3 + O(z2),
which is obtained by the Fourier transform of 〈n̂k↑〉 = 〈n̂k↓〉 =
z e−β�

2k2/(2m) + O(z2), and Eq. (C3) given in Appendix C, we
have

〈n̂↑(r)n̂↓(0)〉 = z2

λ6
+ 23/2z2

λ3
〈r|u(rel)

∞ |r〉 + O(z3). (51)

Here, from Eq. (C5) given in Appendix C, we have

〈r|u(rel)
∞ |r〉 = 1

23/2λ

(
1

π
+ 1√

π
wew2

erfc (−w)

)

×
(

1

r2
− 2

ar

)
+ O(r0). (52)

Therefore, we obtain

〈n̂↑(r)n̂↓(0)〉

= z2

λ4

(
1

π
+ 1√

π
wew2

erfc(−w)

) (
1

r2
− 2

ar

)

+O(r0) + O(z3). (53)

Comparing Eqs. (45) and (53) with Eq. (15), we obtain c2

which agrees with Eq. (44).

IV. PHASE TRANSITION TEMPERATURE IN
THE BCS AND BEC LIMITS

A. Identification of the phase transition point in terms of cluster
expansion

A phase transition manifests itself as the appearance of
a singularity in the thermodynamic function [12]. Here, the
singularity is defined by the disappearance of holomorphy
(or analyticity).2 In this subsection, we describe the sta-
tistical theory of phase transitions in the context of our
model.

The cluster expansion of the equation of state (in parametric
form) is written as Eqs. (6) and (7). We fix the s-wave scattering
length a and the temperature T . Then, the cluster integrals
{bn}n=1,2,... are fixed, because they depend only on λ/a. To
identify the phase transition point, we consider a singularity
of the RHS of Eq. (6) near the origin and along the positive
real axis in the complex z-plane: 0 � z < ∞. It is reasonable

2A complex-valued function is said to be holomorphic on an open
set � in the complex plane, if its Taylor expansion around any point
in � has a nonzero radius of convergence. If � is not an open
set, we interpret that holomorphy holds in an appropriate open set
containing �.
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to assume that our system has a point zc on the positive real
axis so that the RHS of Eq. (6) is holomorphic at 0 � z < zc

and has singularity at z = zc. It indicates that the system is in
the normal gas phase on 0 � z < zc, and at z = zc there is a
phase transition, which is often identified with the superfluid
phase transition [2,3]. Substituting zc to Eq. (7), we obtain the
value (ρλ3)c at the phase transition point. Then, we obtain the
transition temperature Tc, using

Tc

TF

= 4

32/3π1/3[(ρλ3)c]2/3
. (54)

Similarly, we obtain (kF a)−1 at the corresponding point by
using the relation kF = (3π2ρ)1/3.

For our system,

∞∑
n=1

bnz
n = −2 Li 5

2
(−z) +

∞∑
n=2

�bnz
n, (55)

and there is no singularity in −2 Li5/2(−z) near the origin
and along the positive real axis in the complex z-plane.
Thus, to examine a phase transition, we examine a singu-
larity of

∑∞
n=2 �bnz

n on the positive real axis of z. Using∑∞
n=2 �bnz

n = λ3 limV →∞ P/V , we can evaluate the critical
point through the Lee-Yang contracted graphs.

We comment on the correspondence between the above
procedure and the procedure of the approximate BCS-BEC
crossover theory by NSR [10,11]. In the theory by NSR,
the Thouless criterion and the number equation are solved
simultaneously to calculate the transition temperature Tc.
In our theory, the Thouless criterion corresponds to the
determination of the singularity of Eq. (6), and the number
equation is replaced by Eq. (7).

B. Pairing approximation

The discussion in the previous subsection is general.
Here we develop an approximate theory that satisfies the
following two requirements: (i) in the weak-coupling limit, the
transition temperature Tc is consistent with the BCS theory;
(ii) in the strong-coupling limit, Tc reduces to that of the
BEC of noninteracting tightly bound dimers. The transition
temperature is determined by different physical mechanisms in
the weak- and strong-coupling limits: (i) in the weak-coupling
limit, Tc is determined by the Cooper instability of the Fermi
sphere; (ii) in the strong-coupling limit, Tc is determined by
the onset of BEC of dimers in the zero center-of-mass state.
Thus, we must take into account the quantum-exchange effect
of the Fermi-Dirac statistics of particles and the quantum-
exchange effect of the Bose statistics of pairs. In this paper,
we do not consider the Gor’kov–Melik-Barkhudarov correc-
tion [39], which is important in the weak-coupling regime
[(kF a)−1 � −1], and the scattering between dimers, which
is important in the strong-coupling regime [(kF a)−1 � 1]
[40,41].

To meet the above requirements, we consider a set of
contracted 0-graphs Ppair as shown in Fig. 5 and approximate
the grand partition function as

ln �V � −2
V

λ3
Li 5

2
(−z) + Ppair. (56)

FIG. 5. Expression of Ppair as the sum over different ladder-type
contracted 0-graphs. The corresponding symmetry numbers are
shown under the graphs.

The algebraic expression of Ppair is given in Appendix B 2.
From Eq. (B7), we have

Ppair =
∞∑

n=1

z2n

n

∑
k1,...,k2n

n∏
i=1

[1 − nF (k2i−1)]

× [1 − nF (k2i)]〈k2i+1; k2i+2|U (1,1)|k2i−1; k2i〉, (57)

where k2n+1 := k1 and k2n+2 := k2. We call the above
approximation (56) the “pairing approximation.” The physical
meaning of the pairing approximation is quite simple. The sum
Ppair includes the effect of the Fermi sphere [1 − nF (k)], that
of two-particle scattering (and pairing in the case of a positive
scattering length) with opposite spins 〈k′

1; k′
2|U (1,1)|k1; k2〉,

and that of the Bose statistics of pairs of particles with opposite
spins (for details, see Example 4 on page 9 of Ref. [28]).

