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The coupling between the spin degrees of freedom and the orbital angular momentum has a profound effect
on the properties of nuclei, atoms, and condensed-matter systems. Recently, synthetic gauge fields have been
realized experimentally in neutral cold-atom systems, giving rise to a spin-orbit coupling term with “strength” kso.
This paper investigates the interplay between the single-particle spin-orbit coupling term of Rashba type and the
short-range two-body s-wave interaction for cold atoms under external confinement. Specifically, we consider two
different harmonically trapped two-atom systems. The first system consists of an atom with spin-orbit coupling
that interacts with a structureless particle through a short-range two-body potential. The second system consists of
two atoms that both feel the spin-orbit coupling term and that interact through a short-range two-body potential.
Treating the spin-orbit term perturbatively, we determine the correction to the ground-state energy for various
generic parameter combinations. Selected excited states are also treated. An important aspect of our study is that
the perturbative treatment is not limited to small s-wave scattering lengths but provides insights into the system
behavior over a wide range of scattering lengths, including the strongly interacting unitary regime. We find that
the interplay between the spin-orbit coupling term and the s-wave interaction generically enters, depending on the
exact parameter combinations of the s-wave scattering lengths, at order k2

so or k4
so for the ground state and leads

to a shift of the energy of either sign. While the absence of a term proportional to kso follows straightforwardly
from the functional form of the spin-orbit coupling term, the absence of a term proportional to k2

so for certain
parameter combinations is unexpected. The well-known fact that the spin-orbit coupling term couples the relative
and center-of-mass degrees of freedom has interesting consequences for the trapped two-particle systems. For
example, we find that, for certain parameter combinations, the spin-orbit coupling term turns sharp crossings
into avoided crossings with an energy splitting proportional to kso. Our perturbative results are confirmed by
numerical calculations that expand the eigenfunctions of the two-particle Hamiltonian in terms of basis functions
that contain explicitly correlated Gaussians.
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I. INTRODUCTION

During the past few years tremendous progress has been
made in realizing artificial gauge fields in cold-atom systems
experimentally [1–4]. By now, the effect of the spin-orbit
coupling (or more precisely, spin-momentum coupling) has
been investigated for bosonic and fermionic species [5–11].
The effect of the spin-orbit coupling has been investigated
away and near an s-wave Fano-Feshbach resonance [7,8].
A variety of intriguing phenomena such as nonequilibrium
dynamics [9,10], the spin-orbit coupling assisted formation of
molecules [7], and the engineering of band structures [11] have
been investigated.

At the mean-field level, spin-orbit coupled gases exhibit
rich phase diagrams [4,12–18]. Effects beyond mean-field
theory [19–22], associated with the renormalization of inter-
actions, are enhanced by the spin-orbit coupling, especially
in the pure Rashba case, and can qualitatively change the
mean-field results. Thus, the interplay between the spin-orbit
coupling and the s-wave interaction is a crucial aspect of
the many-body physics of such systems. The two-particle
scattering for systems with spin-orbit coupling has been
investigated using a variety of different approaches [23–27]
including a Green’s function approach and a quantum defect
theory approach. Compared to the scattering between two
alkali-metal atoms, the scattering between particles with
spin-orbit coupling introduces a coupling between different

partial-wave channels. Moreover, if the two-particle system
with Rashba spin-orbit coupling is loaded into an external
harmonic trap, the relative and the center-of-mass degrees of
freedom do not decouple.

This paper determines the quantum mechanical energy
spectrum of two atoms with short-range two-body interactions
in an external spherically symmetric harmonic trap in the
presence of a Rashba spin-orbit coupling term. Our work com-
bines analytical and numerical approaches and covers weak
spin-orbit coupling strengths and weak to strong atom-atom
interactions. Few-atom systems can nowadays be prepared
and probed experimentally [28,29], opening the door for
developing a bottom-up understanding of cold-atom systems
with spin-orbit coupling. Our results provide much-needed
theoretical guidance for such experimental studies. Two
prototype systems of increasing complexity are considered.
(i) We assume that one of the particles feels the Rashba
coupling, while the other does not. (ii) We assume that both
particles feel the Rashba coupling. The first system under study
can also be viewed as the limiting case of a two-component
atomic gas where one component feels the spin-orbit coupling
term, while the other does not. While such systems have not
yet been realized experimentally, their preparation is feasible
with current technology. The second system under study can
be viewed as a limiting case of a bosonic or fermionic gas
with spin-orbit coupling. Our analysis of the two-particle
prototype systems yields, e.g., an analytical expression for the
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leading-order mean-field shift that reflects the interplay be-
tween the spin-orbit coupling term and the s-wave interaction.

The effect of spin-orbit coupling has also been studied in
condensed-matter systems, such as two-dimensional electron
gases [30,31], semiconductor quantum dots [32–36], and
semiconductor nanowires [37]. Employing a perturbative
expansion for the two-dimensional electron gas, the long-
range electron-electron interactions have been found to be
influenced only marginally by the spin-orbit coupling [31],
in qualitative agreement with our findings for short-range
s-wave interactions. Just as the atoms considered in this work,
the electrons in semiconductor quantum dots are subject to a
confining potential that is well approximated by a harmonic
trap and feel a Rashba spin-orbit coupling term. In many
materials the Rashba term, which is tunable to some extent,
dominates over the Dresselhaus term. Much attention has been
paid to the interplay between the electron-electron interaction
and the spin-orbit coupling term [33,34,36]. While similar in
spirit, key differences between the quantum dot studies and our
work exist. (i) The electron-electron interaction is long-ranged
and repulsive while the atom-atom interaction considered
in this work is short-ranged and effectively repulsive or
effectively attractive. (ii) Electrons obey fermionic statistics
while our work considers fermionic and bosonic atoms.
(iii) The quantum dots are typically modeled assuming a
two-dimensional confining geometry while our work considers
a three-dimensional confining geometry.

The remainder of this paper is organized as follows.
Section II defines the system Hamiltonian. Section III investi-
gates the regime where the spin-orbit coupling strength and the
atom-atom interaction are weak. A perturbative approach that
yields analytic energy expressions is developed. As we show,
this approach provides valuable insights into the interplay of
the spin-orbit coupling term and the atom-atom interaction.
Section IV develops a complementary perturbative approach.
Namely, accounting for the atom-atom interaction exactly [38],
the spin-orbit coupling term is treated as a perturbation. This
approach provides valuable insights into the system dynamics
over a wide range of scattering lengths, including the unitary
regime. Our perturbative results of Secs. III and IV are
validated by numerical results. The discussion of the numerical
approach that yields accurate eigenenergies of the trapped
two-particle system is relegated to the Appendix. Section V
summarizes and offers an outlook.

II. SYSTEM HAMILTONIAN

We consider two particles of mass m with position vectors
�rj = (xj ,yj ,zj ), where j = 1 and 2. The position vectors are
measured with respect to the center of the harmonic trap (see
below) and the distance vector is denoted by �r12, �r12 = �r1 − �r2,
and r12 = |�r12|. This paper considers two different situations:
In the first case, the first atom feels the spin-orbit coupling
of Rashba type while the second atom does not. In the second
case, both atoms feel the spin-orbit coupling of Rashba type. If
the j th atom feels the spin-orbit coupling, it is assumed to have
two internal states denoted by |↑〉j and |↓〉j . As commonly
done, we identify the two internal states of the j th atom as
pseudospin states of a spin- 1

2 particle with spin projection
quantum numbers msj = 1/2 and msj = −1/2. Concretely,

the spin-orbit coupling term Vso(�rj ) of the j th atom reads [39]

Vso(�rj ) = −i
�

2kso

m

[(
∂

∂yj

+ i
∂

∂xj

)
|↑〉j j 〈↓|

+
(

∂

∂yj

− i
∂

∂xj

)
|↓〉j j 〈↑|

]
. (1)

If only the first particle feels the spin-orbit coupling, the
Hamiltonian Hsoc,a of the harmonically trapped two-particle
system can be written as

Hsoc,a = H (1)(�r1) + Hho(�r2) + H (12)
soc,a(�r12). (2)

If both atoms feel the spin-orbit coupling, the Hamiltonian
Hsoc,soc of the harmonically trapped two-particle system can
be written as

Hsoc,soc = H (1)(�r1) + H (1)(�r2) + H (12)
soc,soc(�r12). (3)

In Eqs. (2) and (3), H (1) denotes the single-atom Hamiltonian,

H (1)(�rj ) =
∑

σ=↑,↓
Hho(�rj )|σ 〉j j 〈σ | + Vso(�rj ), (4)

and Hho(�rj ) the three-dimensional single-particle harmonic
oscillator Hamiltonian with angular frequencies ωx , ωy , and
ωz,

Hho(�rj ) = − �
2

2m

(
∂2

∂x2
j

+ ∂2

∂y2
j

+ ∂2

∂z2
j

)

+ 1

2
m
(
ω2

xx
2
j + ω2

yy
2
j + ω2

zz
2
j

)
. (5)

Throughout most of this paper, we assume ωx = ωy = ωz =
ω. Correspondingly, we measure lengths in units of aho,
where aho = √

�/(mω), and energies in units of Eho, where
Eho = �ω. We note, however, that the techniques developed
in this work can be generalized to anisotropic confinement.
In Eqs. (2) and (3), H (12)

soc,a(�r12) and H (12)
soc,soc(�r12) account

for the atom-atom interaction. We note that the single-
particle Hamiltonian H (1)(�rj ) and variants thereof have been
investigated extensively in quantum optics and molecular
physics [40,41]. In quantum optics the Hamiltonian is referred
to as the Jaynes-Cummings Hamiltonian. In molecular physics,
the Hamiltonian is referred to as the E ⊗ ε Jahn-Teller
Hamiltonian.

If both particles feel the spin-orbit coupling, we assume an
interaction of the form

H (12)
soc,soc(�r12) = V

↑↑
2b (�r12)|↑〉1|↑〉2 1〈↑|2〈↑|

+V
↑↓

2b (�r12)|↑〉1|↓〉2 1〈↑|2〈↓|
+V

↓↑
2b (�r12)|↓〉1|↑〉2 1〈↓|2〈↑|

+V
↓↓

2b (�r12)|↓〉1|↓〉2 1〈↓|2〈↓|. (6)

The potentials V σσ ′
2b (�r12) (σ,σ ′ = ↑ or ↓) are characterized by

the scattering lengths aσσ ′ . We write a↑↑ = aaa, a↓↓ = ζaaa,
and a↑↓ = a↓↑ = ηaaa. Experimentally, the scattering lengths
can, in certain cases, be tuned by applying an external magnetic
field in the vicinity of a Fano-Feshbach resonance [42]. We
consider three different interaction models, a zero-range s-
wave pseudopotential V σσ ′

ps (�r12) with scattering length aσσ ′ , a
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TABLE I. Summary of the different scattering-length combina-
tions investigated in this work for one particle with and one without
spin-orbit coupling (described by Hsoc,a) and for both particles with
spin-orbit coupling (described by Hsoc,soc). Throughout, we write a↑ =
aaa and a↓ = ηaaa, and a↑↑ = aaa, a↓↓ = ζaaa, and a↑↓ = a↓↑ = ηaaa.

Hsoc,a Case 1a a↑ 
= a↓; η 
= 1
Case 1b a↑ = a↓; η = 1

Hsoc,soc Case 2a a↑↑ = a↓↓ = a↑↓ = a↓↑; ζ = 1, η = 1
Case 2b a↑↑ = a↓↓ 
= a↑↓ = a↓↑; ζ = 1, η 
= 1
Case 2c a↑↑ = a↑↓ = a↓↑ 
= a↓↓; ζ 
= 1, η = 1
Case 2d a↑↑ 
= a↓↓ 
= a↑↓ = a↓↑; ζ 
= 1, η 
= 1, ζ 
= η

regularized pseudopotential V σσ ′
ps,reg(�r12), and a Gaussian model

potential V σσ ′
g (�r12) with range r0 and depth/height V σσ ′

0 ,

V σσ ′
ps (�r12) = 4π�

2aσσ ′

m
δ(�r12), (7)

V σσ ′
ps,reg(�r12) = 4π�

2aσσ ′

m
δ(�r12)

∂

∂r12
r12, (8)

and

V σσ ′
g (�r12) = V σσ ′

0 exp

[
−
(

r12√
2r0

)2]
. (9)

To compare the results for the zero-range and finite-range
potentials, the parameters r0 and V σσ ′

0 are adjusted so as to
produce the desired free-space atom-atom s-wave scattering
lengths aσσ ′ . We work in the parameter space where V σσ ′

g
supports either no or one free-space s-wave bound state.

