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de Broglie wave-front curvature induced by electric-field gradients and its effect on precision
measurements with an atom interferometer
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To improve precision measurements made with atom interferometers, the effect of de Broglie wave-front
curvature induced by a lens inside an atom interferometer is experimentally demonstrated and theoretically
analyzed. Electrostatic lenses shift, magnify, and distort atom interference fringes, which modifies the phase
and the contrast of the interference signals. Informed by these observations, an improved method is presented
for analyzing measurements of atomic beam velocity distributions using phase choppers [W. F. Holmgren, I.
Hromada, C. E. Klauss, and A. D. Cronin, New J. Phys. 13, 115007 (2011)].
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I. INTRODUCTION

Atom interferometry is well established as a precision
measurement technology with applications in fields such as
inertial sensing [1-3], measurements of fundamental quan-
tities [4—6], measurements of atomic properties [7—12], and
studies of quantum phenomena such as decoherence [13-16]
and geometric phases [17-19]. For reviews of optics and
interferometry with neutral atoms and molecules, see [20-
22]. Improvements in the precision of these measurements
can result from new atom optics techniques to prepare,
manipulate, and monitor the atomic de Broglie waves used in
atom interferometers. For example, more accurate methods to
measure the velocity distribution of the atoms that contribute to
interference fringes would help refine measurements of atomic
polarizability made with atom interferometers [7—10].

A promising method to measure the velocity distribution
of atoms in an atom interferometer utilizes two phase chop-
pers [23] to induce velocity-dependent contrast-loss spectra
for atomic fringes. Similar to experiments with mechanical
choppers, the result depends on the time of flight between two
choppers. However, instead of blocking atomic beam flux,
each phase chopper shifts the phase of atomic interference
fringes. Two phase choppers pulsing at frequency v can cause
modulations in fringe contrast (as opposed to flux) as a
function of frequency, with contrast maxima occurring near
v = nvy/(2L), where vy is the most probable velocity of the
atoms, n is an integer, and L is the distance between phase
choppers. We implemented phase choppers by using electric-
field gradients to cause differential phase shifts for atomic de
Broglie waves because such phase choppers are compact, can
be pulsed at audio frequencies, and do not require any moving
parts. Our measurements of vg = 1975.3 £ 1.0 m/s presented
in Sec. VIII of this paper demonstrate a precision of 0.05%
using phase choppers made with electric-field gradients.

However, in addition to shifting the phase of atomic
interference fringes, we have found that electric-field gradients
also magnify and distort the fringes. In Sec. II we show
that fringe magnification is inevitable when using electric-
field gradients. Fringe magnification is a problem because
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it changes the observed contrast as a function of chopper
frequency and thus influences our measurements of atom beam
velocity. Magnification due to de Broglie wave-front curvature
induced by phase choppers can cause systematic errors as large
as 0.2% in our measurements of velocity, which can lead to
0.4% errors in measurements of atomic polarizability.

To study how de Broglie wave-front curvature affects atom
interference fringes, we developed the analogy that phase
choppers act like lenses for atomic de Broglie waves. We
used an experiment sketched in Fig. 1 to demonstrate how
contrast changes and phase shifts caused by a lens can be
related to the focal length, spherical aberration, and location
of the atom lens as well as several other parameters such as
the locations of the nanogratings, the sizes of the collimating
slits, and the size of the detector. Lenses for neutral atoms
have been made previously by several methods such as using
magnetic fields [24-27], electric fields [28-30], zone plates
[31,32], and standing waves of radiation [33-35]. Historically,
such lenses have been used for atom microscopes [36,37] and
for controlling the deposition of atoms on surfaces [38—40].
In this paper we concentrate on how lenses inside an atom
interferometer modify interference fringes.

II. WHY FOCUSING IS UNAVOIDABLE

First, we discuss the following question: Can electrodes
be fabricated with shapes that produce zero focusing, but
still cause deflection of neutral atoms? If we could design a
prism for atom waves, then a more ideal phase chopper could
be constructed and some of the more complicated analysis
presented in this paper could be avoided. However, in this
section we conclude that focusing is unavoidable if we use
static electric fields from electrodes that are invariant under
translation in the y direction. We have chosen symmetry
under y translation as a constraint because the y direction
is parallel to the nanograting bars and the long axis (height) of
the collimating slits and we want the same phase shift ¢ across
the height of the atom beam.