However, it is unclear whether or not the correct transition
temperature can be derived from the pairing approximation,
even in the weak- and strong-coupling limits. The present
study is the first attempt to investigate the BCS-BEC crossover
based on the Lee-Yang cluster expansion method. In the
following subsections C and D, we derive the transition
temperature under pairing approximation in the weak- and
strong-coupling limits. This shows that the pairing approxi-
mation satisfies the requirements in the first paragraph of this
subsection.

Let us rewrite Eq. (57) for use in subsections C and D.
Substituting Eq. (35) into Eq. (57), we obtain

Ppair =
∑

K

∞∑
n=1

1

n

(
8π3z2

V

)n

e−nβ�
2K2/(4m)

×
∑

p1,...,pn

n∏
i=1

[
1 − nF

(
1
2 K + pi

)]
× [

1 − nF

(
1
2 K − pi

)] 〈pi+1|u(rel)|pi〉, (58)

where pi := (k2i − k2i−1)/2 for i = 1, . . . ,n and pn+1 := p1.
Using

z2eβ�
2K2/(4m)

[
1 − nF

(
1
2 K + pi

)][
1 − nF

(
1
2 K − pi

)]
= eβ�

2p2
i /m nF

(
1
2 K + pi

)
nF

(
1
2 K − pi

)
, (59)
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we obtain

Ppair =
∑

K

∞∑
n=1

1

n

(
8π3

V

)n ∑
p1,...,pn

n∏
i=1

nF

(
1
2 K + pi

)

× nF

(
1
2 K − pi

)
eβ�

2p2
i /m〈pi+1|u(rel)|pi〉. (60)

C. Weak-coupling limit (BCS limit)

In this subsection, we evaluate the transition temperature
under pairing approximation (56) in the weak-coupling limit
[(kF a)−1 � −1]. In this limit, we take into account the two-
particle cluster function U (1,1) up to the leading order of the
s-wave scattering length a as

〈k′
1; k′

2|U (1,1)|k1; k2〉 =
∫ β

0
dτe

−(β−τ )(εk′
1
+εk′

2
)〈k′

1; k′
2| v |k1; k2〉

× e−τ (εk1 +εk2 ) + O((a/λ)2), (61)

where εki
= �

2k2
i /(2m) and εk′

i
= �

2k′2
i /(2m) for i = 1,2.

Substituting Eq. (29) into the RHS of Eq. (61) and comparing
the result with Eq. (35), we obtain

〈k′|u(rel)
1st |k〉 = �

2a

2π2m
� (k)

∫ β

0
dτe−(β−τ )�2k′2/me−τ�

2k2/m.

(62)

Substituting Eq. (62) into Eq. (60), we obtain

P1st
pair =

∑
K

∞∑
n=1

1

n

(
4π�

2a

V m

)n ∑
p1,...,pn

n∏
i=1

nF

(
1
2 K + pi

)

× nF

(
1
2 K − pi

)
� (pi)

∫ β

0
dτie

τi�
2(p2

i+1−p2
i )/m. (63)

Here the first-order approximation of Ppair is denoted by P1st
pair.

Using the property of Tan’s � function (28), it is shown in

Appendix D that

P1st
pair =

∑
l∈Z

∑
K

∞∑
n=1

1

n
[Q(K,�l)]

n , (64)

where

Q(K,�l) = 4π�
2a

V m

∑
p

[
1 − nF (k1) − nF (k2)

i�l − (
εk1 + εk2 − 2μ

) + m

p2

]
,

(65)

k1 = (1/2)K + p and k2 = (1/2)K − p. Here, �l = 2πl/β is
the bosonic Matsubara frequency and the summation

∑
l∈Z

extends over all integers l ∈ {0,±1,±2, . . . }.
Since |Q(K,�l)| < Q(0,0) for all K �= 0 and �l �= 0,

the convergence of Eq. (64) is determined by the condition
Q(0,0) < 1. By using Eq. (65) and 1 − 2nF (p) = tanh[β(εp −
μ)/2], we obtain

Q(0,0) = −4π�
2a

V m

∑
p

{
tanh[β(εp − μ)/2]

2(εp − μ)
− 1

2εp

}
. (66)

Therefore, the convergence condition of Eq. (64) is written as
β < βc, where

−4π�
2a

V m

∑
p

{
tanh[βc(εp − μ)/2]

2(εp − μ)
− 1

2εp

}
= 1. (67)

Here, βc is the inverse of the transition temperature. In
the weak-coupling limit, the chemical potential μ is equal
to the Fermi energy of free fermions �

2k2
F /(2m) [10].

Equation (67) is equivalent to the Thouless criterion [29]
and gives the transition temperature of the BCS theory
[11,39] as

Tc

TF

� 0.61 exp

(
− π

2kF |a|
)

. (68)

Equation (64) shows a close connection between the present
theory and the theory by NSR [10,11]. If we extrapolate
the present theory to the strong-coupling regime, our theory
reduces to that of NSR. If the sum in Eq. (64) is convergent,
i.e., β < βc, we obtain

P1st
pair = −

∑
l∈Z

∑
K

ln [1 − Q(K,�l)] = −
∑
l∈Z

∑
K

ln

{
1

V

∑
p

[
1 − nF (k1) − nF (k2)

i�l − (
εk1 + εk2 − 2μ

) + m

�2p2

]
− m

4π�2a

}
+ constant. (69)

By using Eq. (56) together with Eq. (69), we obtain
ln �V � ln �ideal,V + P1st

pair. Then, the number equation is
given by

ρ � ρideal + z
∂

∂z
lim

V →∞
1

V
P1st

pair. (70)

Equation (70) coincides with the number equation of the NSR
theory [10,11].