To date, spin-orbit coupling terms (although not of Rashba
type) have been realized using 87Rb, 7Li, and 40K. In 87Rb,
the spin-up and spin-down states are commonly identified
with the |F,MF 〉 = |1,0〉 and |1,−1〉 states [5,9,10]. The
corresponding scattering lengths are a↑↑ = 100.86a0, a↓↓ =
100.40a0 and a↑↓ = 100.41a0, where a0 is the Bohr radius [43]
(implying ζ = 0.9954 and η = 0.9955) and Feshbach reso-
nances do not exist. For 40K in the |F,MF 〉 = |9/2,9/2〉 and
|9/2,7/2〉 states [6] or |F,MF 〉=|9/2,−7/2〉 and |9/2, − 9/2〉
states [7,8], in contrast, the a↑↓ scattering length is tunable
while s-wave scattering is forbidden for the up-up and down-
down channels. The present work considers cases 2a–2d (see
Table I). The parameter combination a↓↓ = a↑↓ = a↓↑ 
= a↑↑
is equivalent to case 2c if we switch the roles of a↑↑ and a↓↓.

If only the first particle feels the spin-orbit coupling, we
assume an atom-atom interaction of the form

H (12)
soc,a(�r12) = V

↑
2b(�r12)|↑〉1 1〈↑| + V

↓
2b(�r12)|↓〉1 1〈↓|. (10)

The potentials V
↑

2b(�r12) and V
↓

2b(�r12) are characterized by
the s-wave scattering lengths a↑ and a↓, respectively. We
define a↑ = aaa and a↓ = ηaaa and consider η = 1 (case 1a)
and η 
= 1 (case 1b). As in the case where both particles
feel the spin-orbit coupling, we consider the zero-range s-
wave pseudopotential V σ

ps(�r12), the regularized pseudopotential
V σ

ps,reg(�r12), and the Gaussian model potential V σ
g (�r12). The

definitions of these potentials are given in Eqs. (7)–(9) with
σσ ′ replaced with σ .

The system Hamiltonian Hsoc,a and Hsoc,soc are character-
ized by a number of length scales: the harmonic oscillator
length aho, the spin-orbit coupling length 1/kso, and the
atom-atom scattering lengths. The Gaussian model potential
introduces an additional length scale, namely the range r0.
Throughout this paper, we consider the regime where r0 is
much smaller than aho. Section III considers the regime where
|aσ | and |aσσ ′ | are much smaller than aho and where 1/|kso| is
much larger than aho. This implies that the energy shifts due to
the atom-atom interaction and the spin-orbit coupling are small
compared to the harmonic oscillator energy Eho. Section IV
considers the regime where |aσ | and |aσσ ′ | are not restricted
to be small compared to aho and where 1/|kso| is much larger
than aho.

III. WEAK ATOM-ATOM INTERACTION AND WEAK
SPIN-ORBIT COUPLING

This section pursues a two-step approach: In the first
step (see Sec. III A), we determine the eigenenergies and
eigenstates of the single-particle Hamiltonian H (1)(�rj ) using
Rayleigh-Schrödinger perturbation theory. This approach pro-
vides a description for |kso|aho � 1. The perturbative energy
and wave function expressions are given in Eqs. (15)–(20)
and (21)–(24), respectively, and the perturbative energies are
compared to the exact ones in Fig. 3. In the second step,
we utilize the eigenstates and eigenenergies determined in
the first step to treat the interactions H (12)

soc,a and H (12)
soc,soc (see

Secs. III B and III C) perturbatively. Section III B treats the
system where one particle does and the other does not feel
the spin-orbit coupling term. Equations (25)–(28) contain the
perturbative energy expressions applicable when the s-wave
interaction and the spin-orbit coupling term are weak; these
results are validated through comparisons with numerical
results in Figs. 4 and 5. Section III C considers how the
perturbative energy expressions change when both particles
feel the spin-orbit coupling term. Equations (30), (32), and (33)
contain the resulting energy expressions, and Figs. 6 and 7,
respectively, illustrate and validate our perturbative results.

A. Single harmonically trapped particle with Rashba coupling

While analytical expressions for the eigenenergies and
eigenstates are reported in the literature for a single har-
monically trapped particle with spin-orbit coupling of Rashba
type [40,41], we determine the eigenenergies and eigenfunc-
tions of H (1)(�r1) perturbatively. Since we are considering a
single particle, we drop the subscript 1 of the position vector �r1

in what follows. We treat the harmonic oscillator Hamiltonian
Hho with ωx = ωy as the unperturbed Hamiltonian and Vso as
the perturbation. An analogous approach has been pursued in
the quantum dot literature [33,35]. An important aspect of our
work is that we go to much higher order in the perturbation
series than earlier work [33]. Since Vso is independent of the z

coordinate, it is convenient to employ cylindrical coordinates
(ρ,ϕ,z), where ρ2 = x2 + y2 and tan ϕ = y/x. The energy
associated with the z coordinate is Ekz

= (kz + 1/2)�ω, where
kz = 0,1,2, . . ..

In the following, we focus on the motion in the xy plane
and assume ωx = ωy . To treat Vso perturbatively, we write the
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noninteracting two-dimensional harmonic oscillator functions
Rnρ,ml

(ρ)�ml
(ϕ) in terms of ρ and ϕ,

Rnρml
(ρ) =

√
2nρ!

a2
ho(nρ + |ml|)!

(
ρ

aho

)|ml |

× exp

(
− ρ2

2a2
ho

)
L|ml |

nρ

(
ρ2

a2
ho

)
, (11)

where L
|ml |
nρ

denotes the associated Laguerre polynomial, and

�ml
(ϕ) = 1√

2π
exp(imlϕ). (12)

The principal quantum number nρ and the projection quan-
tum number ml take the values nρ = 0,1,2, . . . and ml =
0,±1,±2, . . .. The energy associated with the motion in the xy

plane is E(0)
nρ,ml

= (2nρ + |ml| + 1)�ω. The unperturbed eigen-
states that account for the pseudospin degrees of freedom can
then be written as ψ (0)

nρ,ml,ms
(ρ,ϕ) = Rnρ,ml

(ρ)�ml
(ϕ)|ms =

±1/2〉. Since the unperturbed Hamiltonian does not depend
on the pseudospin, each state is twofold degenerate. The

twofold degeneracy is not broken by the perturbation Vso; i.e.,
each exact eigenenergy is twofold degenerate due to Kramer’s
degeneracy theorem [44,45]. This follows from the fact that
H (1) commutes with the time reversal operator.

When the spin-orbit coupling term is turned on, the spatial
and pseudospin degrees of freedom couple and ml and ms

are no longer good quantum numbers. For nonvanishing Vso,
mj with mj = ml + ms is a good quantum number of the
Hamiltonian H (1). The twofold degeneracy of the unperturbed
ground state, e.g., arises from the fact that the states with
mj = 1/2 and mj = −1/2 have the same energy. In general,
each unperturbed energy is 2E(0)

nρ,ml
/(�ω)-fold degenerate. The

corresponding wave functions are characterized by distinct mj

quantum numbers. Since mj is a good quantum number, the
unperturbed wave functions within a given energy manifold
do not couple. This implies that we can employ nondegenerate
perturbation theory.

The perturbation theory expressions (see below) involve
matrix elements of the type 〈ψ (0)

n′
ρ ,m′

l ,m
′
s
|Vso|ψ (0)

nρ,ml,ms
〉. We find

(see also Refs. [15,36])

〈
ψ

(0)
nρ,ml,1/2

∣∣Vso

∣∣ψ (0)
n′

ρ ,m′
l ,−1/2

〉 = �
2kso

maho
δml,m

′
l−1

{(
δnρ,n′

ρ

√
nρ + ml + 1 + δnρ,n′

ρ+1
√

nρ

)
for ml � 0,(− δnρ,n′

ρ

√
nρ + |ml| − δnρ,n′

ρ−1
√

nρ + 1
)

for ml < 0,
(13)

and

〈
ψ

(0)
nρ,ml,−1/2

∣∣Vso

∣∣ψ (0)
n′

ρ ,m′
l ,1/2

〉 = �
2kso

maho
δml,m

′
l+1

{(
δnρ,n′

ρ

√
nρ + ml + δnρ,n′

ρ−1
√

nρ + 1
)

for ml > 0,(− δnρ,n′
ρ

√
nρ + |ml| + 1 − δnρ,n′

ρ+1
√

nρ

)
for ml � 0.

(14)

The matrix elements for m′
s = ms vanish. This follows from

the fact that the spin-orbit coupling term can be written
in terms of the Pauli matrices σx and σy , which flip the spin.
The selection rules expressed through the Kronecker delta
functions in Eqs. (13) and (14) are illustrated schematically in
Fig. 1. Solid horizontal lines show the unperturbed energies
E(0)

nρ,ml
as a function of ml . The number below each energy

level indicates the principal quantum number nρ . Dotted lines
indicate nonvanishing matrix elements. It is important to
note that the matrix elements are only nonzero under certain

FIG. 1. (Color online) Illustration of the selection rules [Eqs. (13)
and (14)] for a single particle with spin-orbit coupling of Rashba
type. The horizontal solid lines show the unperturbed single-particle
energies E(0)

nρ ,ml
as a function of the quantum number ml . The value

of nρ is given below each energy level. The dotted lines indicate the
nonvanishing matrix elements, i.e., the allowed transitions between
unperturbed states (see text for details).

conditions. For example, let us start in the (n′
ρ,m

′
l) = (0,0)

state. If m′
s is equal to 1/2, one can reach the (nρ,ml) = (0,1)

state (i.e., one can take a step to the right), but one cannot
reach the (nρ,ml) = (0,−1) state (i.e., one cannot take a step
to the left). If m′

s is equal to −1/2, in contrast, one can reach
the (nρ,ml) = (0,−1) state (i.e., one can take a step to the left)
but one cannot reach the (nρ,ml) = (0,1) state (i.e., one cannot
take a step to the right).

We write the perturbation series as

Enρ,ml,ms
≈ E(0)

nρ,ml
+

kmax∑
k=1

�E(k)
nρ,ml,ms

, (15)

where the energy shifts �E(k)
nρ,ml,ms

are determined by applying
kth-order perturbation theory. Energies Enρ,ml,ms

with the same
E(0)

nρ,ml
and |mj | are degenerate.

The selection rules discussed above imply that the first-
order energy shift vanishes. For k = 2, we have

�E(2)
nρ,ml,ms

=
∑

n′
ρ ,m′

l ,m
′
s

∣∣〈ψ (0)
nρ,ml,ms

∣∣Vso

∣∣ψ (0)
n′

ρ ,m′
l ,m

′
s

〉∣∣2
E

(0)
nρ,ml

− E
(0)
n′

ρ ,m′
l

, (16)

where the sum excludes states with eigenenergy E(0)
nρ,ml

. The
matrix elements that contribute to the second-order pertur-
bation shift of the ground state are illustrated schematically
in Figs. 2(a) and 2(b). The matrix elements give a nonzero
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FIG. 2. (Color online) Nonzero matrix elements for a single
particle with spin-orbit coupling of Rashba type in the ground state at
second- and fourth-order perturbation theory. Solid horizontal lines
show the unperturbed energies E(0)

nρ ,ml
as a function of ml . Arrows

in panels (a) and (b) show the “allowed paths” that contribute to the
energy shift �E

(2)
0,0,±1/2. Arrows in panels (c) and (d) show the allowed

paths that contribute to the energy shift �E
(4)
0,0,±1/2.

contribution only for (n′
ρ,m

′
l ,m

′
s) = (0,1,−1/2) if ms = 1/2

and for (n′
ρ,m

′
l ,m

′
s) = (0,−1,1/2) if ms = −1/2.

