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Rapid coherent control of population transfer in lattice systems
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We derive the driving potential that accelerates adiabatic population transfer from an initial state to a target state
in a lattice system without unwanted excitation of other states by extending to discrete systems the fast-forward
theory of adiabatic transfer. As an example, we apply the theory to a model that describes a Bose-Einstein
condensate in a quasi-one-dimensional optical lattice, and show that modulation of the tilting of the lattice
potential can transfer the population of the Bose-Einstein condensate from site to site with high fidelity and
without unwanted excitations.
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I. INTRODUCTION

During the past three decades there have been dramatic
advances in both theoretical understanding of the requirements
for control of quantum dynamics and the technology that is
needed for the execution of proposed control paradigms [1,2].
Experimental verifications of the theory for systems as diverse
as control of population transfer in Bose-Einstein condensates
(BECs) and in chemical reactions have been reported [3–10].
A particularly useful subgroup of the proposals for control
of quantum dynamics of a system rely on adiabatic transfer
via the slow variation of an external field that is applied
to the system. However, experimental exploitation of such
control schemes can be rendered difficult by the occurrence
of unwanted internal decoherence processes and by external
noise; both of these difficulties can be reduced or avoided if
the adiabatic transfer process can be speeded up sufficiently
to permit population transfer to compete successfully with
the time dependence of the perturbations. Indeed, with this
goal in mind, several methods for the acceleration of quantum
dynamics, including adiabatic dynamics, have been proposed.
These methods include the counterdiabatic protocol [11],
frictionless quantum driving [12,13], invariant-based inverse
engineering [14], and fast-forward scaling [15–19], which
is also used for protection of quantum states from potential
fluctuations [20].

Lattice models of quantum systems, examples of which
are a BEC in an optical lattice, a network of nonlinear wave
guides and optical fibers, and a superconducting ladder of
Josephson junctions, are widely exploited. Thus motivated by
the potential applicability to quantum computation, and by the
opportunity to simulate aspects of complex electronic behavior
in crystalline matter, many remarkable features of BECs in
optical lattices have been studied [21]. The existing studies
clearly reveal the value of the ability to manipulate BECs
in optical lattices for the purpose of preparing well-defined
quantum states. We have been stimulated by this observation
to extend the theory of accelerated adiabatic transfer to
lattice systems so as to determine the potential that drives
specified state-to-state population transfer without excitation
of unwanted quantum states. Our approach differs from that
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of Liew and Shelykh [22] who studied interwell population
transfer in the nonadiabatic regime generated by a laser pulse
with preselected shape. Their numerical analysis, which is
based on a discrete nonlinear Schrödinger equation, varies the
pulse parameters to optimize the fidelity of the population
transfer. Our approach is analytic; we provide a derivation of
the potential that drives population transfer from site to site,
and we apply the theory to a BEC in a quasi-one-dimensional
optical lattice. We show that modulation of the lattice potential
can transfer the population of the BEC between sites of the
lattice with high fidelity and without unwanted excitations.
The theory developed is applicable to any lattice in which
the on-site potential is tunable. We also demonstrate the
robustness of the accelerated population transfer to variation
(approximation) of the driving potential.

In Sec. II we present the framework of the theory of
accelerated quantum adiabatic dynamics in a lattice system
and discuss its relationship with the corresponding theory for a
continuous system. In Sec. III we study accelerated population
transfer in a Bose-Einstein condensate in a one-dimensional
optical lattice potential. The robustness of the method with
respect to approximation of the driving potential is studied in
Sec. IV. An Appendix provides a brief description of the basic
theory of acceleration of nonadiabatic quantum dynamics.

II. FAST-FORWARD TRANSFORMATION
IN DISCRETE SYSTEMS

We consider a lattice system in which the dynamics is
governed by a discrete time-dependent Schrödinger equation,

i
d�(m,t)

dt
=

∑
l

ωm,l�(l,t) + V0(m,R(t))
�

�(m,t), (1)

where l,m denote sites and t time, respectively, and ωm,l =
ω∗

l,m is the rate of hopping between sites m and l. The potential
V0 is modulated by a parameter R, which is a function of t . If
the parameter R changes slowly enough from Ri to Rf , and if
the initial state is the nth energy eigenstate of the Hamiltonian
with potential V0(Ri), the wave function of the state on site m

changes from φn(m,Ri) to φn(m,Rf ) modulo the dynamical
and adiabatic phases of the states. The wave function φn(m,R)
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is a solution of the time-independent Schrödinger equation,∑
l