It might appear that the present theory gives a BCS-BEC
crossover theory based on the Lee-Yang cluster expansion
method, because we have reproduced the Thouless crite-
rion (67) and the number equation (69), which altogether

produce the BCS-BEC crossover theory by NSR. Then,
following NSR [10,11], we obtain Tc/TF � 0.22 in the unitary
limit (kF a)−1 = 0 and obtain the transition temperature of
dimers in the strong-coupling limit. However, the assumption
in Eq. (61) is valid only in the weak-coupling regime.
Therefore, we conclude that this result is not the derivation
of the BCS-BEC crossover theory but that of the BCS theory
only. In the strong-coupling limit, we should treat two-particle
cluster function U (1,1) nonperturbatively. The next subsection
is devoted to demonstrating the right way to obtain the
transition temperature of dimers based on the Lee-Yang cluster
expansion method.
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One may suspect that our theory is just a rewriting of the
theory by NSR. However, it is nontrivial to derive the Thouless
criterion from the Lee-Yang cluster expansion method in the
weak-coupling limit. The reason is the following. The thermal
Green function for a free fermion, which is used to derive
the Thouless criterion, involves the information on the Fermi
sphere. However, in the formulation of a cluster expansion,
the nth cluster integral bn has only information of n particles
and has no information of the Fermi sphere. In the above
discussion, we have overcome this difficulty by considering the
pairing approximation and involving the Fermi-sphere effect
of the surrounding fermions by using the contracted graph
which is constructed from an infinite series of the primary
graphs as shown in Fig. 3(b). While the above derivation
invokes Tan’s � function (26), Eq. (69) can also be obtained by
using the δ-function-type contact interaction and the standard
regularization (see Appendix D 2).

D. Strong-coupling limit (BEC limit)

In this subsection, we evaluate the transition temperature
under pairing approximation (56) in the strong-coupling
limit [(kF a)−1 � 1].3 In this limit, we cannot treat the two-
particle cluster function U (1,1) perturbatively. We first rewrite
Eq. (37) as

〈k′|u(rel)|k〉 = 〈k′|u(rel,b)|k〉

+ λ3

25/2π7/2

ssc(x ′,w) − ssc(x,w)

x ′2 − x2
, (71)

where

ssc(x,w) = 1

x2 + w2

×
(

we−x2 − 2√
π

xF (x) + |w|ew2
erfc(|w|)

)
(72)

and

〈k′|u(rel,b)|k〉 = θ (a)eβ�
2/(ma2)ψb(k′)ψ∗

b (k). (73)

Here

θ (x) =
{

1, for x > 0,

0, for x � 0,
(74)

is the Heaviside step function and

ψb(k) = a3/2

π

1

1 + (ka)2
(75)

is the normalized relative wave function of the bound state,
which is the Fourier transform of Eq. (32). Keeping the
leading-order term, we have

〈k′|u(rel)|k〉 = 〈k′|u(rel,b)|k〉 + O(a/λ)

= eβ�
2/(ma2)ψb(k′)ψb(k) + O(a/λ). (76)

3The following derivation of the BEC of dimers was first obtained in
Ref. [26]. Here we rederive it to demonstrate the difference between
our theory and the theory of NSR.

Substituting Eq. (76) and 1 − nF (k) � 1 into Eq. (58), we
obtain

Ppair

=
∑

K

∞∑
n=1

1

n

[
z2eβ�

2/(ma2)e−β�
2K2/(4m) 8π3

V

∑
k

|ψb(k)|2
]n

= 2
√

2
V

λ3
Li 5

2

(
z2eβ�

2/(ma2)
)
. (77)

The condition for convergence of Eq. (77) is z2eβ�
2/(ma2) <

1, which may also be rewritten as

2μ < 2μc ≡ − �
2

ma2
= Eb. (78)

The number equation (7) is

ρ � ρideal + z
∂

∂z
lim

V →∞
1

V
Ppair

= − 2

λ3
Li 3

2
(−z) + 4

√
2

λ3
Li 3

2

(
z2eβ�

2/(ma2)). (79)

Here we neglect the free-particle part ρideal, because ρideal �
ρ − ρideal in the strong-coupling limit. Therefore, at the
transition temperature Tc, ρ � 4

√
2 λ−3

c Li3/2 (1), where λc

is the corresponding thermal de Broglie length at Tc. Using
Eq. (54), we obtain

Tc

TF

�
[

2

9π
[
ζ
(

3
2

)]2

]1/3

� 0.2180, (80)

where ζ (x) is the Riemann ζ function and ζ (3/2) =
Li3/2(1) = 2.612 . . .. This result is identical to the transi-
tion temperature for noninteracting diatomic molecules Tc =
(π�

2/m){ρ/[2 ζ (3/2)]}2/3.
Note that we have obtained the transition temperature of

dimers (80) in a manner fundamentally different from the
NSR theory [10,11]. In Sec. IV C, we have derived the
Thouless criterion (67) and the number equation (69). Then,
following the procedure of NSR with the extrapolation, in the
strong-coupling limit we obtain Eq. (80). In other words, in the
strong-coupling limit, we have obtained the same result (80)
based on two different approximations. However, as discussed
in the last of Sec. IV C, Eqs. (67) and (69) are derived with the
weak-coupling approximation, and it seems rather fortuitous
that this approach also reproduces the correct result of
Eq. (80).

V. CONCLUSION AND FUTURE PROSPECTS

In this paper, we have proposed a new approach to the
BCS-BEC crossover based on the cluster expansion method
of Lee and Yang. We have evaluated the transition temperature
of this system, by analyzing an emergence of the singularity
of an infinite series of cluster functions. We have shown that
an infinite sum of cluster functions Ppair has the following
three properties: (i) in the weak-coupling limit, it gives the
Thouless criterion and hence the transition temperature of
the BCS theory, and the number equation of the BCS-BEC
crossover theory by NSR; (ii) in the strong-coupling limit,
it reproduces the thermodynamic function of noninteracting
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FIG. 6. Graphical representation of medium effects on a binary
collision. The left-hand side of the thick arrow represents a bare
binary collision, and the right-hand side represents a binary collision
with medium effects. In this figure, we display all graphs up to the
fourth order in fugacity z. The orders of the fugacity are z2 for (a), z3

for (b), and z4 for (c) and (d).

tightly bound dimers; and (iii) in the high-temperature limit,
it gives the exact second virial coefficient, which is valid
also in the unitary regime. All of these suggest that our
theory provides a good starting point for a new BCS-BEC
crossover theory and this is the first work to demonstrate
how to derive these three limits from a unified point of
view.