We find, in agreement with Refs. [33,46], that the second-
order energy shift is given by

�E(2)
nρ,ml,ms

= −(1 ± |ml|)Eso (17)

for |mj | = |ml| ± 1/2, where

Eso = �
2k2

so

m
. (18)

We write the kth-order perturbation shift (k even) as

�E(k)
nρ,ml,ms

= c(k)
nρ,ml,ms

(
Eso

Eho

)k/2

Eho. (19)

We find that �E(k)
nρ,ml,ms

= 0 for odd k due to the ms selection

rule. The c(2)
nρ,ml,ms

coefficients can be read off Eq. (17).
Figures 2(c) and 2(d) illustrate the nonzero matrix elements
that contribute to the energy shift of the ground state at
fourth-order perturbation theory. Evaluating the perturbation

TABLE II. Coefficients c
(k)
0,0,±1/2 [see Eq. (19)] for a single particle

with spin-orbit coupling of Rashba type. The coefficients determine
the energy shift for the ground state.

k c
(k)
0,0,±1/2 k c

(k)
0,0,±1/2

2 −1 8 79/72
4 1/2 10 −274/135
6 −2/3 12 130 577/32 400

expression, we find

c(4)
nρ,ml,ms

= (2nρ + |ml| + 1)(1/2 ± |ml|) (20)

for |mj | = |ml| ± 1/2. Table II summarizes the c(k)
nρ,ml,ms

coefficients for k = 2,4, . . . ,12 for the ground state.
We developed an analogous scheme to evaluate the correc-

tions to the unperturbed wave functions. We write

ψnρ,ml,ms
(ρ,ϕ) ≈ Nnρ,ml,ms

{
ψ (0)

nρ,ml,ms
(ρ,ϕ) +

kmax∑
k=1

(ksoaho)k

×
⎡
⎣ ∑

n′
ρ ,m′

l ,m
′
s

d
(nρ,ml,ms ,k)
n′

ρ ,m′
l ,m

′
s

ψ
(0)
n′

ρ ,m′
l ,m

′
s
(ρ,ϕ)

⎤
⎦
⎫⎬
⎭ ,

(21)

where the quantum numbers m′
l and m′

s are constrained
by m′

l + m′
s = mj and where the sum excludes states with

eigenenergy E(0)
nρ,ml

. In Eq. (21), the normalization constant

Nnρ,ml,ms
can be readily obtained once the d

(nρ,ml,ms ,k)
n′

ρ ,m′
l ,m

′
s

coeffi-

cients are known,

(
Nnρ,ml,ms

)−2 = 1 +
∑

n′
ρ ,m′

l ,m
′
s

[
kmax∑
k=1

(ksoaho)kd
(nρ,ml,ms ,k)
n′

ρ ,m′
l ,m

′
s

]2

,

(22)

where, as before, the sum excludes terms corresponding to
eigenenergies E(0)

nρ,ml
. For k = 1 and 2, we derive general

expressions for the expansion coefficients,

d
(nρ,ml,±1/2,1)
n′

ρ ,m′
l ,m

′
s

= ∓δm′
s ,∓1/2δm′

l ,ml±1

{(√
nρ + |ml| + 1δn′

ρ ,nρ
− √

nρδn′
ρ ,nρ−1

)
for |mj | = |ml| + 1/2,(√

nρ + |ml|δn′
ρ ,nρ

−√nρ + 1δn′
ρ ,nρ+1

)
for |mj | = |ml| − 1/2,

(23)

and

d
(nρ,ml,±1/2,2)
n′

ρ ,m′
l ,m

′
s

= 1

2
δm′

s ,±1/2δm′
l ,ml

[√
(nρ + |ml| + 1)(nρ + 1)δn′

ρ ,nρ+1 +√nρ(nρ + |ml|)δn′
ρ ,nρ−1

]
. (24)

Table III summarizes the d
(nρ,ml,±1/2,k)
n′

ρ ,m′
l ,m

′
s

coefficients for k =
1,2, . . . ,8 for the ground state, i.e., for nρ = 0 and ml = 0.

To validate our perturbative treatment, we determine the
eigenenergies of H (1) (kso � 0) numerically following the
approach of Ref. [15]. In the following, we focus on
the energies associated with the motion in the xy plane and do
not include the energy associated with the motion in the z co-
ordinate. Solid lines in Fig. 3 show the single-particle energies
as a function of (ksoaho)2. For comparison, squares show our

perturbative energies Enρ,ml,ms
with kmax = 4. For the excited

states shown, the agreement is excellent for (ksoaho)2 � 0.1.
For the ground state [see also the magnification in Fig. 3(b)],
the agreement is excellent for (ksoaho)2 � 0.3. Diamonds in
Fig. 3(b) show the perturbative energy for the ground state
with kmax = 12. It can be seen that the inclusion of more terms
in the perturbation series improves the agreement with the
exact energies in a narrow ksoaho window. As expected, as
ksoaho approaches 1, the perturbative energy expression fails.
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TABLE III. Coefficients d
(0,0,±1/2,k)
n′
ρ ,m′

l
,m′

s
[see Eq. (21)] for a single particle with spin-orbit coupling of Rashba type. The coefficients determine

the wave function corrections for the ground state with mj = ±1/2. Columns 2–9 list the coefficients for the nonzero (n′
ρ,m

′
l ,m

′
s) combinations.

k (0,±1,∓1/2) (1,0,±1/2) (1,±1,∓1/2) (2,0,±1/2) (2,±1,∓1/2) (3,0,±1/2) (3,±1,∓1/2) (4,0,±1/2)

1 ∓1
2 1/2
3 ±1/2 ∓√

2/6
4 −1/3 1/12
5 ∓2/3 ±5

√
2/36 ∓√

3/60
6 35/72 −7/90 1/120
7 ±31/72 ∓227

√
2/1080 ±31

√
3/1800 ∓1/420

8 −179/540 659/5400 −29/3150 1/1680

B. Perturbative treatment of H (12)
soc,a:

One atom with and one atom without spin-orbit coupling

This section accounts for the atom-atom interaction,
modeled using V

↑
2b(�r12) = V

↑
ps(�r12) and V

↓
2b(�r12) = V

↓
ps(�r12),

perturbatively. We first assume ωx = ωy = ωz. We write
the unperturbed two-particle wave function as a product of
the single-particle wave function that accounts for Vso(�r1)
perturbatively (see Sec. III A) and the single-particle harmonic
oscillator wave function. The former describes the motion
of the first particle and is given by Eq. (21) with ρ = ρ1

and ϕ = ϕ1, multiplied by the one-dimensional harmonic
oscillator function gkz

(z1), where kz = 0,1, . . .. The latter
describes the motion of the second particle and is given
by RNρ,Ml

(ρ2)�Ml
(ϕ2) [see Eqs. (11) and (12)], multiplied

by the one-dimensional harmonic oscillator function gKz
(z2),

where Kz = 0,1, . . .. Correspondingly, the unperturbed

0 0.2 0.4 0.6 0.80

1

2

3

4

5

E/
E h
o

0 0.1 0.2 0.3 0.4 0.5
(ksoaho)

2

0.6

0.8

1

E/
E h
o

(a)

(b)

FIG. 3. (Color online) Eigenenergies for a single particle with
spin-orbit coupling of Rashba type described by the Hamiltonian
H (1) (the energy associated with the motion in the z direction has
been taken out). (a) Lines show the numerically determined (exact)
eigenenergies as a function of (ksoaho)2. Squares show the energies
determined perturbatively with kmax = 4. (b) The ground-state energy
is shown on an enlarged scale. Squares and diamonds show the energy
determined perturbatively with kmax = 4 and kmax = 12, respectively.

two-particle energy is given by Enρ,ml,ms
+ (kz + 2Nρ +

|Ml| + Kz + 2)�ω, where Enρ,ml,ms
is given in Eq. (15).

Since the atom-atom interaction is spherically symmetric,
unperturbed states with the same unperturbed energy but
different MJ = ml + ms + Ml do not couple. To start with,
we consider the effect of the atom-atom interaction for case 1a
(a↑ = a↓ = aaa) on the ground state. The first-order energy
shift �E

(soc,a,1)
gr,MJ

is found by “sandwiching” H (12)
soc,a between

the unperturbed states. The matrix elements for states with
different ms do not couple. In the following, we consider the
matrix element that contains ψ0,0,1/2 [Eq. (21)]; considering
the matrix element that contains ψ0,0,−1/2 yields the same
energy shift. Equation (21) and Table III show that the
term proportional to (kso)0 has ms = 1/2 while the term
proportional to (kso)1 has ms = −1/2. Since these spin states
are orthogonal, the energy shift �E

(soc,a,1)
gr,MJ

contains a term
that is proportional to aaa(kso)0 (in fact, this is the “usual”
first-order energy shift one obtains in the absence of spin-orbit
coupling [38]) but does not contain terms that are proportional
to aaakso. Moreover, it can be shown readily that the selection
rules imply that �E

(soc,a,1)
gr,MJ

does not contain terms that are
proportional to aaa(kso)k with k odd.

To calculate the coefficient of the term that is propor-
tional to aaa(kso)2, we have to add up three nonvanishing
contributions. The first contribution comes from the fact that
the normalization constant N0,0,1/2 contains a term that is
proportional to (kso)2. The second contribution comes from the
fact that ψ0,0,1/2 contains a term that is proportional to (kso)1,
which—when squared—gives a nonvanishing contribution.
The third contribution comes from the fact that ψ0,0,1/2

contains a term that is proportional to (kso)2, which—when
multiplied by the wave function piece that is proportional to
(kso)0—gives a nonvanishing contribution. Evaluating these
three finite contributions, we find that the sum vanishes; i.e., the
energy shift �E

(soc,a,1)
gr,MJ

contains no terms that are proportional
to aaa(kso)2. We refer to the cancellation of this term as
“accidental” and note that the coefficient of the aaa(kso)2 term,
in general, does not vanish when one considers excited states
(see below).

One might ask whether the fact that the perturbative
treatment does not yield a term proportional to aaa(kso)2 for the
ground state is a consequence of the azimuthal symmetry. To
investigate this question, we consider two situations in which
the azimuthal symmetry is broken. We consider the cases
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where (i) ωx 
= ωy and (ii) ωx 
= ωy and the Rashba spin-orbit
coupling term is anisotropic; i.e., the term proportional to
∂/∂x1 is multiplied by a different constant than the term
proportional to ∂/∂y1. In both cases, we find that the energy
shift of the ground state does not contain terms that are
proportional to aaa(kso)2. This shows that the absence of the
coupling between the short-range interaction and the spin-orbit
coupling term for the ground state at order aaa(kso)2 is not a
consequence of the azimuthal symmetry. Interestingly, we find
that the term is also absent in the one-dimensional Hamiltonian
with spin-orbit coupling.

Returning to the spherically symmetric harmonic confining
potential and isotropic Rashba coupling, we extend the analysis
of the ground state to higher orders in kso. We find

�E
(soc,a,1)
gr,MJ =1/2 =

[
1 + 1

4
(ksoaho)4 − 23

36
(ksoaho)6

+ 1513

1080
(ksoaho)8 + · · ·

]
Escatt, (25)

where

Escatt =
√

2

π

aaa

aho
Eho. (26)

The first term in the square brackets on the right-hand side
of Eq. (25) is the usual s-wave shift [38] and Escatt can be
interpreted as the “two-particle” mean-field shift. The second
term gives the leading-order coupling between the long-
range spin-orbit coupling term and the short-range s-wave
interaction. Generalizing the above analysis to excited states
with arbitrary nρ , ml , and ms but Nρ = Ml = Kz = kz = 0,
we find that the first-order energy shift is given by

�E(soc,a,1)
nρ,ml,ms

=
{

(2nρ + |ml|)!
nρ!(nρ + |ml|)!22nρ+|ml |

+
[

(2nρ + |ml| + 1)!

nρ!(nρ + |ml|)!22nρ+|ml | − 2nρ − |ml| − 1

]

× (ksoaho)2 + · · ·
}
Escatt. (27)

If we allow for different scattering lengths, i.e., if we set
a↑ = aaa and a↓ = ηaaa and assume η 
= 1 (case 1b), then we
find that the first-order energy shift of the unperturbed ground
state with ms = 1/2 (MJ = 1/2) contains terms proportional
to aσ (kso)2,

�E
(soc,a,1)
gr,MJ =1/2 = [1 − 1

2 (1 − η)(ksoaho)2

+ 1
12 (13 − 10η)(ksoaho)4

− 1
180 (441 − 326η)(ksoaho)6

+ 1
37 800 (185 677 − 132 722η)(ksoaho)8

+ · · · ]Escatt. (28)

To get the energy shift �E
(soc,a,1)
gr,MJ =−1/2 of the unperturbed ground

state with ms = −1/2 (MJ = −1/2), we replace η with 1/η

and Escatt with ηEscatt in Eq. (28). Equations (25) and (28)
show that the interplay between the short-range interaction
and the spin-orbit coupling term is highly tunable. Specifically,
the order at which the coupling arises as well as whether the

interplay leads to a decrease or increase of the energy can be
varied by tuning the s-wave scattering lengths.