�ωm,lφn(l,R) + V0(m,R)φn(m,R)

= En(R)φn(m,R). (2)

On the other hand, when the parameter R changes at a nonzero
rate, transitions occur to other levels. Our purpose is to derive
a potential that drives the state from φn(m,Ri) to φn(m,Rf ) in
some short time TF without unwanted excitations to other
states. For that purpose we consider an intermediate state
whose wave function is represented as

�FF(m,t) = φn(m,R(t)) exp[if (m,t)]

× exp

[
− i

�

∫ t

0
En(R(t ′))dt ′

]
. (3)

Note that Eq. (3) contains the additional phase f (m,t), and that
the intermediate state connects the initial state φn(m,Ri) and
the target state φn(m,Rf ) exp [− i

�

∫ TF

0 En(R(t ′))dt ′] in time
TF . We require that this additional phase vanishes at t = 0 and
at t = TF , and we assume that the intermediate state satisfies
the time-dependent Schrödinger equation

i
d�FF(m,t)

dt
=

∑
l

ωm,l�FF(l,t) + VFF(m,t)

�
�FF(m,t), (4)

in which VFF(m,t) is the driving potential. We seek the driving
potential that generates φn(m,Rf ) exp[− i

�

∫ TF

0 En(R(t ′))dt ′]
from φn(m,Ri). Although we do not aim to generate the
adiabatic phase, that uniform phase can be tuned by a uniform
potential if necessary.

To find the forms of the driving potential and the additional
phase f (m,t) we substitute Eq. (3) into the Schrödinger
equation (4) and we use Eq. (2) to rearrange the resulting
equation. The imaginary part of the resultant equation leads to

Ṙ Re{φ∗
n(m,R)∂Rφn(m,R)}

=
∑

l

Im(ωm,lφ
∗
n(m,R)φn(l,R)

×{exp [i(f (l,t) − f (m,t))] − 1}). (5)

The solution of Eq. (5) yields the additional phase f (m,t), and
the real part gives the driving potential as a functional of f ,
V0, R, and φn:

VFF(m,t) = V0(m,R(t)) +
∑

l

Re

{
�ωm,l

φn(l,R(t))
φn(m,R(t))

× (1 − exp [i{f (l,t) − f (m,t)}])
}

− �ḟ (m,t) − �Ṙ Im

[
∂Rφn(m,R(t))
φn(m,R(t))

]
. (6)

It is necessary that R satisfies the conditions

R(0) = Ri,
(7)

R(TF ) = Rf .

If we take the boundary conditions to be

Ṙ(0) = Ṙ(TF ) = 0, (8)

f (m,t) vanishes at t = 0 and at t = TF [see Eq. (5)], and
the intermediate state coincides with the target state at TF .
The driving potential is obtained by substituting the additional
phase into Eq. (6). With the boundary conditions

R̈(0) = R̈(TF ) = 0, (9)

the driving potential coincides with V0 at t = 0 and at t =
TF . The time dependence of R is arbitrary except for the
requirement imposed by the above boundary conditions. The
driving potential depends on the time dependence of R.

In the case that the hopping rate and the wave function are
real, Eqs. (5) and (6) simplify to

Ṙ∂Rφn(m,R) =
∑

l

ωm,lφn(l,R) sin[f (l,t) − f (m,t)] (10)

and

VFF(m,t) = V0(m,R(t)) +
∑

l

�ωm,l

φn(l,R(t))
φn(m,R(t))

×{1 − cos[f (l,t) − f (m,t)]} − �ḟ (m,t). (11)

We note that Eq. (5) implies that for Ṙ sufficiently large
there is no solution for f (m,t). That is, there is a lower limit
to the control time TF . This property is not seen in the fast-
forward theory for continuous systems [16]. Equations (5) and
(6), for f and for VFF, reduce to the corresponding equations
for continuous systems shown in Ref. [16] in the limit that the
differences between adjacent sites of f and of φn are small.
The theory of acceleration of nonadiabatic quantum dynamics
in a continuous system is described in Ref. [15]. Following the
same analysis as in Ref. [15], the key elements of the theory of
accelerated nonadiabatic quantum dynamics in a lattice system
are exhibited in the Appendix.