We pose this question mathematically by asking if there
exists a vector field E(x,z) that makes nonzero phase shift for
atom interference fringes,

_ ()L g
¢_(2hv)dxf1«: dz #0, (1)
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FIG. 1. (Color online) Schematic of a lens for atoms in an atom
interferometer. Atoms propagate in the z direction and diffract from
nanogratings separated by distances L; and L,. To study how the lens
shifts, magnifies, and distorts atomic de Broglie wave interference
fringes, we vary L, (Sec. V) and translate the lens in the x direction
(Sec. VI). y points out of the page.

but zero gradient in the phase shift for atom interference

fringes,
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where « is the atomic polarizability, s is the separation between
paths in the atom interferometer, 7 is Planck’s constant divided
by 27, v is atomic velocity, z is distance along the direction of
the incident atom beam, and x is distance transverse to the atom
beam (see Fig. 1). For completeness, the phase shift for atomic
de Broglie waves passing along one path through an electric
field is given by ® = «/(2hv) [ E*dz and ¢ = (dD/dx)s.
We can rewrite Eq. (2) to be

dp  (as d \* d>

Then, since V’E =0, for y-invariant fields we know that
%E = —;‘%E. Thus, we can replace the second term in

Eq. (3) with —E%E and integrate by parts to show

L)) (e

This expression for the focusing power is positive definite.
Thus, Eq. (4) shows that focusing power is nonzero if there
is any gradient in the electric field, as there must be in
order to cause a deflection. Equations (2) and (1) cannot
be simultaneously satisfied by an electric field E(x,z). This
proves that de Broglie wave focusing is inevitable when using
electric-field gradients to cause fringe phase shifts. Therefore,
we are motivated to include the effect of focusing in our
analysis of phase choppers. We begin by describing phase
choppers as lenses in the following sections.

III. ELECTROSTATIC LENS CONSTRUCTION

We built electrostatic lenses for atoms using two different
electrode geometries, referred to here as Lens A and Lens B.
Lens A is made from a charged cylinder near a grounded
plane. Lens B is made from two parallel cylinders with
equal diameters held at opposite voltages where the plane of
symmetry between the cylinders remains at zero potential.
Each assembly has a gap between the electrodes where
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TABLE I. Electrostatic lens dimensions and operating voltages.
Focal lengths ( f) are calculated for 2000 m/s K atoms.

Parameter Lens A, Lens B

Cylinder radius (R) 0.765 mm 6.350 mm
Cylinder edge to symmetry plane (a) 0.893 mm 1.960 mm
Electrode voltage (V') —3.0kV + 6.0kV
Paraxial focal length ( f) —6.1 km —21.7 km

atoms pass through inhomogeneous electric fields. Since the
lenses work by virtue of polarizable atoms interacting with
electric-field gradients, the lenses can be turned on by applying
a voltage and turned off by grounding the electrodes. Table I
summarizes the electrode dimensions and resulting focal
lengths in our experiment.

To cause uniform deflection over the height of our atom
beam we orient the cylinders perpendicular to the atom beam
velocity and normal to the plane of our atom interferometer
(parallel to § in Fig. 1). In this orientation the electrodes can
deflectatoms by 50 nm, which results in a = phase shift because
we use 100-nm-period gratings for our atom interferometer.
For comparison, several experiments [41-43] have deflected
atoms by much larger distances (over 100 pm) with electrodes
parallel to atom velocity. The Arndt group [9,44] used a gap
between the curved ends of two custom-shaped electrodes to
deflect molecules by several microns. However, unlike our
lenses, the electrodes used in [9,41-44] cause nonuniform
deflection over the height of the beam.

Diagrams of electrodes in this geometry and calculations
of the associated atom wave phase shifts have been presented
before [10,23,45-47]. However, here we use the idea of using
an atom interferometer to characterize these electrodes as
lenses with focal lengths in order to improve the analysis of
measurements made with phase choppers.

Two copies of Lens A are installed in our atom interfer-
ometer as phase choppers. The first example of Lens A is
located midway between the first two gratings. We refer to it
as Lens A;. The second one is located between the second
and third gratings, where the outline of a lens in Fig. 1 is
drawn. We refer to this one as Lens A,. Lens B was built
with a larger gap and larger cylinders as an interaction region
for measurements of atomic polarizability. Lens B is located
just in front of the second grating. We need both the velocity
measurements from the phase choppers (Lens A; and A,),
as well as phase-shift measurements from Lens B in order to
measure atomic polarizabilities.

IV. FRINGE SIMULATIONS

In this paper we introduce the idea that electrostatic
magnification can compensate for geometric magnification in
atom interferometers. To explain how this compensation works
in more detail, we use simulations in this section to first discuss
geometric magnification.

To visualize how fringes are formed in an extended region,
we present simulations made with Gaussian-Schell model
(GSM) beams. In brief, a GSM beam is a mathematical
ensemble of Gaussian beams with parameters for beam width
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FIG. 2. Interference fringes formed after two gratings using a
GSM beam simulation [48]. The probability density |¥|? is plotted
on a gray scale in the 0.4-mm x 3-m region. Transmission gratings
are located at z = O m and z = 1 m. The only difference between (a)
and (b) is the transverse coherence of the GSM beam. In (a) fringes
are formed in two distinct zones. In (b) the coherence length is shorter
than the grating period, so the fringes appear to fan out in a range
of directions, justifying the idea of geometric magnification (Meom)
defined in the text. § points out of the page.

and transverse coherence length [48-52]. Figure 2 shows the
probability density for GSM beams as they propagate through
two diffraction gratings located at z = 0 and z = 1 m. Table II
lists the parameters used in each simulation. The key idea is

TABLE II. Gaussian-Schell model beam parameters (at z = 0 m)
used for the simulations shown in Fig. 2. These parameters were
selected to illustrate how fringes patterns are affected by the transverse
coherence length of the incident beam. For comparison, parameters
that represent our experiment are also tabulated.