To validate the perturbative energy shifts given in Eqs. (25)
and (28), we determine the eigenenergies of the Hamilto-
nian Hsoc,a numerically. We denote the numerically obtained
two-body ground-state energy by Enum

gr . As discussed in
the Appendix, the basis set expansion approach employs a
Gaussian model potential with finite range r0 (r0 = 0.02aho);
this implies that a meaningful comparison of the numerical and
perturbative energies has to account for finite-range effects. To
isolate the interplay between the spin-orbit coupling term and
the s-wave interaction, we define the energy difference �Enum

gr ,

�Enum
gr = Enum

gr − Es-wave
gr − Eso

gr + 3�ω. (29)

Here Es-wave
gr denotes the two-body ground-state energy calcu-

lated for kso = 0 using the same finite-range interaction model
as used to calculate Enum

gr . The energy Es-wave
gr is obtained with

high accuracy numerically by solving the one-dimensional
scaled radial Schrödinger equation. In Eq. (29), Eso

gr denotes the
two-body ground-state energy calculated in the absence of the
two-body interaction using the same spin-orbit coupling term
as used to calculate Enum

gr . As discussed in the context of Fig. 3,
the energy Eso

gr can be obtained with high accuracy numerically.
For kso = 0, our definition implies that �Enum

gr is equal to
zero. For finite kso, �Enum

gr reflects the interplay between the
spin-orbit coupling term and the s-wave interaction.

Figure 4 considers the case where a↑ = a↓ = aaa =
−aho/10 (case 1a). The circles show the quantity
�Enum

gr /|Escatt| as a function of (ksoaho)2. Enum
gr equals

2.922 770(6)�ω for (ksoaho)2 = 0 and 2.773 036(5)�ω for
(ksoaho)2 = 0.16, while Eso

gr equals 2.850 6264�ω for
(ksoaho)2 = 0.16. We estimate that the basis set extrapolation
error for the quantity �Enum

gr /|Escatt| is less than 7 × 10−5. For
comparison, dotted, dashed, and solid lines show the perturba-
tive expression (�E

(soc,a,1)
gr,MJ =1/2 − Escatt)/|Escatt| [see Eq. (25)]
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FIG. 4. (Color online) Interplay between the s-wave interaction
and the spin-orbit coupling term for the ground state for one atom
with and one atom without spin-orbit coupling (case 1a with a↑ =
a↓ = aaa = −aho/10). The lines show the perturbative expression
(�E

(soc,a,1)
gr,MJ =1/2 − Escatt)/|Escatt| [see Eq. (25)] as a function of (ksoaho)2.

The dotted, dashed, and solid lines show the terms up to order
(ksoaho)4, (ksoaho)6, and (ksoaho)8, respectively. For comparison, the
circles show the quantity �Enum

gr /|Escatt|; see Eq. (29).
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FIG. 5. (Color online) Interplay between the s-wave interaction
and the spin-orbit coupling term for the ground state for one atom with
and one atom without spin-orbit coupling (case 1b with a↑ = aaa =
−aho/6 and a↓ = ηaaa = −aho/10). The lines show the perturbative
expression (�E

(soc,a,1)
gr,MJ =1/2 − Escatt)/|Escatt| [see Eq. (28)] as a function

of (ksoaho)2. The dash-dotted, dotted, dashed, and solid lines show the
expression including terms up to order (ksoaho)2, (ksoaho)4, (ksoaho)6,
and (ksoaho)8, respectively. The dash-dot-dotted line additionally
includes higher-order corrections in aaa (see Sec. IV B for the
derivation of these higher-order corrections). For comparison, the
circles show the quantity �Enum

gr /|Escatt|; see Eq. (29).

as a function of (ksoaho)2 up to order (ksoaho)4, (ksoaho)6,
and (ksoaho)8, respectively. The inclusion of more terms in
the perturbation series systematically improves the agreement
with the numerically determined energy shift. Equation (25)
accounts for the energy shift proportional to aaa but not for
energy shifts proportional to (aaa)j with j � 2. We find that
the leading term in the (aaa)2 series [see Eq. (46) of Sec. IV B]
is, for the ksoaho considered in Fig. 4, roughly an order of
magnitude smaller than the smallest contribution included
in Eq. (25). For example, the energy shift proportional to
(aaa)2(kso)4 is −8 × 10−5|Escatt| for (ksoaho)2 = 0.16.

Figure 5 considers the case where a↑ = aaa = −aho/6 and
a↓ = ηaaa = −aho/10 (case 1b). Circles show the quantity
�Enum

gr . As shown in Eq. (28), the leading-order energy
shift that accounts for the interplay between the spin-orbit
coupling term and the s-wave interaction is proportional to
aaa(kso)2 (see the dash-dotted line in Fig. 5). When terms up
to order (ksoaho)8 are included (see the solid line in Fig. 5),
the first-order perturbation theory shift proportional to aaa

agrees reasonably well with the numerical data. Since |aaa|/aho

is appreciable (aaa/aho = −1/6), higher-order corrections in
aaa are non-negligible. The dash-dot-dotted line in Fig. 5,
which additionally includes higher-order corrections in aaa

[see Eq. (45) in Sec. IV B], notably improves the agreement
with the numerically determined energy shift.

Figures 4 and 5 report the energy shift that reflects the
interplay between the spin-orbit coupling term and the s-wave
interaction in terms of the quantity |Escatt|, i.e., in terms of
the absolute value of the leading-order mean-field shift. In
Figs. 4 and 5, the quantity |(�E

(soc,a,1)
gr,MJ =1/2 − Escatt)/Escatt| is

smaller than 5 × 10−3 and 4 × 10−2, respectively, implying
that the energy shift due to the interplay between the spin-orbit
coupling term and the s-wave interaction is, respectively, less

than 1% and a few percent of the mean-field shift. While these
effects are small, they can potentially be measured in “quantum
phase revival experiments” analogous to those for few-atom
systems in an optical lattice [29]. In that work, it was possible
to deduce the effective three-body interaction energy, which
was measured to be roughly 10 times smaller in absolute value
than the effective two-body interaction energy. Moreover, the
effective four-body energy was measured to be roughly a factor
of 100 smaller than the effective two-body interaction. To
probe the interplay between the spin-orbit coupling term and
the s-wave interaction experimentally, one would compare the
oscillation periods in revival experiments with and without
spin-orbit coupling.

The treatment discussed in this section can, in principle,
be extended to second- and higher-order perturbation theory.
However, the use of the interaction model V σ

ps(�r12) gives
rise, at second- and higher-order perturbation theory, to
divergencies that need to be removed through application
of a renormalization scheme. Although this can be done
via standard techniques (see, e.g., Refs. [47,48]), we find it
easier to determine the energy shifts that are proportional to
(aaa)2(kso)2 and (aaa)2(kso)4 by an approach that builds on the
exact two-particle s-wave solution (see Sec. IV).

The key points of this section are as follows.
(i) For the ground-state manifold, the perturbative energy

shifts contain even but not odd powers of ksoaho.
(ii) For a↑ = a↓ = aaa (η = 1), the energy shift pro-

portional to aaa(kso)2 vanishes for the ground state. This
finding does not only hold for isotropic Rashba coupling
and isotropic traps, but also for anisotropic Rashba coupling
and/or anisotropic harmonic traps. In general, the energy shift
proportional to aaa(kso)2 does not vanish for excited states [see
Eqs. (25) and (27)].

(iii) For a↑ = aaa 
= a↓ (η 
= 1), the leading-order energy
shifts of the states in the lowest energy manifold due to the
interplay between the spin-orbit coupling term and the s-wave
interaction are proportional to aaa(kso)2.

C. Perturbative treatment of H (12)
soc,soc:

Two particles with spin-orbit coupling

This section considers the situation where both parti-
cles feel the Rashba spin-orbit coupling. Throughout, we
assume ωx = ωy = ωz. We write the unperturbed two-
particle wave function as a product of two single-particle
wave functions, which account for the spin-orbit coupling
terms Vso(�r1) and Vso(�r2) perturbatively. For concreteness,
we focus on the ground-state manifold that consists of
the unperturbed wave functions �(0)

ms1,ms2
, where �(0)

ms1,ms2
=

ψ0,0,ms1 (ρ1,ϕ1)g0(z1)ψ0,0,ms2 (ρ2,ϕ2)g0(z2) and (ms1,ms2) =
(1/2,1/2),(−1/2,−1/2),(1/2,−1/2), and (−1/2,1/2). As be-
fore, ψ is given by Eq. (21) and g0 denotes the one-dimensional
harmonic oscillator function with energy �ω/2. The four
degenerate unperturbed wave functions are eigenstates of the
total Jz operator with eigenvalue �MJ (MJ = ml1 + ms1 +
ml2 + ms2 or, equivalently, MJ = mj1 + mj2), where MJ =
1,−1,0, and 0, respectively. Since MJ is a good quantum
number, the perturbation H (12)

soc,soc only couples states with the
same MJ . In what follows, we use V σσ ′

2b (�r12) = V σσ ′
ps (�r12) and

treat H (12)
soc,soc in first-order perturbation theory.
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We start by considering case 2d (ζ,η 
= 1 and ζ 
= η).
For the state with MJ = 1, the first-order energy shift in the
scattering length is given by

�E
(soc,soc,1)
gr,MJ =1(S) = [1 − (1 − η)(ksoaho)2

+ 1
6 (16 + 3ζ − 16η)(ksoaho)4

− 1
90 (606 + 165ζ − 656η)(ksoaho)6

+ 1
37 800 (589 229 + 215 250ζ − 693 844η)

× (ksoaho)8 + · · · ]Escatt, (30)

where Escatt is defined in Eq. (26). The subscript “(S)” indicates
that the corresponding eigenstate is symmetric under the
exchange of particles 1 and 2. Similarly, for the state with
MJ = −1, the first-order energy shift �E

(soc,soc,1)
gr,MJ =−1(S) is given

by Eq. (30) with ζ replaced with 1/ζ , η replaced with η/ζ ,
and Escatt replaced with ζEscatt.