The analysis described above can be straightforwardly
extended to the case when a nonlinear Schrödinger equation
is the basic descriptor of the system dynamics. Consider

i
d�(m,t)

dt
=

∑
l

ωm,l�(l,t) + V0(m,R(t))
�

�(m,t)

+ c

�
|�(m,t)|2�(m,t), (12)

where c is a constant. We assume the same form of the wave
function for the intermediate state �FF as in Eq. (3). Then φn

is a solution of the time-independent nonlinear Schrödinger
equation,∑

l

�ωm,lφn(l,R) + V0(m,R)φn(m,R)

+ c|φn(m,R)|2φn(m,R) = En(R)φn(m,R). (13)

We assume that the intermediate-state wave function is defined
by the nonlinear Schrödinger equation

i
d�FF(m,t)

dt
=

∑
l

ωm,l�FF(l,t) + VFF

�
(m,t)�FF(m,t)

+ c

�
|�FF(m,t)|2�FF(m,t). (14)

We can derive the equations for the additional phase and
the driving potential in the same manner as for the linear
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Schrödinger equation. The resultant equations are the same as
Eqs. (5) and (6), respectively. The nonlinear term influences
the driving potential through φn in Eq. (13).

III. SITE-TO-SITE POPULATION TRANSFER OF A BEC
IN AN OPTICAL LATTICE

As an example, we now consider driving site-to-site
population transfer of a BEC in an optical lattice. The lattice
is defined by an external potential that is the sum of a spatially
linear potential, which is tunable, and a stationary periodic
potential

Vext(r,t) = ξ (t)z + UL(x,y) sin2(2πz/λ), (15)

where λ/2 is the wavelength (period) of the potential. A
discrete model of the BEC in a tilted (washboard) periodic trap
was introduced in Ref. [23], using the tight-binding approx-
imation. In the tight-binding approximation the condensate
order parameter is written as [23,24]

	(r,t) =
√

NT

∑
m

�(m,t)ϕ(r − rm), (16)

where NT is the total number of atoms and ϕ(m,r) = ϕ(r −
rm) is the condensate wave function localized in the mth
trap with location rm and

∫
ϕ2(m,r)dr = 1. The tight-binding

approximation is based on the assumption that the interwell
barriers are much higher than the chemical potential [23,24].
The wave function ϕ(m,r) overlaps in the barrier region
with the wave functions ϕ(m ± 1,r) in the neighboring sites.
Because the barrier is high, the overlap is much smaller than 1,∫

ϕ(m,r)ϕ(m + 1,r)dr � 0. We also assume that the energy
of the system is confined within the lowest band. The validity
of this model has been confirmed by comparing numerical
results with experimental results in Ref. [24]. Using Eq. (16),
the Gross-Pitaevskii equation can be rewritten to read [23]

i�
∂

∂t
�(m,t) = −K[�(m − 1,t) + �(m + 1,t)]

+ ξ (t)λm

2
�(m,t) + c′|�(m,t)|2�(m,t),

(17)

where

K � −
∫

dr
[

�
2

2m0
∇ϕ(m,r) · ∇ϕ(m + 1,r)

+ϕ(m,r)Vext(r)ϕ(m + 1,r)

]
, (18)

c′ � gNT

∫
dr|ϕ(m,r)|4, (19)

with m0 the mass of an atom, g(=4π�
2a/m0) the coupling

constant, a the scattering length, and NT the total number of
atoms. Since the lattice potential is high in the region where the
wave functions ϕ(m,r) and ϕ(m + 1,r) overlap, it contributes
to K much more than does the linear spatial potential, and we
can neglect the m dependence of K . Equation (17) then can be

rewritten as

i
∂

∂t
�(m,t) = ω̃[�(m − 1,t) + �(m + 1,t)]

+ V (m,t)

�
�(m,t) + c′

�
|�(m,t)|2�(m,t),

(20)

with

ω̃ = −K/� (21)

and

V (m,t) = 1
2ξ (t)λm. (22)

We demonstrate the acceleration of population transfer for a
BEC in a lattice with this model. Our goal is the transfer of
population to the ground state of the linear potential with ξ =
ξf from the ground state of the linear potential with ξ = ξi .
We take ξi = −ξf so that the population is transferred from
one side of the lattice to the opposite side of the lattice.