Finally, we discuss two future prospects about the present
approach to the BCS-BEC crossover. (i) One is to compute the
transition temperature Tc/TF for an arbitrary s-wave scattering
length (kF a)−1 under the pairing approximation (56). We have
not done that because we have not yet understood how to carry
out the infinite summation Ppair in Eq. (57), which is necessary
to obtain the number equation. (ii) The other is to take into
account the medium effects for the transition temperature due
to the Gor’kov–Melik-Barkhudarov (GMB) correction [39] in
the weak-coupling regime [(kF a)−1 � −1] and the scattering
between dimers in the strong-coupling regime [(kF a)−1 �
1] [40,41]. Both of them are caused by the medium particles
surrounding quantum-condensed composite bosons (Cooper

pairs or dimer bosons); e.g., the GMB correction is caused by
the screening of the strength of interaction by the presence of
virtual particle-hole excitations. In the sum Ppair in Eq. (57),
the 2-vertex corresponds to a bare binary collision without
medium effects. Then, in order to take into account the medium
effects, we have to include graphs which correspond to a
binary collision with the medium effects. In Fig. 6, we display
graphical representation of the medium effects on a binary
collision.4 The replacement as in Fig. 6 in the sum Ppair may
lead to incorporating the medium effects.
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APPENDIX A: LEE-YANG CLUSTER EXPANSION
METHOD

In this appendix, we review the cluster expansion method
of Lee and Yang [22,23,28] in a system of two-component
fermions described in Sec. II A. In this method, the grand
partition function and the N -particle reduced density matrices
are expressed in terms of the primary ζ -graphs or the
contracted ζ -graphs to be defined later. Each primary or
contracted ζ -graph is computed from the cluster functions
U (N↑,N↓) for the same system obeying Boltzmann statistics,
which is defined in Sec. II B. In particular, in this appendix
we define the primary ζ -graphs and the contracted ζ -graphs
and show how to express the grand partition function and the
N -particle reduced density matrices in terms of the primary
or contracted ζ -graphs. As remarked in Ref. [28], we use
rules different from those of Lee and Yang [23]. The relations
between Lee-Yang and our notation are listed in Appendix C
of Ref. [28].

1. Definition of antisymmetric combination ϒA

In the computation of the Lee-Yang cluster expansion method for fermions, only the antisymmetric combination of U (l↑,l)

appears. Then, we define the matrix elements of ϒ
(l↑,l↓)
A by

〈1′, . . . ,l′↑; (l↑ + 1)′, . . . ,l′|ϒ (l↑,l↓)
A |1, . . . ,l↑; l↑ + 1, . . . ,l〉

:=
∑

P∈Sl↑

∑
Q∈Sl↓

(−1)P (−1)Q〈1′, . . . ,l′↑; (l↑ + 1)′, . . . ,l|U (l↑,l↓)| P (1), . . . ,P (l↑); Q(l↑ + 1), . . . ,Q(l) 〉, (A1)

where l = l↑ + l↓. Here, P and Q denote permutations among up-spin and down-spin particles, respectively, and (−1)P and
(−1)Q take on 1 or −1 for even or odd permutations.

It is useful to define the function ϒ
(l)
A related to ϒ

(l↑,l↓)
A as follows. First, we define

〈q ′
1, . . . ,q

′
l |ϒ (l)

A |q1, . . . ,ql〉 := 〈1′, . . . ,l′↑; (l↑ + 1)′, . . . ,l′|ϒ (l↑,l↓)
A |1, . . . ,l↑; l↑ + 1, . . . ,l〉, (A2)

4The infinite sum of the RHS in Fig. 6 is called a simple 2-diagram in Ref. [25] and is called an irreducible contracted 2-graph in Ref. [28].
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where q1 := (k1,↑), . . . , ql↑ := (kl↑ ,↑), ql↑+1 := (kl↑+1,↓), . . . , and ql := (kl ,↓), and where q ′
1 := (k′

1,↑), . . . , q ′
l↑ := (k′

l↑ ,↑),
q ′

l↑+1 := (k′
l↑+1,↓), . . . , and q ′

l := (k′
l ,↓). Here l := l↑ + l↓. Then,

〈Q(q ′
1), . . . ,Q(q ′

l )|ϒ (l)
A |P (q1), . . . ,P (ql)〉 := (−1)P (−1)Q〈q ′

1, . . . ,q
′
l |ϒ (l)

A |q1, . . . ,ql〉. (A3)

We give a few examples.
Example 1 (one particle).

〈k′,↑|ϒ (1)
A |k,↑〉 = 〈k′|ϒ (1,0)

A |k〉 = 〈k′|U (1,0)|k〉. (A4)

〈k′,↓|ϒ (1)
A |k,↓〉 = 〈k′|ϒ (0,1)

A |k〉 = 〈k′|U (0,1)|k〉. (A5)

〈k′,↑|ϒ (1)
A |k,↓〉 = 〈k′,↓|ϒ (1)

A |k,↑〉 = 0. (A6)

Example 2 (two particles with opposite spins).

〈k′
1,↑; k′

2,↓|ϒ (2)
A |k1,↑; k2,↓〉 = −〈k′

2,↓; k′
1,↑|ϒ (2)

A |k1,↑; k2,↓〉 = −〈k′
1,↑; k′

2,↓|ϒ (2)
A |k2,↓; k1,↑〉

= 〈k′
2,↓; k′

1,↑|ϒ (2)
A |k2,↓; k1,↑〉 = 〈k′

1; k′
2|ϒ (1,1)

A |k1; k2〉 = 〈k′
1; k′

2|U (1,1)|k1; k2〉. (A7)

Example 3 (two particles with the same spin).