Parameter Fig. 3(a) Fig. 3(b) Experiment
de Broglie wavelength 500 pm 500 pm 5 pm
Grating period 5 um 5 pm 100 nm
Coherence length 25 um 2.5 um 50 nm
Beam width 30 um 30 um 30 um
Velocity ratio (vy/0,) 22 22 22
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that only mutually coherent portions of the diffracted GSM
beam components interfere. Correlations between position
and momentum of the beam components can then make
interference fringes shift and spread out as a function of
longitudinal position z.

Local structures in the fringe period, phase, and contrast
relate to our experimental signals in subtle ways, which is why
the simulations are helpful. In the experiment, we average over
much of this structure by using the third nanograting to moiré
filter the fringes. The signal thus comes from the ensemble of
transmitted atoms that strike our 100-um-wide detector.

Figure 2(a) shows resolved diffraction, which occurs when
a collimated beam has a transverse coherence length larger
than the grating period. Interference fringes are then found in
two distinct regions, as suggested by the rays that depict two
symmetric Mach-Zehnder interferometers in Fig. 1. Fringes in
these separate regions are in phase at z = 2 m but they shift
away from each other (and become out of phase) as z increases.
Thus, as the third grating is translated in the z direction, moiré
filtering can lead to reductions and revivals in contrast as a
function of AL, the difference between grating separations
(see Fig. 1):

AL=1L,—L,. &)

Figure 2(b) shows a simulation more representative of our
experiments, in which the beam’s initial transverse coherence
length is slightly smaller than the grating period. Hence,
diffraction is poorly resolved and the fringes diverge in a
several directions. The way the fringe period changes with
z can be described by geometric magnification:
AL +2L

M, geom — 2—Lll (6)
The fringe period is d; = Mgeomd,, Where d, is the grating
period. This geometric magnification occurs without a lens.
It is a concept also found in studies of point-projection
microscopy, the Lau effect [53], and Talbot-Lau interferometry
[54,55]. Figures 2(a) and 2(b) both include an average over de
Broglie wavelengths (i.e., atomic velocities) with a distribution
typical of what we have in experiments, and still the geometric
magnification is visible.

For a more nuanced discussion, the local pitch and orienta-
tion of the fringes depends on the momenta of the interfering
wave components. Any two running waves with precise wave
vectors k; and k, make standing wave interference fringes with
a wave vector kf = k; — k. However, even monochromatic
Gaussian and GSM beams contain distributions of transverse
momenta and thus make fringes with a range of pitches so
that different k¢ can be observed in different locations. For
collimated beams, fringes follow lines parallel to p = A(k; +
k,)/2. This is related to the the so-called separation phase that
was named by Dimopoulos et al. in [56] to describe how fringes
shift as atomic wave function components propagate through
one another in a laboratory frame of reference. GSM beams
from a small aperture make fringes that follow hyperbolae
in the x-z plane. GSM beams from wider apertures make
interference visible over a more limited range in z, where
fringe patterns from different parts of the source still overlap
in phase, as in Talbot-Lau interferometers [22]. Thus, Eq. (6)
is approximate, but works well enough to describe how the
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FIG. 3. (Color online) Contrast versus AL measured with and
without a lens. The contrast envelope shifts in position by —205 £
10 um due to fringe magnification caused by the lens.

fringes diverge in our experiments. GSM beam simulations
such as Fig. 2(b), with both transverse and longitudinal velocity
distributions included in the simulation, help to justify this
claim.

V. USING CONTRAST TO MEASURE f

In the first experiments, we scanned the second grating
in the z direction to change AL. Figure 3 shows contrast
data as a function of AL with and without Lens A, using a
potassium atom beam with vy &~ 2000 m/s. The data exhibit
peaks approximately 1.5 mm wide (FWHM in AL). There
are also faint hints of contrast revivals at AL ~ £2 mm.
Importantly, the lens causes the contrast to peak at a new
location shifted by AL = —205 10 um. To interpret this
shift as a measure of the focal length f, we use the idea that
fringe magnification due to the electrostatic lens (Mieys) can
compensate for geometric magnification (Mgeom)-

In optics parlance, the original fringes (with no lens) are a
virtual object, located a distance |o| ~ 33 cm downstream of
the lens. The weak diverging lens forms a real image of the
fringes at a new location, a slightly greater distance i after the
lens. The image has a transverse magnification My = —i/o,
and these quantities are related to the focal length f by the
imaging equation (i~!' 4+ 0~! = f~!). We use the convention
that o is negative for a virtual object, i is positive for a real
image, and f is negative for a diverging lens, as found in
several optics texts [57,58].