We find that the two states with MJ = 0 couple. This means
that we have to employ first-order degenerate perturbation
theory. The diagonal elements 〈�(0)

1/2,−1/2|H (12)
soc,soc|�(0)

1/2,−1/2〉
and 〈�(0)

−1/2,1/2|H (12)
soc,soc|�(0)

−1/2,1/2〉 of the perturbation matrix
are given by Eq. (30) with ζ replaced with 1, η replaced
with (1/η + ζ/η)/2, and Escatt replaced with ηEscatt. For the
off-diagonal elements, we find〈
�

(0)
1/2,−1/2

∣∣H (12)
soc,soc

∣∣�(0)
−1/2,1/2

〉 = 〈�(0)
−1/2,1/2

∣∣H (12)
soc,soc

∣∣�(0)
1/2,−1/2

〉
= [ 1

2 (ksoaho)2 − 4
3 (ksoaho)4

+ 164
45 (ksoaho)6

− 173 461
18 900 (ksoaho)8 + · · · ]

× (1 + ζ − 2η) Escatt. (31)

Diagonalizing the 2 × 2 perturbation matrix, we find

�E
(soc,soc,1)
gr,MJ =0(S) = [η + (1 + ζ − 2η) (ksoaho)2

− 1
6 (16 + 16ζ − 35η) (ksoaho)4

+ 1
90 (656 + 656ζ − 1427η) (ksoaho)6

− 1
37 800 (693 844 + 693 844ζ − 1 498 323η)

× (ksoaho)8 + · · · ]Escatt (32)

and

�E
(soc,soc,1)
gr,MJ =0(A) = [1 + 1

2 (ksoaho)4 − 23
18 (ksoaho)6

+ 3161
1080 (ksoaho)8 + · · · ]ηEscatt. (33)

The corresponding eigenstates are (�(0)
1/2,−1/2 + �

(0)
−1/2,1/2)/

√
2

and (�(0)
1/2,−1/2 − �

(0)
−1/2,1/2)/

√
2, respectively. The former state

is symmetric under the exchange of particles 1 and 2, while the
latter is antisymmetric under the exchange of particles 1 and
2. The symmetry of the states is indicated by the subscripts
“(S)” and “(A)” in Eqs. (32) and (33), respectively.

Our calculations imply that the ground-state manifold for
two identical bosons contains three states, whose energy
shifts are given by Eq. (30), Eq. (30) with the substitutions
discussed below the equation, and Eq. (32). For two identical

fermions, the ground-state manifold contains a single state,
whose energy shift is given by Eq. (33). As expected,
the energy shift corresponding to the antisymmetric state
is independent of a↑↑ and a↓↓. Although our interaction
model allows for s-wave scattering in all four channels
(up-up, down-down, up-down, down-up), the antisymmetry of
the wave function “turns off” the interactions in the up-up
and down-down channels, yielding an energy shift that is
fully determined by a↑↓ = a↓↑ = ηaaa. The energy shifts
corresponding to the three symmetric states contain a term
proportional to (ksoaho)2 while the energy shift corresponding
to the antisymmetric state does not contain a term proportional
to (ksoaho)2.

While our derivation above assumed ζ,η 
= 1 and ζ 
= η

(case 2d), the energy shifts for cases 2a–2c can be obtained
by taking the appropriate limits in Eqs. (30)–(33). In the
limit that ζ = 1 and η 
= 1 (case 2b), the energy shifts of
the two |MJ | = 1 states with bosonic exchange symmetry
are equal to each other and contain terms proportional to
aaa(kso)2. The MJ = 0 state with bosonic exchange symmetry
also contains a shift proportional to aaa(kso)2. In the limit that
ζ 
= 1 and η = 1 (case 2c), the energy shift of the MJ = 1
state contains no term proportional to aaa(kso)2 while the
energy shift of the MJ = −1 and MJ = 0 states with bosonic
exchange symmetry contain terms proportional to aaa(kso)2.
In the limit that ζ = η = 1 (case 2a), the degeneracy of the
unperturbed states is preserved; i.e., the four energy shifts
of the ground-state manifold are all equal to each other and
given by Eq. (33). In this case, the energy shift of the ground
state contains no terms that are proportional to aaa(kso)2.
Interestingly, the energy shift given in Eq. (33) is nearly
identical to the shift given in Eq. (25) for the two-atom system
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,so
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1.2

(a)
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(c)

MJ=+_1(S)

MJ=0(S)

MJ=0(A)

MJ=0(S)

MJ=0(A)

MJ=+_1(S)

MJ=+_1(S),0(S,A)

FIG. 6. (Color online) First-order energy shift �E
(soc,soc,1)
gr,MJ

for the
ground-state manifold for two identical particles with spin-orbit
coupling (case 2a with ζ = 1 and η = 1, and case 2b with ζ = 1
and η 
= 1). Solid, dotted, and dashed lines show the quantity
�E

(soc,soc,1)
gr,MJ

/Escatt [see Eqs. (30), (32), and (33)] as a function of
(ksoaho)2 for (a) η = 0.8, (b) η = 1, and (c) η = 1.2, respectively.
The energy levels are labeled by the MJ quantum number and the
exchange symmetry (S/A) of the corresponding states.
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where only one of the particles feels the spin-orbit coupling.
Specifically, terms proportional to (ksoaho)4 and (ksoaho)6 differ
by a factor of 2, reflecting the fact that the interplay between
the spin-orbit coupling term and the s-wave interaction scales
with the number of particles that feel the spin-orbit coupling
term. At order (ksoaho)8, the two expressions differ by a factor
different from 2, indicating that the interplay between the
spin-orbit coupling term and the s-wave interaction is not
simply additive at higher orders.

To illustrate the behavior of the energy level structure of
the ground-state manifold for two identical particles, we focus
on systems with ζ = 1. Lines in Fig. 6 show the quantity
�E

(soc,soc,1)
gr,MJ

/Escatt as a function of (ksoaho)2 for (a) η = 0.8,
(b) η = 1, and (c) η = 1.2. For η = 1 [case 2a, Fig. 6(b)], the
four energy shifts for the states with MJ = 0 and ±1 are the
same (see discussion above). For η = 0.8 [case 2b, Fig. 6(a)],
the MJ = 0 state with fermionic exchange symmetry has lower
energy if aaa > 0 while the twofold degenerate |MJ | = 1 states
with bosonic exchange symmetry have lower energy if aaa < 0.
For η = 1.2 [Fig. 6(c)], the twofold degenerate |MJ | = 1 states
with bosonic exchange symmetry have lower energy if aaa > 0
while the MJ = 0 state with fermionic exchange symmetry has
lower energy if aaa < 0.
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FIG. 7. (Color online) Interplay between the s-wave interaction
and the spin-orbit coupling term for the ground-state manifold for
two atoms with spin-orbit coupling. (a) The dotted, dashed, and solid
lines show the expression (�E

(soc,soc,1)
gr,MJ =1(S) − Escatt)/|Escatt| [Eq. (30)]

for the lowest energy state including terms up to order (ksoaho)4,
(ksoaho)6, and (ksoaho)8, respectively, as a function of (ksoaho)2 for
case 2a with aaa = −aho/10, ζ = 1, and η = 1. (b) The dash-dotted,
dotted, dashed, and solid lines show the expression (�E

(soc,soc,1)
gr,MJ =1(S) −

Escatt)/|Escatt| [Eq. (30)] for the lowest energy state including terms
up to order (ksoaho)2, (ksoaho)4, (ksoaho)6, and (ksoaho)8, respectively,
as a function of (ksoaho)2 for case 2b with aaa = −aho/6, ζ = 1, and
ηaaa = −aho/10. (c) The dotted, dashed, and solid lines show the
expression (�E

(soc,soc,1)
gr,MJ =0(A) − ηEscatt)/|Escatt| [Eq. (33)] for the ground

state including terms up to order (ksoaho)4, (ksoaho)6, and (ksoaho)8,
respectively, as a function of (ksoaho)2 for case 2b with aaa = −aho/10,
ζ = 1, and ηaaa = −aho/6. For comparison, the circles show the
quantity �Enum

gr /|Escatt| [see Eq. (29)].

Figure 7 compares the perturbative predictions (lines)
with our numerical basis set expansion results (circles).
Figure 7(a) shows an example for aaa = −aho/10 and ζ =
η = 1 (case 2a). In this case, the ground state is fourfold
degenerate and the term proportional to aaa(kso)2 is absent.
Figure 7(b) shows the case where aaa = −aho/6, ζ = 1 and
ηaaa = −aho/10 (case 2b). According to the analysis above,
the lowest energy state is twofold degenerate (|MJ | = 1)
and possesses bosonic exchange symmetry. The leading-order
energy shift is proportional to aaa(kso)2. Figure 7(c) shows
the case where aaa = −aho/10, ζ = 1, and ηaaa = −aho/6
(case 2b). According to the analysis above, the lowest
energy state is onefold degenerate (MJ = 0) and possesses
fermionic exchange symmetry. The energy shift is given by
Eq. (33), where the term proportional to aaa(kso)2 is again
absent [49]. Figure 7 demonstrates excellent agreement be-
tween the perturbative predictions and our numerical results for
all cases.

The key points of this section are as follows.
(i) For the ground-state manifold, the perturbative energy

shifts contain even but not odd powers of ksoaho.
(ii) For two identical bosons, the energy shift proportional

to aaa(kso)2 is nonzero for the ground state unless the scattering
lengths in the four spin channels are such that a↑↑ = a↑↓ = a↓↑
(1 − η = 0) or a↑↑ + a↓↓ − 2a↑↓ = 0 (1 + ζ − 2η = 0).

(iii) For two identical fermions, the energy shift of the
ground state does not contain a term proportional to aaa(kso)2.

IV. ARBITRARY ATOM-ATOM SCATTERING LENGTH
AND WEAK SPIN-ORBIT COUPLING

This section takes advantage of the fact that the so-
lution for two particles without spin-orbit coupling un-
der external spherically symmetric confinement interacting
through the regularized pseudopotential Vps,reg(�r12) is known
in compact analytical form for arbitrary s-wave scattering
length [38]. Motivated by this, we treat the spin-orbit coupling
perturbatively. Section IV A reviews the solution for two
particles without spin-orbit coupling. The two-particle energy
spectrum for kso = 0 is shown in Fig. 8(b) as a function of the
inverse of the s-wave scattering length. Sections IV B–IV D
discuss, using the exact two-body s-wave solution, the pertur-
bative treatment of Vso(�r1) and Vso(�r1) + Vso(�r2). Section IV B
treats the system where one particle does and the other does
not feel the spin-orbit coupling term assuming small |kso|aho

but arbitrary s-wave scattering lengths. Equations (44)–(49)
contain the resulting perturbative energy expressions, which
are applicable when the states in the manifold studied are
not degenerate with other states. Figures 9 and 12 illustrate
these perturbative results while Figs. 10 and 11 validate
them. The regime where states in the manifold studied are
degenerate with other states is studied in Sec. IV C via
near-degenerate perturbation theory for selected examples (see
Fig. 13 for an illustration of the results). Last, Sec. IV D treats
the system where both particles feel the spin-orbit coupling
term assuming small |kso|aho but arbitrary s-wave scattering
lengths. Equations (55)–(57) contain the resulting perturbative
energy expressions and Fig. 15 validates these results through
comparison with “exact” numerical energies.
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FIG. 8. (Color online) Energy spectrum for two particles without
spin-orbit coupling and arbitrary aaa. (a) The solid lines show aaa/aho

as a function of the noninteger quantum number qrel. qrel takes on
integer values when aaa = 0 and half-integer values when 1/aaa = 0.
The dashed line shows the “zero line.” (b) Lines show the two-body
energy Etwo-body as a function of aho/aaa. The solid and dashed lines
show the energies of states with lrel = 0, while the dotted lines show
the energies of states with lrel > 0. The lowest solid and lowest dashed
lines show energies of states without center-of-mass excitations.

A. Two-body wave function for arbitrary atom-atom
scattering length

Throughout, we assume ωx = ωy = ωz. In this case, the
two-body solution for two particles without spin-orbit coupling
and arbitrary aaa is most conveniently written in terms of
the relative distance vector �r12 and the center-of-mass vector
�R12, �R12 = (�r1 + �r2)/2. Specifically, the total two-body wave

function can be written as a product of the relative wave
function ψ rel

qrel,lrel,mrel
and the center-of-mass wave function

ψcm
Ncm,Mcm,Kcm

, and the two-particle energy is given by the sum
of the relative and center-of-mass contributions.