A. Three-site model

We consider first a three-site model with site potential

V0(m,R(t)) = �ωR(t)m. (23)

In Eq. (23), the constant frequency ω is defined by

ω = −ξiλ

2�
= ξf λ

2�
, (24)

and the time dependence of R(t) is chosen to be

R(t) = R0 + 2

TF

[
t − TF

2π
sin

(
2π

TF

t

)]
. (25)

We take R0 = −1, so that V0(m,R(t)) changes from ξiλm/2
to ξf λm/2 in time TF , and take the hopping rate in Eq. (1) to
be

ωm,l = ω̃(δm,l−1 + δm,l+1). (26)

We have calculated the additional phase and driving potential
for this model system using Eqs. (10) and (11), respec-
tively, with the parameter set TF = 4.2 ms, ω = 2.14 [1/ms],
�/(2K) = 0.35 ms, c′ = 0, and λ = 850 nm [23]. The effect
of finite nonlinear constant (c′ > 0) is studied in Sec. IV. The
trap depths, which scale linearly with the intensity of the beam,
are 1.4ER at the center of the beam with ER = �

2k2/(2m0)
and k = 2π/λ. m0 is taken to be the mass of 87Rb. The time
dependence of the additional phase is shown in Fig. 1, where
we choose f (1,t) = 0. The driving potential VFF(m,t), shown
in Fig. 2, differs from V0(m,R(t)) for 0 < t < TF , and is equal
to V0 at t = 0 and t = TF . We have simulated the evolution
of the model system driven by VFF(m,t) from the ground state
corresponding to V0(m,R(0)). That evolution is monitored by
the fidelity

F (t) = |〈φ0|�〉|, (27)

where |φ0〉 is the ground state of the instantaneous Hamiltonian
H0(R(t)) and |�〉 is the state driven by the potential VFF(m,t).
The time dependence of the fidelity is shown in the inset
to Fig. 2; it is equal to unity at TF . A comparison of the
population evolution under V0(m,R(t)) and under VFF(m,t)
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FIG. 1. Time dependence of the additional phase.

is shown in Fig. 3. We note that the nonadiabatic transfer
generates unwanted excitations, with the population of each
site deviating from that evolving under the instantaneous
Hamiltonian (dotted lines in Fig. 3). The fidelity of the
population evolution driven by V0(m,R(t)) is 0.938 at TF .

B. Four-site model

We have also examined accelerated population transfer of
a BEC in a four-site model. The parameters used for these
calculations are the same as for the three-site model except that
ω = 0.714 [1/ms]. The population of the ground state of the
instantaneous Hamiltonian for each site is shown in Fig. 4. The
initial state is located mainly at sites 3 and 4, while the target
state is located mainly at sites 1 and 2. The time dependence of
the driving potential is shown in Fig. 5. The time dependence

-10
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 0 time
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 0  3time
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FIG. 2. (Color online) Time dependence of VFF(m,t)/�. The unit
of time is 1 ms. The inset shows the time dependence of the fidelity,
defined by F (t) = |〈φ0|�〉|.
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FIG. 3. (Color online) Time dependence of the population evolu-
tion under V0(m,R(t)) (dashed and solid lines) and VFF(m,t) (dotted
lines). The evolution under the instantaneous Hamiltonian is also
shown with dotted lines. The notation is �m = �(m,t).

of the fidelity is compared in the inset to Fig. 5. The solid
curve and the broken curve correspond to the dynamics with
VFF and V0, respectively. We note that the fidelity decreases and
does not recover at TF in the V0 generated dynamics because of
unwanted excitations, whereas for the VFF generated dynamics
the fidelity becomes unity at t = TF .

IV. COMMENTS

It is one matter to calculate the exact driving potential that
is required for transfer of the BEC population between lattice
sites with perfect fidelity, but it is another matter to generate
that potential in a real experiment. We consider two limiting
cases.

 0

 0.45

 0  3

po
pu

la
tio

n

time

FIG. 4. (Color online) Population of the ground state of the
instantaneous Hamiltonian in the four-site model system.
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FIG. 5. (Color online) Time dependence of VFF(i,t)/�. The unit
of time is 1 ms. The inset shows the time dependence of the fidelity.