Since the fringes are an extended object, we consider o to
specify particular points within the object (in a plane with a
given z). The image on the nanograting is therefore an image of
that part of the object that was located upstream by a distance
i — |o| = |0*/f], to first order in o/ f. That part of the object
had a smaller fringe period due to geometric magnification;
hence, the object period was d, = dg(2L; — [0*/f1)/QLY).
However, the image is magnified by the lens. Thus, without
moving the nanogratings from a position where AL = 0, the
image has fringe period:

(2L =10 /f1\ (o + /S
di—dg< 3L )( ” ) (7)
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The first factor in parentheses accounts for the ratio of object
period to grating period (d,/d;) and the second factor in
parentheses comes from the transverse magnification (M)
by the lens. Hence, the lens causes fringes at AL = 0 to be
magnified, to first order in o/ f, by

Mg = 1+ 2| 14 =2 )
lens — f 2L] .

Mieps 1s our theoretical prediction for how the period of the
fringes on the third nanograting will change due to adding a
lens. This is, of course, different than the standard definition of
transverse magnification (M7 = —i /o) because M7 describes
the ratio of the fringe period at the object location (with no
lens) to the fringe period at the image location (with a lens).
Even a magnification of Mje,s = 1.0005 significantly reduces
fringe contrast in our experiments because our detector is 1000
grating periods wide.

To deduce the focal length f of the lens, we measured the
AL that maximizes contrast. We assume contrast peaks when
the combined magnification Miens Mgeom €quals unity. Thus,

2L,0 + 0*
= 9
/ = ©)
Using our experimental parameters of L; = 0.94 m, o =

—0.33 m, and AL = —0.205 mm, we measured a focal length
of f = —2.5+0.13 km for Lens A,. As we discuss in the next
sections, this is a nonparaxial focal length, which we refer to
as the radius of curvature R..

It is noteworthy that we measured such a large focal length
while sampling only a 100-pum-wide portion of a lens. With
ordinary light optics this would be nearly impossible, because
the wavelength of visible light is 100 000 times longer than the
5-pm atom waves used here. Hence, diffraction from the beam
stops would obscure any change in beam properties caused
by such a weak lens. In essence, we have monitored changes
in collimation angle that are smaller than 5 x 1078 rad, while
diffraction of visible light from a 100-um lens aperture would
cause divergence on the order of 5 x 1073 rad.

VI. USING PHASE TO MEASURE f

In a separate experiment to study focal lengths, we
translated the lens in the x direction, perpendicular to the
atom beam, and measured the differential phase shifts shown
in Fig. 4. Since both interferometer arms go through the lens,
we are using our apparatus as a shearing interferometer [53]. If
the phase induced by the lens is denoted by ®(x) for any single
path through the lens, then the observed differential phase shift
¢ for an interferometer with paths separated by a distance s in
the x direction is

P(x) = O(x +5) — O(x). (10)

By measuring the fringe phase shift ¢(x) as a function of
lens position x, we mapped the derivative of ®(x) as is typical
for a shearing interferometer:

dd(x) .

Plx) ~ ——

s. (11
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FIG. 4. (Color online) Atom interferometer differential phase-
shift data. Graphs show measured values and theory for Lens A,
(top) and Lens B (bottom). Differences from the linear fit shows
deviation from an ideal thin lens. Error bars are smaller than the data
symbols.

Therefore, a constant slope in ¢(x) indicates a quadratic
phase factor in ®(x), as expected for a lens. Furthermore,
nonlinearity in ¢(x) indicates spherical aberration.

We use the slope A¢/Ax locally to find the focal length f
using a relationship derived for spherical waves,

_ (A7
f_kgL<E> , (12)

where k, = 27 /d, is the grating wave number (d, = 100 nm),
and for Lens A, L = —o0 = 0.33 m. The observed A¢/Ax =
—3.6 rad/mm near the ground plane, so the paraxial focal
length is —5.8 £ 0.3 km.

To describe spherical aberration, we also report how the
focal length gets shorter as we use the lens farther away from its
optical axis. At x = 600 um, for example, the slope A¢/Ax
increases to —8.8 rad/mm for Lens A, and the R, is —2.4 km.
This is consistent with the focal length measurement for lens
A, that we obtained in Sec. V because x = 600 £ 50 um was
the position of Lens A; for contrast measurements in Fig. 3.

We also measured f for Lens B. Data in Fig. 4(b) shows
A¢/Ax = —2.6 rad/mm near the optical axis. Thus, the
paraxial focal length for Lens Bis f = —20.0 = 1.0 km. With
Lens B off axis by x = 1.15 mm, we observed A¢/Ax =
—3.4 rad/mm and thus infer that R, is —15.3 &+ 0.8 km.