The relative wave function is obtained by solving the
relative Schrödinger equation using spherical coordinates. For
relative orbital angular momentum lrel = 0 and correspond-
ing projection quantum number mrel = 0, the relative wave
function reads [38]

ψ rel
qrel,0,0(�r12) = Nqrel√

4π
U

(
−qrel,

3

2
,
1

2

[
r12

aho

]2)
e
− 1

4

(
r12
aho

)2

,

(34)

where U is the confluent hypergeometric function and Nqrel is
the normalization constant (see Eq. (B3) of Ref. [50] for an
explicit expression for Nqrel ; see also Ref. [38]). The allowed
noninteger quantum numbers qrel are obtained by solving the
transcendental equation [38]

√
2�(−qrel)

�(−qrel − 1/2)
= aho

aaa
. (35)

The relative lrel = 0 eigenenergies are given by (2qrel +
3/2)�ω. Figure 8(a) illustrates the relationship between
qrel and aaa. In the noninteracting regime, e.g., one finds

qrel = 0,1,2, . . .; for |aaa| = ∞, in contrast, one finds qrel =
−1/2,1/2,3/2, . . .. The relative states with lrel > 0 are not
affected by the s-wave interaction and are given by the
three-dimensional harmonic oscillator states with quantum
numbers nrel, lrel, and mrel.

The center-of-mass wave functions ψcm
Ncm,Mcm,Kcm

coincide
with the three-dimensional harmonic oscillator states. Since
the center-of-mass wave functions are conveniently written in
cylindrical coordinates, we use the quantum numbers Ncm,
Mcm, and Kcm with Ncm and Kcm = 0,1, . . . and Mcm =
0,±1, . . . as labels. Figure 8(b) shows the two-particle energy
spectrum as a function of aho/aaa. Energy levels corresponding
to states with lrel = 0 are shown by solid and dashed lines,
while those corresponding to lrel > 0 are shown by dotted lines.
The following sections investigate how the spin-orbit coupling
term modifies the energy spectrum shown in Fig. 8(b).

B. Perturbative treatment of Vso(�r1):
One atom with and one atom without spin-orbit coupling

To treat the spin-orbit term Vso(�r1) perturbatively, we
transform it to relative and center-of-mass coordinates,

Vso(�r1) = V rel,1
so (�r12) + V cm,1

so ( �R12), (36)

where

V rel,1
so (�r12) = −i

�
2kso

m

[(
∂

∂y12
+ i

∂

∂x12

)
|↑〉1 1〈↓|

+
(

∂

∂y12
− i

∂

∂x12

)
|↓〉1 1〈↑|

]
(37)

and

V cm,1
so ( �R12) = −i

�
2kso

2m

[(
∂

∂Y12
+ i

∂

∂X12

)
|↑〉1 1〈↓|

+
(

∂

∂Y12
− i

∂

∂X12

)
|↓〉1 1〈↑|

]
. (38)

In what follows, we drop the subscript 1 of |↑〉1 and |↓〉1 and
use ms instead of ms1 for notational convenience.

To begin with, we consider case 1a with a↑ = a↓ =
aaa. We assume Ncm = Mcm = Kcm = lrel = mrel = 0 and
write the unperturbed states as �(0)

qrel,ms
, where �(0)

qrel,ms
=

ψ rel
qrel,0,0ψ

cm
0,0,0|ms = ±1/2〉. Moreover, we assume that �(0)

qrel,ms

is not degenerate with any of the other unperturbed eigenstates
with the same MJ and Kcm quantum numbers. This is fulfilled
for all qrel � 0 [see the lowest solid line in Fig. 8(b)]. For
qrel > 0 [for 0 < qrel < 1/2, e.g., see the lowest dashed line
on the positive aaa side in Fig. 8(b)], however, degeneracies
exist for selected qrel values. Degeneracies also exist for all
qrel = n − 1/2 (1/aaa = 0; n = 1,2,3, . . .) and all qrel = n

(aaa = 0; n = 1,2,3, . . .). In these cases, the coupling to other
states can notably enhance the interplay between the spin-orbit
coupling term and the s-wave interaction (see Sec. IV C).
To treat the effect of Vso(�r1) in first-order nondegenerate
perturbation theory, we need to evaluate the matrix element
〈�(0)

qrel,ms
|Vso|�(0)

qrel,ms
〉. Since the states with different ms do not

couple, the first-order perturbation shift vanishes.
The second-order nondegenerate perturbation theory ex-

pression contains terms proportional to |〈�(0)
qrel,ms

|V rel,1
so +

V cm,1
so |�(0)

exc〉|2, where the two-particle state �(0)
exc has a different
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energy than �(0)
qrel,ms

. It can be readily seen that terms that
contain both V rel,1

so and V cm,1
so vanish due to the selection rules.

Terms that contain two V cm,1
so ’s yield energy shifts independent

of aaa. We evaluate these shifts using the techniques discussed
in Sec. III. To evaluate the second-order perturbation theory
expression that contains two V rel,1

so ’s, we make three observa-
tions. First, the integral over the center-of-mass coordinates
only gives a nonzero contribution when the N ′

cm, M ′
cm, and

K ′
cm quantum numbers that label the center-of-mass piece of

�(0)
exc are equal to 0, 0, and 0, respectively. Second, the integral

over the relative coordinates is only nonzero for m′
rel = ±1,

where the plus and minus signs apply if we assume that the first
particle is in the ms = 1/2 and ms = −1/2 state, respectively.
Last, to evaluate the integrals involved, we expand ψ rel

qrel,0,0 in
terms of noninteracting harmonic oscillator states [38,50],

ψ rel
qrel,0,0(�r12)|ms〉 =

∞∑
j=0

C
qrel
j ψ rel

j,0,0,ms
(�r12), (39)

where the ψ rel
j,0,0,ms

are a product of the noninteracting
harmonic oscillator states and the spin part (these states
correspond—as mentioned above—to qrel = 0,1, . . .) and
where the C

qrel
j denote expansion coefficients whose functional

form is given in Eq. (B8) of Ref. [50] (see also Ref. [38]).
Using the expansion given in Eq. (39), the nonvanishing
matrix elements are 〈ψ rel

j,lrel∓1,0,±1/2|V rel,1
so |ψ rel

j,lrel,±1,∓1/2〉 and
〈ψ rel

j±1,lrel∓1,0,±1/2|V rel,1
so |ψ rel

j,lrel,±1,∓1/2〉. The matrix elements
involved in second- and fourth-order perturbation theory read

〈
ψ rel

j,0,0,±1/2

∣∣V rel,1
so

∣∣ψ rel
j,1,±1,∓1/2

〉 = −
√

2j + 3

6
ksoahoEho, (40)

〈
ψ rel

j+1,0,0,±1/2

∣∣V rel,1
so

∣∣ψ rel
j,1,±1,∓1/2

〉 = −
√

j + 1

3
ksoahoEho,

(41)

〈
ψ rel

j,2,0,±1/2

∣∣V rel,1
so

∣∣ψ rel
j,1,±1,∓1/2

〉 = −
√

2j + 5

30
ksoahoEho,

(42)

and

〈
ψ rel

j−1,2,0,±1/2

∣∣V rel,1
so

∣∣ψ rel
j,1,±1,∓1/2

〉 = −
√

j

15
ksoahoEho. (43)

Using these expressions in the second-order perturbation
theory treatment of kso, we find that the infinite sum can
be performed analytically. Surprisingly, we find that the
sum that involves two V rel,1

so ’s reduces to an expression that
is independent of qrel. This implies that the single-particle
spin-orbit term is not coupled to the s-wave interactions at this
order of perturbation theory. Combining the contributions that
contain two V rel,1

so ’s and those that contain two V cm,1
so ’s, we find

�E
(so,2)
MJ =±1/2 = −(ksoaho)2Eho. (44)

This result is consistent with what we found in Eqs. (17)
and (25).

It can be shown that the third-order energy shift vanishes.
We find that the leading-order term that reflects the inter-
play between the spin-orbit coupling term and the s-wave
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FIG. 9. (Color online) Interplay between the s-wave interaction
and the spin-orbit coupling term for the ground state for one atom
with and one atom without spin-orbit coupling (case 1a; η = 1). The
solid line and squares show the quantity D(4)

qrel
that characterizes the

fourth-order perturbation theory shift as a function of qrel. The solid
line shows the expansion around qrel = 0 [see Eq. (46)]. The squares
show the full numerically determined values.

interaction arises at fourth-order perturbation theory,

�E
(so,4)
MJ =±1/2 = ( 1

2 + D(4)
qrel

)
(ksoaho)4Eho. (45)

The coefficient D(4)
qrel

depends on qrel and needs to be evaluated
numerically. Squares in Fig. 9 show the coefficient D(4)

qrel
as a

function of qrel. When the s-wave scattering length is negative
(qrel < 0), the interplay between the spin-orbit coupling term
and the s-wave interaction lowers the energy. For qrel > 0
(qrel � 1), the interplay leads to an increase of the energy.
Interestingly, for qrel ≈ 0.4 (or aaa ≈ 2aho), D(4)

qrel
vanishes. For

yet larger qrel, D(4)
qrel

becomes negative. As qrel approaches
1/2, the validity regime of our perturbative expression is,
as discussed in more detail in Sec. IV C, small due to
the presence of nearly degenerate states. The nondegenerate
perturbation theory treatment breaks down when qrel = 1/2
and Ncm = Mcm = Kcm = lrel = mrel = 0 (see the discussion
in the second paragraph of this section), i.e., when the
two-body energy of the unperturbed state equals 4�ω.

In the weakly interacting regime (small |aaa|/aho), an
expansion around the noninteracting ground state, i.e., around
qrel = 0, yields

D(4)
qrel

=
[

1

4
− 0.023(1)

aaa

aho
+ · · ·

]
Escatt

Eho
, (46)

where the coefficient of the aaa/aho term is calculated numeri-
cally. The first term in square brackets on the right-hand side of
Eq. (46) agrees with Eq. (25) of Sec. III B. The expansion [the
solid line in Fig. 9 shows Eq. (46)] agrees well with the full
expression for |qrel| � 0.1. For qrel = −1/2, i.e., at unitarity,
we find D(4)

qrel
= −0.216(1).

Figure 10 compares the perturbative prediction (solid line)
with the full numerical energy obtained using the basis set
expansion approach discussed in the Appendix for 1/aaa = 0
and η = 1. Circles show �Enum

gr [see Eq. (29)] as a function of
(ksoaho)4. The solid line in Fig. 10 shows the scaled perturbative
energy shift D(4)

qrel
(ksoaho)4. The agreement is excellent for

(ksoaho)4 � 0.004 or ksoaho � 0.25.
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FIG. 10. (Color online) Interplay between the s-wave interaction
and the spin-orbit coupling term for the ground state for one atom
with and one atom without spin-orbit coupling (case 1a with 1/aaa =
0 and η = 1). The solid line shows the quantity D(4)

qrel
(ksoaho)4 for

qrel = −1/2 as a function of (ksoaho)4. Circles show the quantity
�Enum

gr /Eho [see Eq. (29)].

If we allow for different scattering lengths, i.e., if we
set a↑ = aaa and a↓ = ηaaa and assume η 
= 1 (case 1b),
then the two states �

(0)
qaa,1/2 and �

(0)
qηaa,−1/2, which have—as

before—Ncm = Mcm = Kcm = lrel = mrel = 0, have different
energies. Here, qaa and qηaa are the noninteger quantum
numbers that solve the transcendental equation [Eq. (35)]
for the states of interest with aaa and ηaaa, respectively. In
what follows, we assume that �

(0)
qaa,1/2 and �

(0)
qηaa,−1/2 are not

degenerate with any of the other unperturbed eigenstates with
the same MJ quantum number. In second-order perturbation
theory, the energy shifts, which are determined by terms that
contain two V cm,1

so ’s, depend on qaa and qηaa. Combining all
second-order perturbation theory contributions, we find that
the energy shift of the unperturbed state �

(0)
qaa,1/2 is given by

�E
(so,2)
MJ =1/2 = (−1 + D(2)

qaa,qηaa

)
(ksoaho)2Eho, (47)

where

D(2)
qaa,qηaa

= 1

2
+ 1

2

∑
qrel

(∑∞
j=0 C

qaa
j C

qrel
j

)2
2qaa − (2qrel + 1)

(48)

and qrel runs through all noninteger quantum numbers that
solve the transcendental equation for ηaaa. For η = 1, D(2)

qaa,qηaa

vanishes and Eq. (47) reduces to Eq. (44). In the weakly
interacting regime, i.e., for small |aaa|/aho and |ηaaa|/aho (qaa

and qηaa near zero), Eq. (48) reduces to

D(2)
qaa,qηaa

=
(

−1

2
− 2 − log 4√

2π

aaa

aho
+ · · ·

)
(1 − η)

Escatt

Eho
.