First, it is usually the case that in real experiments we
cannot generate a perfect rendition of a specified potential.
Then, testing the robustness of the proposed population
transfer method to deviation from the exact driving potential
is important. We test the efficiency of our proposed transfer
process to approximation of the driving potential by con-
sidering population transfer under a driving potential that is
proportional to the site number:

Vapp(j,t) = V(t)j. (28)

In Eq. (28), V(t) is a function designed so that Vapp approxi-
mates the exact driving potential. For the three-site model with
c′ = 0, for transfers between ground states, Vapp coincides with
VFF because

φn(1,R)
[
2φ2

n(3,R) − φ2
n(2,R)

]
= φn(3,R)

[
φ2

n(2,R) − 2φ2
n(1,R)

]
, (29)

for any R. This property also holds for the second and
third eigenstates of the instantaneous Hamiltonian, although
the driving potential depends on the level n. Thus the simple
potential defined in Eq. (28) can transfer population in the
three-site model without unwanted excitation if c′ = 0. The
approximation Vapp(j,t) = V(t)j is not exact for the four-site
model or the three-site model with c′ �= 0, but it is a good
approximation to VFF for those models. We show the difference
between Vapp and VFF for the four-site model with c′ = 0 in
Fig. 6. In general, VFF is well approximated by Vapp with a
larger deviation near t = TF /2 than in other time domains
(the inset of Fig. 6). The fidelity of the population transfer in
the four-site system driven by Vapp is 0.9997 at TF , whilst the
fidelity of the population transfer driven by V0 is 0.916. The
time dependence of V(t)/� for c′/� = {0,1.43,4.29} [1/ms]
is compared with ωR(t) in Fig. 7. The values of c′ used here
are in the range of that used in Ref. [23]. For c′/� = 1.43 and
4.29 [1/ms] the fidelity at t = TF of the Vapp driven dynamics
is 0.9998 and 0.999 94, respectively, whilst in the V0 driven
dynamics F (TF ) = 0.9482 and 0.9772, respectively. For large

 0 time

-4

 4

 1.5

time
 -1.5

 42.86

-4-2.86

FIG. 6. (Color online) Comparison of Vapp/� and VFF/�. The unit
of the vertical axis is 1 [1/ms]. The inset shows the time dependence
of V/� for TF /3 � t � 2TF /3.

c′ the difference between V(t)/� and ωR(t) is small, because
the wave function φn(m) flattens with respect to m for c′ > 0,
and the variance of the wave function during the control
is smaller than that when c′ = 0. This property makes the
additional phase f (m) flatten and the variance of the additional
phase is small during the dynamics. Therefore, the second and
the third terms in Eq. (11) are small for large c′.

Second, in real experiments, we cannot know the on-site
potential V0(m) or the hopping rate ωm,l , exactly. To model
this uncertainty we consider the three-site model with (a) an
on-site potential with deviation from the nominal potential of
δV (m) and (b) a hopping rate with deviation from the nominal
value of δωm,l . The other parameters are taken to be the same
as used for the calculation shown in Fig. 2 except for c′. To
determine the sensitivity of the fidelity to the deviations δV (m)
and δωm,l , the approximated driving potential, Vapp(m,t), is
calculated for the system with nonzero values of δV (m) or
δωm,l . However, the initial and the target states are taken to be

- 0.714

 0.714

 0 time

0
1.43
4.29

FIG. 7. (Color online) Comparison of V(t)/� for c′/� =
{0,1.43,4.29} [1/ms] and ωR(t) (black broken curve). The unit of
the vertical axis is 1 [1/ms].
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 0.975

 1

 2.38 - 2.38

 2.38

 - 2.38

Fidelity

 0.975

 1

 2.38 - 2.38

 2.38

 - 2.38

Fidelity

(a)

(b)

FIG. 8. (Color online) Dependence of the fidelity at TF on
δV (1)/� and δV (3)/� for δV (2) = 0 with c′/� = 0 (upper panel)
and 1.43 [1/ms] (lower panel). The unit of time is 1 ms.

the ground states of the instantaneous Hamiltonian with δV (m)
and δωm,l = 0. The fidelity is calculated with the ground state
of the instantaneous Hamiltonian.