Spherical aberration can also be quantified by fitting ¢(x)
with a polynomial a;(x /b) + a3(x/b)*. The best-fit parameter
a3 for Lens A, gives Wgaqa = a3z/(8ms) = 32 £ 3 waves and
for Lens B gives Wgqq = 130 &= 27, where Wi 4 is the fourth-
order spherical abberation coefficient as discussed in the next
section.
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VII. CALCULATED f AND ABERRATIONS

In the previous two sections we presented atom optical shop
testing experiments that served to measure the focal length and
spherical aberrations of a lens for atoms. Next, we calculate
the focal length and spherical aberration coefficients for our
atom lenses to check the measurement results.

The atom wave phase induced by our lens [10,23,45-47] is

AdraV? sfa+R+b b
o =T (5 )t 09

where « is the atomic polarizability, V is the electrode voltage
with respect to the ground plane, v is the atom beam velocity,
x is the beam position relative to the optical axis, and b =
a«/1+ 2R/a is related to the geometry of the electrodes (see
Table I), where R is the radius of the cylindrical electrode and
a is the electrode spacing for Lens A (or half the spacing for
Lens B).

To calculate the focal length and spherical aberration
coefficients of our lenses, we first find the surface of constant
phase z, or wave front, induced by the lens by evaluating
® = —kypz,

_oz(V/c)2 b

= T T Gr

(14)

where ¢ = b(47)""?In[(a + R + b)/(a + R — b)] has units
of length and is comparable to the gap size in our experiments
(¢ = 1.17 mm for Lens A and ¢ = 2.32 mm for Lens B).
Written this way, z(x) depends on the ratio of the potential
energy U = —aE?/2 to the kinetic energy K = mv?/2. This
relation is expected since the index of refraction for atom waves
due to the electric field is n = (1 — U/K)'/? [59]; hence,
n — 1 depends to first order linearly on the small parameter
(U/K). Therefore, we introduce a dimensionless parameter
g = a(V/c)*/(mv?) for what follows. In our experiments
g ~ 1077, which explains why the focal lengths are so long
for our electrostatic lenses for atoms.

The radius of curvature, R, of the isophase surface z can be
found from a local circle fit to Eq. (14) (the so-called osculating
circle):

b I = /b1 — 4P /b))
28 [1+3G/bPII1 — (x/b)°F

Equation (15) also shows how the radius of curvature R,
depends on the distance from the optical axis x (spherical
aberration) and the de Broglie wavelength A, since g depends
on v~2 (chromatic aberration). At x = 0, i.e., on the optical
axis, the focal length is equal to R.; hence,

b
=2 (16)

(15)

c =

For a 2000 m/s potassium atom beam, we calculate f =
—6.1 km for Lens A, and f = —21.7 km for Lens B.
These calculations are in agreement with the focal length

measurements. For Lens A, at x = 600 um, R. = —2.3 km.
This calculation is also consistent with the measurements of
R. in Sec. VL.

Next, we study z(x)/Agp = Wya, known as the aberrated
wave front, which we have expressed in units of waves. We
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proceed by expanding W, in a Taylor series as is done in light
optics [60,61]:

W bg 1 x\2 x\4

AT AdB[ +<b) +<b) + }
The zeroth-order term in x/b, the first term in brackets, is
position independent and corresponds to an optical flat with
no optical power. The second-order term is the focusing term. It
corresponds to an ideal lens with a focal length f = —b/(2g),
same as the paraxial focal length in Eq. (16).

To determine the spherical aberration, we first calculate the
wave-front error W = W4 — Wy, where Wy, is an unaberrated
reference spherical wave front with a radius of curvature equal
to the paraxial focal length. For our lenses, the focal length
is 107 times greater than the lens aperture, so the difference
between a spherical reference wave front and a parabolic wave
front is negligible. Therefore, W & W, for higher-order terms
inx/b.

Terms that are fourth order and higher in x/b describe
the different order spherical aberrations. For our electrostatic
lenses, the wave-front spherical aberration coefficients are the
same for all orders of spherical aberration. We therefore refer
to the coefficients as Ws4. For our lenses,

a7

bg
Wsa = ——

. 18
s (18)

For Lens A; and a 2000 m/s potassium atom beam, we
compute W4 = —35 waves. Similarly, for Lens B we compute
Wsa = —130 waves. This indicates that 1.12 mm from the
optical axis for Lens B there is only a 1/4 de Broglie wave (1
pm) deviation between W, and Wx. These calculations are in
agreement with the measurements of the fourth-order spherical
aberration coefficient W4 for Lens A, and Lens B in Sec.VI.

There is also axial chromatic aberration and spherochroma-
tism in our electrostatic lenses [60] because the focal length
depends on A;; and the spherical aberration coefficients are
proportional to A;;.