〈k′
1,σ ; k′

2,σ |ϒ (2)
A |k1,σ ; k2,σ 〉 = −〈k′

2,σ ; k′
1,σ |ϒ (2)

A |k1,σ ; k2,σ 〉 = −〈k′
1,σ ; k′

2,σ |ϒ (2)
A |k2,σ ; k1,σ 〉

= 〈k′
2,σ ; k′

1,σ |ϒ (2)
A |k2,σ ; k1,σ 〉 =

{
〈k′

1,k
′
2|ϒ (2,0)

A |k1,k2〉, for σ = ↑;

〈k′
1,k

′
2|ϒ (0,2)

A |k1,k2〉, for σ = ↓.
(A8)

Here,

〈k′
1,k

′
2|ϒ (2,0)

A |k1,k2〉 = 〈k′
1,k

′
2|U (2,0)|k1,k2〉 − 〈k′

1,k
′
2|U (2,0)|k2,k1〉 (A9)

and

〈k′
1,k

′
2|ϒ (0,2)

A |k1,k2〉 = 〈k′
1,k

′
2|U (0,2)|k1,k2〉 − 〈k′

1,k
′
2|U (0,2)|k2,k1〉. (A10)

2. Thermodynamic function and reduced density matrices in
terms of Lee-Yang primary ζ -graphs

The cluster expansion of the thermodynamic function and
the N -particle reduced density matrices can be expressed in
terms of the sum over connected products of ϒ

(l)
A functions.

The exact character of this sum is most simply described in
terms of primary ζ -graphs or contracted ζ -graphs introduced
by Lee and Yang [23]. A primary ζ -graph is defined as follows:

Definition. A primary ζ -graph (ζ = 0,1,2, . . . ) is a graph-
ical structure which consists of a collection of vertices
connected by directed lines, with ζ external incoming lines and
ζ external outgoing lines. Here, a line that has vertices at both
ends is called an internal line; otherwise, it is called an external
line. All external lines are considered distinguishable. Each
vertex, called the l-vertex (l = 1,2, . . . ), connects l incoming
lines and l outgoing lines. A primary ζ -graph must include at
least one vertex and one line, and all parts must be connected
(i.e., there must be a path from any one vertex to any other
vertex). Two primary graphs are different if their topological
structures are different.

Examples of the Lee-Yang primary ζ -graphs are illustrated
in Figs. 2 and 4. To each of these graphs we assign a term
which is determined by the following procedures.

(i) Associate with each internal line a different integer
i (i = 1, . . . ,N ) and the corresponding coordinate and spin
qi = (ki ,σi). Associate with each external line some pre-
scribed coordinate and spin.

(ii) Assign to each l-vertex, a factor

B1

A1

Bl

AlA2 . . .

B2 . . .

= zl〈B1, . . . ,Bl|ϒ (l)
A |A1, . . . ,Al〉, (A11)

where Ai and Bi represent the coordinates and spins associated
with the incoming and outgoing ith lines (i = 1, . . . ,l),
respectively. The number of up-spins associated with its
incoming lines is the same as that of outgoing lines, and it
is denoted as l↑. The same is true for down-spins l↓, with
l = l↑ + l↓.

(iii) Assign a factor 1/S to the entire graph, where S is the
symmetry number and is defined as follows:
Consider all N ! permutations of the positions of N integers
associated with the internal lines. The total number of
permutations that leave the graph topologically unchanged
gives the symmetry number of the graph. The symmetry
numbers are listed under each graph in Figs. 2–5.

(iv) Assign a factor of −1 to the entire graph, if the
permutation

A1 → B1, A2 → B2, . . . , Ai → Bi, . . . (A12)

from all the initial coordinates into all the final coordinates of
all the vertex function ϒ

(l)
A taken together is odd.
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The term that corresponds to each graph is given by∑
q1,...,ql

[ product of all factors in (ii)−(iv) ]. (A13)

In terms of these primary 0-graphs, we can write the grand
partition function [23] as

ln �V =
∑

[all different primary 0-graphs], (A14)

to which each graph contributes a term given by Eq. (A13).
A concrete calculation is given in Sec. III C. By using
Eqs. (3) and (6), Eq. (A14) gives the cluster expansion of
the thermodynamic function.

Similarly, in terms of these primary 1-graphs and 2-graphs,
we can write the single-particle and two-particle reduced
density matrices, respectively. For example, we have5

〈n̂kσ 〉 =
∑

[all different primary 1-graphs] (A15)

and

〈n̂k↑n̂k′↓〉 − 〈n̂k↑〉〈n̂k′↓〉
=

∑
[all different primary 2-graphs]. (A16)

3. Thermodynamic function in terms of Lee-Yang contracted
0-graphs

It is convenient to introduce a contracted ζ -graph. A
contracted ζ -graph has the same topological structure as a
primary ζ -graph except that a contracted graph does not have
any 1-vertex. To each contracted graph, we assign a term which
is determined by the same procedures (i)–(iv) and the following
additional rule:

(v) Assign a factor

η0(ki) := 1 − nF (ki) = [1 + ze−β�
2k2

i /(2m)]−1 (A17)

to the ith internal line.
In terms of the contracted 0-graphs, Eq. (A14) is

expressed as

ln �V = ln �V,ideal + P, (A18)

where

P =
∑

[all different contracted 0-graphs]. (A19)

By using β�p = limV →∞ P/V and Eq. (10), Eq. (A19) gives
the cluster expansion of the thermodynamic function.

Here P is illustrated in Fig. 3(a). The number under
each graph in Fig. 3(a) shows the symmetry number of the
corresponding contracted 0-graph. The algebraic expression
of the sum of the contracted graphs is

P = z2

2

∑
q1,q2

η0(k1)η0(k2)〈q1,q2|ϒ (2)
A |q1,q2〉

+ z3

6

∑
q1,q2,q3

η0(k1)η0(k2)η0(k3)〈q1,q2,q3|ϒ (3)
A |q1,q2,q3〉

5For the derivation of Eq. (A15), see Eq. (IV.84) in Ref. [23]. For
the derivation of Eq. (A16), see Eqs. (41) and (45) in Ref. [28].