In Fig. 8 we display the fidelity as a function of δV (1)/� and
δV (3)/� for the case δV (2)/� = 0, c′/� = 0, and 1.43 [1/ms].
In the range of δV (m) used the maximum value is V0(1,Rfin)/3;
the fidelity F (TF ) is larger than that of the population evolution
driven by V0(m,R(t)) without potential uncertainty, F (TF ) =
0.938 for c′/� = 0, and F (TF ) = 0.9723 for c′/� = 1.43
[1/ms]. In spite of the fact that Vapp �= VFF for c′ �= 0, our
control for c′/� = 1.43 [1/ms] is more robust than that for
c′ = 0, because the wave function φn(m) flattens with respect
to m for c′ > 0, and the variance of the wave function during
the control is smaller than that when c′ = 0. F (TF ) > 0.998
for c′/� = 4.29 [1/ms] in the range of δV (m) used.

In Fig. 9 we show the dependence of the fidelity on δωm,l

with the hopping rate taken to be

ω1,2 = ω̃ + δω1,2,
(30)

ω2,3 = ω̃ + δω2,3.

In the range of δωm,l used the maximum value of |δωm,l| is
ω̃/4. In this range the fidelity F (TF ) is larger than that of the
population evolution driven by V0(m,R(t)) without uncertainty
of the hopping rate. The control for c′/� = 1.43 [1/ms] is more
robust with respect to δωm,l than that for c′/� = 0. F (TF ) >

0.988 for c′/� = 4.29 [1/ms] in the range of δωm,l used.
The tight-binding approximation with the wave function

displayed in Eq. (16) is based on the assumption that the energy
of the system is confined within the lowest band. The band
gap is about 3U/5 [24], where U is the barrier height. The
maximum potential difference between the left-hand and right-
hand lattice sites is about 0.15U for the three-site model and

 0.94

 1
Fidelity

(b)

(a)

 0.94

 1

Fidelity

FIG. 9. (Color online) Dependence of the fidelity at TF on δω1,2

and δω2,3 for c′/� = 0 (upper panel) and 1.43 [1/ms] (lower panel).

0.075U for the four-site model; hence the potential difference
between the left-hand and right-hand sites of our model is less
than the band gap throughout the period of time that we drive
the population transfer.

Our derivation of the driving potential that accelerates
adiabatic population transfer in a lattice reveals a striking
difference between a lattice system and a continuous system.
Specifically, in the lattice system there is a lower limit to
TF . This limit derives from the condition for the additional
phase in Eq. (5), which gives the lower limit for Ṙ for each
R depending on φn(R), that is, trajectory of the evolution of
the system. We believe that the accelerated population transfer
scheme described in this paper can be used for the coherent
control of many quantum systems which are described by chain
or lattice models.
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APPENDIX: ACCELERATION OF NONADIABATIC
DYNAMICS

We consider the acceleration of nonadiabatic quantum
dynamics. Consider the wave function �(m,t), which is a
solution of a discrete time-dependent Schrödinger equation:

i
d�(m,t)

dt
=

∑
l

ωm,l�(l,t) + V (m,t)

�
�(m,t). (A1)

We seek a driving potential that generates the target state
�(m,T ) at t = TF (<T ). We assume that the wave function
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of the intermediate state is

�FF(m,t) = �(m,�(t))eif (m,t), (A2)

where f (m,t) is the additional phase and

�(t) =
∫ t

0
α(t ′)dt ′. (A3)

α is a real function of time called magnification factor [15].
The time dependence of α is chosen so that it satisfies

�(TF ) = T . (A4)

We assume that �FF(m,t) is a solution of the Schrödinger
equation:

i
d�FF(m,t)

dt
=

∑
l

ωm,l�FF(m,t) + VFF(m,t)

�
�FF(m,t),

(A5)

where VFF is the driving potential. Following the same analysis
as in Sec. II, we find

α(t)
∑

l

Im[ωm,l�
∗
m�l]

=
∑

l

Im{ωm,l�
∗
m�l exp[i(fl − fm)]} (A6)

and

VFF(m,t) =
∑

l

Re

{
�ωm,l�l

�m

[α(t) − ei(fl−fm)]

}

+α(t)V (m,�(t)) − �∂tfm, (A7)

where fm and �m are abbreviations for f (m,t) and �(m,�(t)),
respectively. Equation (A6) is used to obtain the additional
phase. The driving potential is obtained by substitution of
fm into Eq. (A7). As in the case of acceleration of adiabatic
population transfer, there is a lower limit to TF because
Eq. (A6) gives the upper limit of α(t) for each t . The equations
for f and VFF in Eqs. (A6) and (A7) reduce to those for
continuous systems in Ref. [15] in the limit that the differences
in f (m,t) and �(m,t) between adjacent sites are small.
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