VIII. APPLICATION FOR VELOCITY MEASUREMENTS

Now we return to the problem of explaining how defocusing
by phase choppers (Lens A; and Lens A,) affects the accuracy
of our atom beam velocity measurements. Although we have
made mean velocity measurements using phase choppers
with 0.05% statistical precision [46] (and again in Fig. 5),
a systematic error of approximately 0.1% can be attributed
to defocusing. Furthermore, this error changes with AL. We
learned to recognize and fix this problem by studying how
electric-field gradients act as lenses for atom waves.

Holmgren et al. [23] described how phase choppers are
used to measure the velocity of atom beams. In brief,
as mentioned in Sec. I, phase choppers are analogous to
mechanical choppers. However, fringe contrast, rather than
beam flux, is modulated as a function of chopping frequency,
v. We analyze C(v) data to measure the mean velocity and
the velocity spread of our atom beam, as shown in Fig. 5. The
mean velocity determines the frequencies at which the contrast
revivals occur, and the velocity spread affects how the contrast
revivals decay.
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FIG. 5. (Color online) Contrast data versus chopping frequency
C(v) analyzed with Egs. (20) and (19). The best-fit parameters for
the most probable velocity and velocity ratio (vy and r) are discussed
in the text.

Equation (1) of Ref. [23] modeled the contrast and phase
of the interference fringes by
1/v o0
/ P(v)
t=0 Jv=0

w /O DG 1E/0)] gy 1

C()e?™ = Cpe'Pov

19)

where ¢; and ¢, were the v-dependent (but x-independent)
phase shifts due to choppers A; and A, and P(v) is the
probability distribution for velocity. We use a Gaussian P(v) =
(2ro?)~ 2 exp[—(v — v9)*/(202)] and keep both vy and the
ratio r = vg/o, as free parameters when comparing Eq. (19)
to C(v) data.

Now we use our analysis of lenses inside an atom
interferometer to develop an improved model that includes
the thickness of the atom beam and its angular spread by
explicitly averaging over all detected trajectories. We do
this by integrating over all transverse positions in the two
collimating slits (having widths w; and w,, respectively). We
also include the transverse coherence length of the atom beam,
the symmetric pairs of interferometers sketched in Fig. 1, and
the finite size of the atom beam detector. We thus replace
Eq. (19) with

+ 2 + 2
CNe) = Cpeitn L 3 " "
R
X X

j=—1,1 1=—wi/2 2=—wy/2

1/v

o0
XV / P(U)Dj(Xl,xz,U)
t=0 Jv=0

% ei[(b]/(xl,xz,u.t)+¢2j(x1,xz,v,t+6/v)]

X e[¢<ep.j(-xl’x2~u»AL)Cenv(AL’t)

x e« dvdtdx,dx,, 20

where Cj is the reference contrast observed when AL =0
and the electrodes are grounded. The index j identifies
different interferometers that are formed by different pairs
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of diffraction orders (two such interferometers are sketched in
Fig. 1). D;(x1,x2,v) describes the probability that atoms hit
the detector after passing through positions x; and x, in the
two collimating slits and diffracting in the directions given by
jandv.

The terms ¢;; in Eq. (20) with i € (1,2) represent the
differential phase imparted by chopper i to atoms that fly by
with wave-function components at transverse positions x;; and
x;j + 5. Once these positions are determined, then the phases
¢;; can be calculated using Eq. (13). These positions depend
on xy, X2, v, and j; therefore, ¢;; should be evaluated inside
the integrals and the sum in Eq. (20). The terms ¢;; describe
the phase curvature and thus the magnification M, caused
by the phase choppers.

The terms ¢ep, j(x1,%2,v,AL) and Ceny(AL,t) depend
explicitly on AL. This is new, because Eq. (19) had no terms
that depend on A L. The separation phase ¢gep, j(x1,X2,v,AL)
describes how the fringes change in phase locally as wave-
function components propagate through one another to planes
with a different AL. This is the origin of geometric magnifi-
cation Myeom. The term Ceny(AL,t) represents an additional
contrast reduction due to the transverse coherence length of
the wave packets. Ce, (AL,?) depends on ¢ because it shifts
slightly when the phase choppers are turned on. We model the
separation phase as

J haB
¢Sep,j(xla-x25v7AL) = kg Qinc(xlaXZ) + Ed_ AL,
8

21

where 6;, is the angle of incidence on the first grating. The sum
[Oinc(x1,%2) + (j/2)(Aap/d,)] represents the angle of the fringe
maxima in the x-z plane (see Fig. 2 in Sec. IV). We model the
contrast envelope due to transverse coherence length as

&ﬂ)Z

Con(ALD) = 20 E, 22)

where wy is the size of an effective collimating slit, and d, is the
grating period. This is based on the van Cittert Zernike theorem
and an assumption that the transverse coherence is well
described by incoherent illumination of a Gaussian-weighted
first collimating slit with Gaussian FWHM given by w, = w;.
We have also modeled Ce,,y with GSM beams (e.g., in Sec. IV).