(49)

The first term in large round brackets agrees with the second
term in square brackets in Eq. (28).

To obtain the energy shift �E
(so,2)
MJ =−1/2 of the unperturbed

state �
(0)
qηaa,−1/2, D(2)

qaa,qηaa
needs to be replaced with D(2)

qηaa,qaa

in Eq. (47), qaa needs to be replaced with qηaa in Eq. (48),
and qrel needs to run through all noninteger quantum numbers
that solve the transcendental equation for aaa. In the weakly
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FIG. 11. (Color online) Interplay between the s-wave interaction
and the spin-orbit coupling term for the ground state for one atom
with and one atom without spin-orbit coupling (case 1b with 1/aaa =
0 and ηaaa = 0). The solid line shows the quantity D(2)

qaa,qηaa
(ksoaho)2

for qaa = −1/2 and qηaa = 0 as a function of (ksoaho)2. Circles show
the quantity �Enum

gr /Eho [see Eq. (29)].

interacting limit (qηaa and qaa near zero), D(2)
qηaa,qaa

reduces to
Eq. (49) with aaa replaced with ηaaa and 1 − η replaced with
η − 1. For η 
= 1 (case 1b), the third-order perturbation theory
yields zero and the fourth-order treatment is not pursued here.

As an example, Fig. 11 compares the perturbative prediction
with the full numerical energy obtained using the basis set
expansion approach discussed in the Appendix for 1/aaa =
0 and ηaaa = 0 (case 1b). Circles show �Enum

gr /Eho [see
Eq. (29)] as a function of (ksoaho)2 while the solid line
shows the scaled perturbative energy shift D(2)

qaa,qηaa
(ksoaho)2.

The agreement is excellent for (ksoaho)2 � 0.05. Figure 11
shows that the interplay between the spin-orbit coupling term
and the s-wave interaction accounts for approximately 0.04Eho

of the energy for (ksoaho)2 = 0.16. This is a sizable effect that
should be measurable with present-day technology.

To illustrate the behavior of the quantity D(2)
qaa,qηaa

[Eq. (48)]
for other qaa and qηaa combinations, squares in Figs. 12(a)–
12(d) show D(2)

qaa,qηaa
for qηaa = −1/2, −0.3, 0, and 1/2,

respectively, as a function of qaa. The solid line in Fig. 12(c)
shows the expansion for small |qaa| and |qηaa| [see Eq. (49)].
Interestingly, the expansion provides a good description of
the energy shift over a fairly large range of qaa values. For
qaa < qηaa, the interplay between the spin-orbit coupling term
and s-wave interaction leads to an increase of the energy. For
qaa = qηaa [qaa = −0.5, −0.3, 0, and 0.5 in Figs. 12(a)–12(d),
respectively], D(2)

qaa,qηaa
vanishes. For qηaa < qaa < qηaa + 1/2,

the interplay between the spin-orbit coupling term and the
s-wave interaction leads to a decrease of the energy. The
behavior of D(2)

qaa,qηaa
in the vicinity of the hatched regions is

discussed in the next section.
The key points of this section are as follows.
(i) For a↑ = a↓ (η = 1), the leading-order energy shift of

the ground state that reflects the interplay between the spin-
orbit coupling and the s-wave interaction is proportional to
(kso)4 for all scattering lengths.

(ii) For a↑ 
= a↓ (η 
= 1), the leading-order energy shift
of the ground state that reflects the interplay between the
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FIG. 12. (Color online) Interplay between the s-wave interaction
and the spin-orbit coupling term for one atom with and one atom
without spin-orbit coupling (case 1b). The squares show the numer-
ically calculated quantity D(2)

qaa,qηaa
[see Eq. (48)] that characterizes

the second-order perturbation theory shift as a function of qaa for
(a) qηaa = −1/2, (b) qηaa = −0.3, (c) qηaa = 0, and (d) qηaa = 1/2.
The solid line in panel (c) shows the expansion for small |qaa| and
|qηaa| [see Eq. (49)]. The hatched regions in panels (a)–(c) show
the parameter range where the nondegenerate perturbation theory
treatment breaks down.

spin-orbit coupling and the s-wave interaction is, in general,
proportional to (kso)2 for all scattering lengths.

C. Perturbative treatment of Vso(�r1): Near-degenerate regime

To understand the behavior of D(2)
qaa,qηaa

near the hatched
regions in Figs. 12(a)–12(c), it is important to recall that the
derivation assumed that the states �

(0)
qaa,1/2 and �

(0)
qηaa,−1/2 are not

degenerate with any other unperturbed eigenstates with the
same MJ quantum number. To understand the implications,
we consider the situation where the unperturbed energy equals
(2qaa + 3)�ω � 4�ω. In this case, the �

(0)
qaa,1/2 state with Ncm =

Mcm = Kcm = lrel = mrel = 0 (MJ = 1/2), referred to as state
1 in the following, is degenerate with the MJ = 1/2 state
with quantum numbers (qηaa,lrel,mrel,Ncm,Mcm,Kcm,ms) =
(qaa − 1/2,0,0,0,1,0, − 1/2), referred to as state 2. This
degeneracy can be understood as follows. Since the relative
energy is equal to (2qaa + 3/2)�ω and (2qaa + 1/2)�ω for
states 1 and 2, respectively, the unperturbed two-body energies
are degenerate if state 2 contains one “extra” quantum of
energy in the center-of-mass degrees of freedom. Putting
this extra quantum in the Mcm quantum number (as opposed
to Kcm) introduces a coupling between states 1 and 2 if
the spin-orbit coupling term is turned on. In this case, the
quantity D(2)

qaa,qηaa
does not provide a faithful description of the

energy spectrum for qaa ≈ qηaa + 1/2, i.e., for qaa ≈ 0, 0.2,
and 1/2 in Figs. 12(a)–12(c). As discussed in the following,

the coupling between states 1 and 2 leads to an enhancement
of the interplay between the spin-orbit coupling term and the
s-wave interaction.

To determine the energy spectrum in the regime where
states 1 and 2 have (near-)degenerate energies, we employ
first-order near-degenerate perturbation theory [51]. We define
� through qaa = qηaa + 1/2 + � and assume |�| � 1. We
first diagonalize the Hamiltonian Hsoc,a in the Hilbert space
spanned by states 1 and 2. The diagonal matrix elements
are (2qaa + 3)Eho and (2qηaa + 4)Eho while the off-diagonal
elements are C(2)

qaa,qηaa
ksoahoEho/

√
2, where

C(2)
qaa,qηaa

=
∞∑

j=0

C
qaa
j C

qηaa

j (50)

and the Cj ’s are defined through Eq. (39). The resulting first-
order energies are

E/Eho = 2qaa + 3 − � ± 1

2

√
4�2 + 2

(
C

(2)
qaa,qηaa

)2
(ksoaho)2.

(51)

The second-order treatment then yields additional shifts
proportional to (ksoaho)2.

In the regime where the energy difference between states
1 and 2 is much smaller than the coupling between the two
states (|�| � C(2)

qaa,qηaa
ksoaho/

√
2), we Taylor expand Eq. (51)

around
√

2�/(C(2)
qaa,qηaa

ksoaho) = 0,

E/Eho = 2qaa + 3 − � ± 1√
2
C(2)

qaa,qηaa
ksoaho

×
[

1 + �2(
C

(2)
qaa,qηaa

)2
(ksoaho)2

+ · · ·
]
. (52)

For � = 0, Eq. (52) reduces to the result obtained using
degenerate perturbation theory. Equation (52) shows that the
interplay between the s-wave interaction and the spin-orbit
coupling term leads to an energy shift proportional to ksoaho. In
the regime where the energy difference between states 1 and 2
is much greater than the coupling (C(2)

qaa,qηaa
ksoaho/

√
2 � |�|),

we Taylor expand Eq. (51) around C(2)
qaa,qηaa

ksoaho/(
√

2�) = 0,

E/Eho = 2qaa + 3 − � ± �

×
[

1 +
(
C(2)

qaa,qηaa

)2
(ksoaho)2

4�2
+ · · ·

]
. (53)

The eigenstates corresponding to Eq. (53) are approximately
given by states 1 (+ sign) and 2 (− sign), respectively. If
we include the second-order energy shift, we recover our
nondegenerate perturbation theory results given in Eqs. (47)
and (48).

Figure 13 exemplarily illustrates the results of the near-
degenerate perturbation theory treatment for ksoaho = 0.2,
qηaa = −1/2, and varying qaa [this corresponds to the hatched
region in Fig. 12(a)]. The dotted lines show the scaled energies
(Es−wave

gr + Eso
gr )/Eho − 3 = 2qaa + 3 − (ksoaho)2 and 3, i.e.,

the energies of the system excluding the interplay between the
spin-orbit coupling term and the s-wave interaction. The solid
lines show the energies predicted by the near-degenerate per-
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FIG. 13. (Color online) Near-degenerate perturbation theory re-
sult for one atom with and one atom without spin-orbit coupling
(case 1b with qηaa = −1/2 and ksoaho = 0.2). Dotted lines show the
scaled energies (Es−wave

gr + Eso
gr )/Eho − 3 for the two MJ = 1/2 states

(see text) excluding the energy due to the interplay between the
spin-orbit coupling term and the s-wave interaction. Solid lines show
the energies predicted by the near-degenerate perturbation theory
treatment up to second order. For comparison, squares show the
energies predicted by nondegenerate perturbation theory [see Eq. (47)
for the Mcm = 0 state].

turbation theory treatment, including the first-order energies
[see Eq. (51)] and the second-order energy shifts [not given
in Eq. (51)]. For qaa = 0, the first-order energies reduce to
(3 ± √

1/πksoaho)Eho. The term proportional to ksoaho reflects
the interplay between the spin-orbit coupling term and the
s-wave interaction. As can be seen in Fig. 13, the interplay
turns the sharp crossing (see dotted lines) into an avoided
crossing (solid lines), with the energy splitting governed by
kso. The energy splitting for qaa = 0 is roughly 0.2Eho. This
shift is much larger than the energy shifts introduced by
the interplay between the spin-orbit coupling term and the
s-wave interaction for nondegenerate states. This indicates
that the interplay can, for certain parameter combinations,
notably modify the energy spectrum even for relatively small
|kso|. For comparison, the squares show the second-order
nondegenerate perturbation theory energies. The energy shift
of state 1 is given in Eq. (47) [see also Fig. 12(a)] and the
energy shift of state 2 has been calculated following a similar
approach.

We note that there exist two other states with quantum num-
bers (qηaa,lrel,mrel,Ncm,Mcm,Kcm,ms) = (qaa−1/2,0,0,0,−1,

0,−1/2) and (qηaa,lrel,mrel,Ncm,Mcm,Kcm,ms) = (qaa − 1/2,

0,0,0,0,1,−1/2) that have an energy of (2qaa + 3)�ω. How-
ever, since these states have MJ = −3/2 and −1/2, they do
not couple to the MJ = 1/2 states discussed in Eqs. (50)–(53)
and Fig. 13. The MJ = −3/2 and −1/2 states can be treated
using second-order nondegenerate perturbation theory. In fact,
the energy shift of the MJ = −1/2 state is given in Eq. (47).
To get the energy shift of the MJ = −3/2 state, the −1 in
Eq. (47) needs to be replaced by −3/2 and D(2)

qaa,qηaa
needs

to be multiplied by 2. The energy shifts of these two states
are proportional to (ksoaho)2 and their scaled energies would
be indistinguishable from a horizontal line on the scale of
Fig. 13.