+ z4

2

∑
q1,...,q4

η0(k1)η0(k2)η0(k3)η0(k4)

× 〈q1,q2|ϒ (2)
A |q1,q3〉〈q3,q4|ϒ (2)

A |q2,q4〉

+ z4

8

∑
q1,...,q4

η0(k1)η0(k2)η0(k3)η0(k4)

× 〈q1,q2|ϒ (2)
A |q3,q4〉〈q3,q4|ϒ (2)

A |q1,q2〉 + · · · , (A20)

where each term in the sum corresponds to the contracted
0-graph in the same order as in Fig. 3(a). Here, η0(k) describes
the effect of the Fermi-Dirac statistics described below
Eq. (21).

APPENDIX B: ALGEBRAIC EXPRESSIONS OF THE
LEE-YANG GRAPHS IN FIGS. 2 AND 5

In this appendix, we give the algebraic expressions of the
Lee-Yang graphs that appear in Figs. 2 and 5 in the system
described in Sec. III, whose Hamiltonian is given in Eq. (24).
The number under each term in Figs. 2 and 5 is the symmetry
number of the corresponding primary or contracted 0-graph.
Since the particles with the same spin do not interact, U (2,0) =
U (0,2) = 0 and U (3,0) = U (0,3) = 0.

1. Algebraic expressions of Lee-Yang graphs in Fig. 2

The first cluster integral b1 is calculated from the graph
illustrated in Fig. 2(a). The algebraic expression is

V

λ3
b1 =

∑
q

〈q|ϒ (1)
A |q〉

=
∑

k

(〈k|U (1,0)|k〉 + 〈k|U (0,1)|k〉) = 2
V

λ3
. (B1)

The second cluster integral �b2 is calculated from the graph
illustrated in Fig. 2(c). The algebraic expression is

V

λ3
�b2 = 1

2

∑
q1,q2

〈q1,q2|ϒ (2)
A |q1,q2〉

=
∑
k1,k2

〈k1; k2|U (1,1)|k1; k2〉. (B2)

Here, we use U (2,0) = U (0,2) = 0.
The third cluster integral �b3 is calculated from the graphs

illustrated as Figs. 2(e) and 2(f). The algebraic expression is

�b3 = �b
(e)
3 + �b

(f)
3 , (B3)

where

V

λ3
�b

(e)
3 =

∑
q1,q2,q3

〈q1,q3|ϒ (2)
A |q1,q2〉〈q2|ϒ (1)

A |q3〉

=
∑

k1,k2,k3

(〈k1; k3|U (1,1)|k1; k2〉〈k2|U (0,1)|k3〉

+ 〈k3; k1|U (1,1)|k2; k1〉〈k2|U (1,0)|k3〉) (B4)
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and
V

λ3
�b

(f)
3 = 1

6

∑
q1,q2,q3

〈q1,q2,q3|ϒ (3)
A |q1,q2,q3〉

= 1

2

∑
k1,k2,k3

(〈k1,k2; k3|U (2,1)|k1,k2; k3〉

+ 〈k1; k2,k3|U (1,2)|k1; k2,k3〉). (B5)

Here, we use U (2,0) = U (0,2) = 0 and U (3,0) = U (0,3) = 0.

2. Algebraic expressions of Ppair in Fig. 5

We consider a set of contracted 0-graphs’ Ppair as
shown in Fig. 5. The algebraic expression of Ppair is

written as

Ppair =
∞∑

n=1

z2n

n × 2n

∑
q1,...,q2n

n∏
i=1

η0(k2i−1)η0(k2i)

×〈q2i+1,q2i+2|ϒ (2)
A |q2i−1,q2i〉. (B6)

By using U (2,0) = U (0,2) = 0, the RHS of Eq. (B6) is

∞∑
n=1

z2n

n

∑
k1,...,k2n

n∏
i=1

η0(k2i−1)η0(k2i)

×〈k2i+1; k2i+2|U (1,1)|k2i−1; k2i〉, (B7)

where k2n+1 := k1 and k2n+2 := k2.

APPENDIX C: DERIVATION OF THE TWO-PARTICLE CLUSTER FUNCTION FOR THE S-WAVE PSEUDOPOTENTIAL

1. Two-particle cluster function for the s-wave pseudopotential

To calculate the two-particle cluster function U (1,1) in the s-wave approximation, the general formula discussed in Ref. [22]
is applied. The formula deals with the case of a central potential and an infinite volume V = ∞. The relationship between the
cases of finite V and infinite V is discussed in Appendix E of Ref. [23]. In this appendix, we show the subscripts V and ∞ to
distinguish the cases of finite V and infinite V , respectively.

The general formula in Ref. [22] requires a complete set of energy eigenvalues and eigenfunctions, which are calculated by
using the pseudopotential (25). The two-particle Hamiltonian is

H (1,1) = − �
2

2m

(∇2
1 + ∇2

2

) + 4π�
2a

m
δ3(r)

∂

∂r
r. (C1)

Here we introduce the center-of-mass and relative coordinates: R = (r1 + r2)/2, r = r1 − r2, and its absolute value: r := |r|.
The Schrödinger equation for the relative motion is(

−�
2

m
∇2 + 4π�

2a

m
δ3(r)

∂

∂r
r

)
ψ(r) = Eψ(r). (C2)

The solutions to this equation are the continuous scattering states ψsc(r) in Eq. (31) with energy Esc = �
2k2

sc/m and one bound
state ψb(r) in Eq. (32) with the binding energy Eb = −�

2/(ma2). The same results can be obtained from the Bethe-Peierls
boundary condition (30).