With some approximations that we describe, the integral
over e!?< and C.,, across the width of the detected atom beam
produces contrast patterns that depend on AL in a way we can
write analytically

C (AL ws
— = sinc(Akﬂ)e 2 ’ (23)
Co 2
where Ak is the difference between the grating wave number
ke = 2m/d, and the fringe wave number and wy is the width
of the detector. We can explicitly write Ak in terms of fringe

magnification as
Ak = kg(Mgeoliens = 1. (24)

The sinc term [defined as sinc(x) = sin(x)/x] is found as
a result of making the approximation that the detector is
uniformly illuminated. Although Eq. (23) reproduces the
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theory functions shown in Fig. 3 fairly well, the full description
in Eq. (20) is more complete because it takes into account how
the detected beam flux as a function of position on the detector
depends on the sizes and locations of the collimating slits.
Equation (20) also includes the integral over velocity, which
further reduces the contrast by the factor e~22%/"’ where ¢
is the phase shift caused by the lens for atoms with velocity
vgo. This factor amounts to C/Cy = 0.95 for the data shown in
Fig. 3, which is consistent with ¢y = 7 (when the chopper is
on) and r = vy/o, = 20. For completeness, we note that the
contrast as a function of AL for atom beam interferometers
has also been discussed in [62,63] with different assumptions
such as Bragg diffraction.

The Sagnac phase is ¢ge = 47 L7, /(vd,), where , is
the vertical component of the laboratory rotation rate and d, is
the grating period. In our laboratory the Sagnac phase is 2.4 rad
for 2000 m/s atoms due to Earth’s rotation rate. The velocity
dependence of the Sagnac phase can change the resulting best
fit vy in our experiments by 0.05%. Similar sensitivity to the
Sagnac phase was noted in [10].

Using Eq. (19) as opposed to Eq. (20) to make a least-
squares fitto datain Fig. 5 results in slightly different parameter
values for vy and r. The values of vy using the two theoretical
models are different by about 0.2% for atom beams with vy ~
1000 m/s, and the model-dependant differences in best fit v,
become smaller for higher-velocity atom beams. To investigate
which analysis is more accurate, we were motivated to test
other predictions of focusing behavior, such as C(AL) data
shown in Fig. 3 and ¢(x) data shown in Fig. 4 as further
evidence that Eq. (20) is indeed more accurate than Eq. (19).

Next, we examine model-dependent differences in the best-
fit parameters vy and  as a function of AL. We used Eq. (20) to
simulate C(v) spectra with particular vy and r given as input
parameters. Then, we used the simpler model described by
Eq. (19) to find the best-fit parameters v and 7 that minimize
the sum of the squared errors when analyzing the simulated
data. The differences vy — vy and # —r depend on AL, as
shown in Fig. 6. This is significant because AL was not even
considered as a parameter in earlier work on phase choppers
[23,46,47], but Fig. 6 now shows that it is important.

Most trends in Fig. 6 can be explained by fringe magnifi-
cation. For example, reduction in contrast due to focusing can
be misinterpreted as a larger spread in velocity. In particular, if
AL > 0, then focusing reduces the contrast, so Eq. (19) makes
a best fit 7 too low. Conversely, when AL < 0O choppers can
increase contrast, as we saw in Fig. 3, and as a consequence
the best fit 7 is too large. Hence, the combined influence
of ¢;; and ¢y, (electrostatic and geometric magnification)
causes errors in 7 that can be anticorrelated with AL, as
seen in Fig. 6. Velocity-dependent contrast suppression and
velocity-dependent detection included in Eq. (20) but not
Eq. (19) also influence errors in 7.

Trends in vy are similarly subtle but can also be explained,
for the most part, in terms of magnification. One reason for
an error in vy is that slow atoms, with a larger diffraction
angle, preferentially miss the detector. This is described by
D;(x1,x2,v). Just as importantly, when the slower atoms in the
ensemble contribute to the signal with low contrast as a result
of a mechanism not adequately described by Eq. (19), then
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FIG. 6. (Color online) Error in best-fit velocity as a function of
AL using Eq. (19) to fit simulated data generated with the more
complete model described by Eq. (20). The velocity error is (Up —
vo)/vp and the error in velocity ratio is (7 — r)/r as described in the
text.

there will be a bias towards faster 1y. Preferential contrast
loss for slow atoms is caused, for example, by geometric
magnification (¢,.,) simply because of the larger diffrac-
tion angles. Also, electrostatic magnification (¢;;) generally
produces velocity-dependent contrast loss due to chromatic
aberrations. However, when AL is slightly negative, the signal
can be biased towards slower atoms because electrostatic
magnification then compensates for geometric magnification
preferentially for the slow atoms.