Using the general formula for the coordinate representation of the two-particle cluster function, we obtain

〈r′
1,r

′
2|U (1,1)

∞ |r1,r2〉 =
√

8

λ3
e−m(R−R′)2/(β�

2)〈r′|u(rel)
∞ |r〉, (C3)

where

〈r′|u(rel)
∞ |r〉 = θ (a) ψ∗

b (r)ψb(r ′)eβ�
2/(ma2) +

∫ ∞

0
dksc e−β�

2k2
sc/m

[
ψ∗

sc(r)ψsc(r ′) − sin(kscr) sin(kscr
′)

2π2rr ′

]
. (C4)

Here, θ (x) = (1 + x/ |x|) /2. As shown in Appendix C 2, the integration over ksc gives

〈r′|u(rel)
∞ |r〉 = 1

4πrr ′λ

[√
2 e−m(r+r ′)2/(4β�

2) + λ

a
eβ�

2/(ma2)e−(r+r ′)/a erfc

(
r + r ′

2�

√
m

β
− �

a

√
β

m

)]
. (C5)

Here, the complementary error function erfc (x) is defined in Eq. (40).
The momentum representation is defined by

〈k′
1,k

′
2|U (1,1)

∞ |k1,k2〉 = 1

(8π3)2

∫
d3r1d

3r′
1d

3r2d
3r′

2e
i
∑2

α=1(k′
α ·r′

α−kα ·rα )〈r′
1,r

′
2|U (1,1)

∞ |r1,r2〉, (C6)

where k := (k1 − k2)/2, K := k1 + k2, and k := |k|. We write

〈k′
1,k

′
2|U (1,1)

∞ |k1,k2〉 ≡ δ3(K − K′) 〈k′
1,k

′
2|u(1,1)|k1,k2〉. (C7)
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The function u(1,1) is defined only for the case with k′
1 + k′

2 = k1 + k2 and is independent of the volume. The cluster function
defined for a finite volume V is

〈k′
1,k

′
2|U (1,1)

V |k1,k2〉 = 8π3

V
δK,K′ 〈k′

1,k
′
2|u(1,1)|k1,k2〉. (C8)

As shown in Appendix C 3, we finally obtain

〈k′
1,k

′
2|u(1,1)|k1,k2〉 = e−β�

2K2/(4m) 〈k′|u(rel)|k〉, (C9)

where

〈k′|u(rel)|k〉 =
{

λ
23/2π5/2

s(k′)−s(k)
k′2−k2 , for k �= k′;

λ
(2π)5/2

1
k

∂
∂k

s(k), for k = k′,
(C10)

s(k) =
√

ma√
β�

1

1 + (ka)2

[
e−β�

2k2/m − 2ka√
π

F

(√
β�k√
m

)
− eβ�

2/(ma2) erfc

(
−

√
β�√
ma

)]
, (C11)

which gives Eq. (38).
The two-particle cluster function U

(2)
∞ for the s-wave pseudopotential has been given in Ref. [26] for positive a, but the result

in this appendix holds for arbitrary a.

2. Derivation of Eq. (C5)

To derive Eq. (C5), we rewrite Eq. (C4) by using the trigonometric addition and subtraction formulas as

〈r′|u(rel)
∞ |r〉 = θ (w)ψ∗

b (r)ψb(r ′)ew2 + 1

2π2rr ′

√
2π

λ

∫ ∞

0
dxe−x2

{
cos(xR) − w

x2 + w2
[w cos(xR) + x sin(xR)]

}
, (C12)

where we introduce the dimensionless variables x := √
β�2k2

sc/m = λ|ksc|/
√

2π , w := √
β�/(

√
ma) = λ/(

√
2πa), and R :=√

2π (r + r ′)/λ. The first term in the integration in Eq. (C12) gives∫ ∞

0
dxe−x2

cos(xR) =
√

π

2
e−R2/4. (C13)

The remaining terms are rewritten as∫ ∞

0
dxe−x2 1

x2 + w2
[w cos(xR) + x sin(xR)] = 1

2
Im

∫ ∞

−∞
dxe−x2 eixR

x − iw

= 1

2
ew2−Rw

{
π sgn w +

∫ ∞

−∞
dx

e−x2

x
sin[x(R − 2w)]

}
,

= π

2
ew2−Rw

[
sgn w + erf(R/2 − w)

]
, (C14)

where we introduce the error function erf (x) = (
2/

√
π

) ∫ x

0 dte−t2
and the sign function

sgn w =

⎧⎪⎨
⎪⎩

1, for w > 0,

0, for w = 0,

−1, for w < 0.

(C15)

Substituting Eqs. (C13) and (C14) into Eq. (C12), we obtain

〈r′|u(rel)
∞ |r〉 =

√
2

4πrr ′λ
[
e−R2/4 + √

πwew2−Rw erfc(R/2 − w)
]
, (C16)

which gives Eq. (C5).

3. Derivation of Eq. (C10)

To derive Eq. (C10), we substitute Eqs. (C3), (C7), and (C9) into Eq. (C6) and obtain

〈k′|u(rel)|k〉 = 1

8π3

∫
d3r d3r′ei(k′ ·r′−k·r)〈r′|u(rel)

∞ |r〉. (C17)

To calculate the Fourier transformation (C17), the following lemma is useful.
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Lemma 1. ∫
d3r

∫
d3r′ei(k′ ·r′−k·r) f (r + r ′)

rr ′ = −16π2

k′2 − k2

∫ ∞

0
dX

(
1

k′ sin(k′X) − 1

k
sin(kX)

)
f (X), (C18)

where r = |r|, r ′ = |r′|, k = |k|, k′ = |k′|, and X = r + r ′.
Proof. Performing the integration in the spherical coordinates, we obtain∫

d3r
∫

d3r′ei(k′ ·r′−k·r) f (r + r ′)
rr ′ = 4π2

∫ ∞

0
dr

∫ ∞

0
dr ′

∫ π

0
dθ

∫ π

0
dθ ′ sin θ sin θ ′ei(k′r ′ cos θ ′−kr cos θ)rr ′f (r + r ′)

= 16π2

kk′

∫ ∞

0
dr

∫ ∞

0
dr ′ sin(kr) sin(k′r ′)f (r + r ′). (C19)

By introducing the new variables X := r + r ′ and Y := (r ′ − r)/2, we obtain∫ ∞

0
dr

∫ ∞

0
dr ′ sin(kr) sin(k′r ′)f (r + r ′) =

∫ ∞

0
dX f (X)

∫ X/2

−X/2
dY sin

[
k
(

1
2X − Y

)]
sin

[
k′( 1

2X + Y
)]

. (C20)

Integrating this over Y , we obtain the lemma. (Q.E.D.)
By Substituting Eq. (C16) into Eq. (C17) and using Lemma 1, we obtain

〈k′|u(rel)|k〉 = λ3

25/2π7/2

s(x ′,w) − s(x,w)

x ′2 − x2
, (C21)

where

s(x,w) = − 1

x

∫ ∞

0
dR sin(Rx)

(
1√
π

e−R2/4 + wew2−Rw erfc(R/2 − w)

)

= 1

x2 + w2

(
we−x2 − 2√

π
xF (x) − wew2

erfc (−w)

)
. (C22)

Here, we introduce the dimensionless variables x := kλ/
√

2π and x ′ := k′λ/
√

2π . This completes the derivation of Eq. (C10).