We have documented our effort to validate the model in
Eq. (20) with auxiliary tests, e.g., in Figs. 3 and 4, so we
are convinced that Eq. (20) is an improvement over Eq. (19).
Furthermore, in case there are still additional position- and
velocity-dependent phases that we have not yet discovered
that make an impact on our analysis, we can offer a strategy to
minimize errors in measurements of vy and r by operating at
a AL, where errors are minimum. We note there are minima
in the absolute value of ¥y error and 7 error in Fig. 6 when
AL = —100 um. The reason for a minimum error is that at
this AL the contrast change due to the phase choppers is very
small for atoms with vy (e.g., this is where the two contrast
curves intersect in Fig. 3). Therefore, we recommend operating
future phase-chopper experiments with AL chosen so the
observed contrast is not affected by the phase choppers. Then,
even a simpler model that is missing some contrast-reducing
mechanisms [e.g., Eq. (19)] still produces a smaller error in v
and 7 than it would if AL = 0.

IX. DISCUSSION

In summary, de Broglie wave-front curvature induced by
phase choppers influences measurements of atom beam veloc-
ity in an atom interferometer. Electrostatic phase choppers
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inevitably act like lenses that magnify atom interference
fringes, and thus modify the observed fringe contrast. Mea-
surements of contrast as a function of nanograting location,
C(AL), showed how electrostatic magnification of atom inter-
ference fringes can compensate for geometric magnification.
This observation explained systematic shifts in measurements
of atomic beam velocity vy and velocity ratio » made with
phase choppers. Then, an improved model of C(v) was devel-
oped to reduce these systematic errors. Systematic corrections
were shown to depend on AL, a parameter that had not
previously been considered in the analysis of phase choppers.

Measurements of phase shifts ¢(x) induced by a lens were
used as an independent measurement of the focal length of
atom lenses. The focal length was measured with less than
5% uncertainty, even though the values of f that we studied
were quite large (ranging from —2.5 to —21.7 km). We also
used ¢(x) to measure spherical aberration. Calculations of
wave-front curvature induced by electrostatic lenses were used
an an additional method to determine the focal length f. The
calculations were consistent with measurements of wave-front
radius of curvature using contrast and phase measurements
and were then used in the improved model of C(v).

The goal of this improved model of phase-chopper C(v)
spectra is to support future measurements of atomic polariz-
ability. For this application we recommend monitoring AL
using contrast measurements and incorporating uncertainty in
AL into the error budget for resulting measurements of atomic
velocities, velocity ratios, and ultimately polarizabilities.
Additional modifications to Eq. (20) may be explored, such
as diffraction phases induced by the gratings themselves [64],
but we suspect that diffraction phases in particular can be
incorporated simply by using the contrast peak to redefine
where AL = 0. Thus, we recommend measuring AL with
respect to the contrast peak and then selecting a A L that makes
the phase choppers cause minimal changes in contrast.

To give a broader perspective, electron and optical interfer-
ometers routinely use lenses to intensify, magnify, and focus
fringes. Neutron optics experiments [65] have also begun to
include magnetic hexapole [66] or solid-state lenses [67,68]
as tools to manage neutron beams. Therefore, given the many
examples of atom lenses discussed in the literature [24—40],
we expect that several new opportunities may result from using
lenses for atoms in conjunction with an atom interferometer.
In this paper we used this nexus to develop atom optical
shop testing, in analogy to ordinary optical shop testing
[57,58,60,61,69,70]. We also explored systematic corrections
to precision measurements that arise when de Broglie wave
curvature is manipulated inside an atom interferometer.

The analogy of a lens in an interferometer may be extended
to ultracold atom interferometers operated in traps. However,
in traps the parameter g = U/K is often larger than 1 and
the interaction time with the trap potential can be many times
the inverse trap frequency. In comparison, for experiments
presented here g &~ 1077, the fly-by time was a few us, and
the resulting the displacement of atoms within the lens was
negligible compared to the atom beam width or even its
transverse coherence length. Thus, the electric-field gradients
we studied are like weak, diverging, cylindrical, thin lenses
for atoms, whereas traps are more similar to waveguides for
atoms [21,71,72].
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Finally, we speculate on some additional uses for lenses in
atom interferometers. Schemes may be developed to magnify
atom interference fringes to make them easier to image. We
also propose that lenses can compensate for gratings that
have the wrong period. For example, if the nanogratings in
a hybrid KD-TLI interferometer [73] are imperfectly matched
with the laser grating period, then atom lenses may improve
the fringe contrast. Spherical aberration can compensate for
grating chirp. Strong positive lenses can focus beams inside
atom interferometers to increase flux and reduce beam widths.

PHYSICAL REVIEW A 89, 033612 (2014)

Atom optical shop testing with an atom interferometer could
also validate aberration mitigation techniques such as those
proposed in [74,75].
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