APPENDIX D: DERIVATION OF EQ. (64)

1. Derivation 1: Tan’s � function method

In this appendix, we derive Eq. (64) from Eq. (63). We first establish the following lemma.
Lemma 2. If nF (k) = (1 + z−1eβεk )−1, then

n∏
i=1

nF (k2i−1)nF (k2i)
∫ β

0
dτie

τi (εk2i+1 +εk2i+2 −εk2i−1 −εk2i
) =

∑
l∈Z

n∏
i=1

1 − nF (k2i−1) − nF (k2i)

i�l − (
εk2i−1 + εk2i

− 2μ
) , (D1)

where �l = 2πl/β and the summation
∑

l∈Z extends over all integers l ∈ {0,±1,±2, . . . }.
Proof. The left-hand side of Eq. (D1) is rewritten as

n∏
i=1

nF (k2i−1)nF (k2i)
∫ β

0
dτie

(τi−1−τi )(εk2i−1 +εk2i
−2μ). (D2)

We notice the following identities:

nF (k) eτ (εk−μ) = 1

β

∑
n∈Z

eiωnτ

iωn − (εk − μ)
, (D3)

where ωn = 2π
β

(n + 1
2 ) and the sum

∑
n∈Z runs over all integers n ∈ {0,±1,±2, . . . };

1

βn

∫ β

0
dτ1 · · ·

∫ β

0
dτn

n∏
i=1

ei(τi−1−τi )(ω2i−1+ω2i ) =
n∏

i=1

δω2i+1+ω2i+2−ω2i−1−ω2i
; (D4)

and ∑
n1∈Z

∑
n2∈Z

1

iωn1 − (
εk1 − μ

) · 1

iωn2 − (
εk2 − μ

) = (−β)
∑
l∈Z

1 − nF (k1) − nF (k2)

i�l − (
εk1 + εk2 − 2μ

) , (D5)

where �l = 2πl/β. Combining the above identities (D3)–(D5) with (D2), we obtain the lemma. (Q.E.D.)
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Substituting the Lemma 2 with �
2(p2

i+1 − p2
i )/m = εk2i+1 + εk2i+2 − εk2i−1 − εk2i

, k2i−1 = (1/2)K − pi , and k2i = (1/2)K + pi

into Eq. (63), we obtain

P1st
pair =

∑
l∈Z

∑
K

∞∑
n=1

1

n

(
4π�

2a

V m

)n ∑
p1,...,pn

n∏
i=1

1 − nF

(
ε K

2 +pi

) − nF

(
ε K

2 −pi

)
i�l − (

ε K
2 +pi

+ ε K
2 −pi

− 2μ
)� (pi)

=
∑
l∈Z

∑
K

∞∑
n=1

1

n

[
4π�

2a

V m

∑
p

1 − nF

(
ε K

2 +p

) − nF

(
ε K

2 −p

)
i�l − (

ε K
2 +p + ε K

2 −p − 2μ
)� (p)

]n

. (D6)

Using the property of Tan’s � function (28), we have

∑
p

1 − nF

(
ε K

2 +p

) − nF

(
ε K

2 −p

)
i�l − (

ε K
2 +p + ε K

2 −p − 2μ
)� (p) =

∑
p

[
1 − nF

(
ε K

2 +p

) − nF

(
ε K

2 −p

)
i�l − (

ε K
2 +p + ε K

2 −p − 2μ
) + m

�2p2

]
� (p)

=
∑

p

[
1 − nF

(
ε K

2 +p

) − nF

(
ε K

2 −p

)
i�l − (

ε K
2 +p + ε K

2 −p − 2μ
) + m

�2p2

]
. (D7)

By combining Eqs. (D6) and (D7), Eq. (64) follows immediately.

2. Derivation 2: Standard regularization method

Here, we derive Eq. (64) by using the standard regularization method. We consider a δ-function potential:

v(|ri − rj |) = g δ(|ri − rj |). (D8)

Here, g (<0) is related to the s-wave scattering length a as

m

4π�2a
= 1

g
+ 1

V

∑
k

1

2εk
, (D9)

where εk = �
2k2/(2m) (see, e.g., Ref. [11]). Corresponding to Eq. (29), we obtain 〈k′

1; k′
2| v |k1; k2〉 = (g/V ) δK,K′ , where

K = k1 + k2 and K′ = k′
1 + k′

2.
Following the procedure of deriving Eq. (63) from Eq. (61) in Sec. IV C and by replacing the factor (4πa/m)� (pi) with g,

we obtain

P1st
pair =

∑
K

∞∑
n=1

1

n

( g

V

)n ∑
p1,...,pn

n∏
i=1

nF

(
1
2 K + pi

)
nF

(
1
2 K − pi

) ∫ β

0
dτie

τi�
2(p2

i+1−p2
i )/m. (D10)

Substituting �
2(p2

i+1 − p2
i )/m = εk2i+1 + εk2i+2 − εk2i−1 − εk2i

, k2i−1 = (1/2)K − pi , and k2i = (1/2)K + pi into Eq. (D10) with
Lemma 2 of the previous subsection, we obtain

P1st
pair =

∑
l∈Z

∑
K

∞∑
n=1

1

n

[
g

V

∑
p

1 − nF

(
ε K

2 +p

) − nF

(
ε K

2 −p

)
i�l − (

ε K
2 +p + ε K

2 −p − 2μ
)
]n

. (D11)

By substituting Eq. (D9) into Eq. (D11), we obtain Eq. (64).
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