The near-degenerate perturbation theory treatment can be
applied to other parameter combinations for which degenera-
cies exist. As a second example, we return to the system with
η = 1 (case 1a). As stated earlier, Eq. (45) does not apply
when qrel = 1/2 and lrel = mrel = Ncm = Mcm = Kcm = 0,
i.e., when the two-body energy of the unperturbed system
equals 4�ω. In this case, the system supports six degenerate
MJ = 1/2 states. We find that these states do not couple at first-
and second-order perturbation theory. However, the second-
order treatment yields energy shifts proportional to −(ksoaho)2

and −(ksoaho)2/2, thereby dividing the six states into two
smaller degenerate manifolds. Treating these two manifolds
separately, neither of the states acquires a third-order shift. We
notice, however, that the states of these different manifolds
are, due to the shifts proportional to −(ksoaho)2, degenerate
at an energy less than 4�ω (and a qrel value slightly larger
than 1/2). Treating these new crossing points, we find energy
shifts proportional to ksoaho and avoided crossings governed
by (ksoaho)3.

The discussion above shows that the perturbative treatment
of (avoided) crossings, induced by the interplay between
the spin-orbit coupling term and the s-wave interaction,
requires great care. For the examples investigated, we find
that the interplay between the spin-orbit coupling term and
the s-wave interaction gives rise to leading-order energy
shifts proportional to odd powers in ksoaho in the vicinity
of (avoided) crossings and to leading-order energy shifts
proportional to even powers in ksoaho away from (avoided)
crossings. We expect that the avoided crossings introduced
by the interplay between the spin-orbit coupling term and
the s-wave interaction have an appreciable effect on the
second-order virial coefficient and related observables.

The key point of this section is as follows.
(i) The interplay between the spin-orbit coupling term and

the s-wave interaction can, if the energy levels of unperturbed
states cross, induce avoided crossings whose leading-order
energy splitting is proportional to kso.

D. Perturbative treatment of Vso(�r1) + Vso(�r2):
Two particles with spin-orbit coupling

This section considers two particles with spin-orbit cou-
pling. As in Sec. IV B, we rewrite the spin-orbit coupling
terms in terms of the relative and center-of-mass coordinates,

Vso(�r1) + Vso(�r2) = V rel,1
so (�r12) + V cm,1

so ( �R12)

−V rel,2
so (�r12) + V cm,2

so ( �R12). (54)

We assume ωx = ωy = ωz and focus on the regime where
center-of-mass excitations are absent and where lrel = mrel =
0. As in Sec. IV B, we account for the s-wave interaction
nonperturbatively.

We start by considering case 2d; i.e., we consider the case
with ζ,η 
= 1 and ζ 
= η, and determine the perturbative shifts
of the states �

(0)
1/2,1/2 = ψcm

0,0,0ψ
rel
qaa,0,0|↑〉1|↑〉2, �

(0)
−1/2,−1/2 =

ψcm
0,0,0ψ

rel
qζaa,0,0|↓〉1|↓〉2, �(0)

1/2,−1/2 = ψcm
0,0,0ψ

rel
qηaa,0,0|↑〉1|↓〉2, and

�
(0)
−1/2,1/2 = ψcm

0,0,0ψ
rel
qηaa,0,0|↓〉1|↑〉2, with MJ = 1, −1, 0, and

0, respectively. Here qaa, qζaa, and qηaa are obtained by solving
the transcendental equation [Eq. (35)] for aaa, ζaaa, and ηaaa,
respectively.
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FIG. 14. (Color online) Schematic illustration of Eqs. (55)
and (56). The horizontal lines show the four unperturbed states under
consideration, labeled by their single-particle spins and scattering
lengths (since the unperturbed states �

(0)
1/2,−1/2 and �

(0)
−1/2,1/2 are

degenerate, they are represented by a single line); the horizontal lines
are vertically offset to reflect the fact that they have different energies.
According to Eq. (55), the coupling of the MJ = 1 (MJ = −1) state
to the MJ = 0 states is described by D(2)

qaa,qηaa
(D(2)

qζaa,qηaa
). According to

Eq. (56), the coupling of the symmetric MJ = 0 state to the MJ = 1
and −1 states is described by D(2)

qηaa,qaa
and D(2)

qηaa,qζaa
, respectively.

We assume that �
(0)
1/2,1/2 and �

(0)
−1/2,−1/2 are not degenerate

with any other states with the same MJ . Second-order
nondegenerate perturbation theory then yields

�E
(so,2)
MJ =1(S) = 2

(−1 + D(2)
qaa,qηaa

)
(ksoaho)2Eho (55)

for MJ = 1. The upper left arrow in Fig. 14 schematically
illustrates how the MJ = 1 state couples to the MJ = 0
states. The energy shift �E

(so,2)
MJ =−1(S) is given by Eq. (55)

with qaa replaced with qζaa. The quantities D(2)
qaa,qηaa

and

D(2)
qζaa,qηaa

are defined in Eq. (48) and shown in Fig. 12 for

different q combinations. The states �
(0)
1/2,−1/2 and �

(0)
−1/2,1/2 are

degenerate. Assuming no additional degeneracies with other
MJ = 0 states exist, degenerate perturbation theory yields the
second-order perturbation shifts

�E
(so,2)
MJ =0(S) = 2

(−1 + D(2)
qηaa,qaa

+ D(2)
qηaa,qζaa

)
(ksoaho)2Eho (56)

and

�E
(so,2)
MJ =0(A) = −2(ksoaho)2Eho, (57)

where D(2)
qηaa,qaa

and D(2)
qηaa,qζaa

are defined in Eq. (48). The eigen-
states corresponding to Eqs. (56) and (57) are, respectively,
symmetric and antisymmetric under the exchange of particles
1 and 2. The lower arrows in Fig. 14 schematically illustrate
the structure of Eq. (56).

In the weakly interacting regime (all |q|’s much smaller
than 1), the D(2) coefficient can be expanded [see Eq. (49)].
The resulting energy shifts proportional to aaa agree with those
derived in Sec. III C. The treatment above breaks down when
additional degeneracies exist. In this case, near-degenerate
perturbation theory provides, in much the same way as
discussed in Sec. IV C, a reliable description of avoided
crossings.

We find that Eqs. (55)–(57) hold in the limits that ζ or η or
both go to 1. For ζ = 1 and η 
= 1 (case 2b), the states �

(0)
1/2,1/2

and �
(0)
−1/2,−1/2 are degenerate and have the same perturbation

shift. For ζ 
= 1 and η = 1 (case 2c), D(2)
qaa,qηaa

vanishes. The
energy shift of the MJ = 1 state contains no term proportional

0

0.05

0.1

0 0.05 0.1 0.15 0.2
(ksoaho)

2

-0.01

-0.005

0

2D
q a
a,q

η a
a

(2
) (k
so
a h
o)
2 ,

ΔE
grnu
m
/E
ho

(b)

(a)

FIG. 15. (Color online) Interplay between the s-wave interaction
and the spin-orbit coupling term for the ground-state manifold for
two atoms with spin-orbit coupling. (a) The solid line shows the
expression 2D(2)

qaa,qηaa
(ksoaho)2 [see Eq. (55)] for the lowest energy

state as a function of (ksoaho)2 for case 2b with 1/aaa = 0, ζ =
1, and ηaaa = 0. For comparison, the circles show the quantity
�Enum

gr /|Escatt| [see Eq. (29)]. (b) The circles show the quantity
�Enum

gr /|Escatt| for case 2b with aaa = 0, ζ = 1, and 1/(ηaaa) = 0.
The numerical data confirm the absence of a term proportional to
(ksoaho)2, as predicted by Eq. (57).

to (ksoaho)2 while the energy shifts of the MJ = −1 and
MJ = 0 states with bosonic exchange symmetry contain shifts
proportional to (ksoaho)2. In the limit that ζ = 1 and η = 1
(case 2a), D(2)

qaa,qηaa
, D(2)

qζaa,qηaa
, D(2)

qηaa,qaa
, and D(2)

qηaa,qζaa
vanish. In

this case, the interaction does not break the degeneracy of the
four unperturbed states and the energy shift contains no term
proportional to (ksoaho)2.

Figure 15 compares the perturbative prediction (solid line)
with our numerical basis set expansion results (circles) for
case 2b. Figure 15(a) shows the case where 1/aaa = 0, ζ = 1,
and ηaaa = 0. The lowest energy state is twofold degenerate
(|MJ | = 1) and possesses bosonic exchange symmetry. The
leading-order energy shift that reflects the interplay between
the spin-orbit coupling term and the s-wave interaction is pro-
portional to (kso)2 [see Eq. (55)]. Figure 15(b) shows the case
where aaa = 0, ζ = 1, and 1/(ηaaa) = 0. The lowest energy
state possesses fermionic exchange symmetry. According to
Eq. (57), the interplay between the spin-orbit coupling term
and the s-wave interaction does not give rise to an energy
shift proportional to (kso)2. This is confirmed by our numerical
results (circles).

The key points of this section are as follows.
(i) For two identical bosons, the energy shift proportional

to (kso)2 is nonzero for the ground state for all scattering lengths
unless a↑↑ = a↓↓ = a↑↓ = a↓↑ (ζ = η = 1) or, depending on
the actual values of the scattering lengths, a↑↑ = a↑↓ = a↓↑
(η = 1).

(ii) For two identical fermions, the energy shift of the
ground state due to the interplay between the spin-orbit
coupling term and the s-wave interaction does not contain
a term proportional to (kso)2 for any scattering lengths.

033606-16



HARMONICALLY TRAPPED TWO-ATOM SYSTEMS: . . . PHYSICAL REVIEW A 89, 033606 (2014)

V. CONCLUSION

For two point particles under external spherically sym-
metric harmonic confinement with zero-range interaction,
compact expressions for the eigenenergies and eigenfunctions
were obtained in 1998 by Busch and co-workers [38]. These
solutions (and the two- and one-dimensional analogs) have
played a crucial role in, to name a few examples, analyzing
few-atom experiments [52–54], guiding and benchmarking
few-body calculations [55–57], and interpreting the dynamics
of many-body systems [58,59]. This paper determined portions
of the energy spectrum of two s-wave interacting atoms under
external spherically symmetric harmonic confinement with
spin-orbit coupling of Rashba type. The spin-orbit coupling
term introduces a new length scale as well as new internal
degrees of freedom or pseudospin states for the point particles
subject to the spin-orbit coupling. Our calculations consider,
building on the seminal work by Busch and co-workers [38],
two-atom systems with arbitrary s-wave scattering length
and small spin-orbit coupling strength. We emphasize that
the techniques developed in this work can be adapted for
treating nonspherical traps, lower dimensional harmonic traps,
or different spin-orbit coupling terms. The treatment of
anisotropic traps, e.g., would utilize the analytical solutions
of Refs. [60,61].

We obtained a large number of analytical results for the
small spin-orbit coupling strength regime. Both the small
and large scattering length regimes were considered. In the
weakly interacting regime, our results yield the leading-order
mean-field shift. For pure s-wave interactions the leading-
order mean-field shift of the trapped Bose gas is given by
N (N − 1)Escatt/2. Our calculations show how this leading-
order mean-field shift is modified in the presence of a weak
spin-orbit coupling term of Rashba type. At which order the
leading interplay between the spin-orbit coupling term and the
s-wave interaction arises depends strongly on whether both
particles feel the spin-orbit coupling as well as on the actual
values of the scattering lengths. We discussed scenarios where
the leading-order interplay between the spin-orbit coupling
term and the s-wave interaction arises at order kso, k2

so, k3
so,

and k4
so. A particularly strong interplay between the spin-orbit

coupling term and the s-wave interaction was found in the
vicinity of degeneracies, where the spin-orbit coupling term
can turn sharp crossings into avoided crossings.

Many of our perturbative results were validated by a
numerical basis set expansion approach for a wide range
of s-wave scattering lengths. Although most of our analysis
was performed for the spin-orbit coupling of Rashba type,
the discussion in Sec. III A shows that at least some of our
findings also apply to systems with a spin-orbit coupling
term of a different functional form. For example, we found
that, if only one of the particles feels the spin-orbit coupling
and a↑ = a↓ = aaa, the energy shift of the ground state does
not contain a term proportional to aaa(kso)2. This result also
holds for anisotropic spin-orbit coupling of Rashba type and
a spin-orbit coupling term that only involves the x component
px of the momentum.

Our analytical calculations employed a zero-range s-
wave model potential. To account for finite-range effects,
a momentum-dependent term needs to be added. For the

weakly interacting trapped system, this yields an additional
energy shift proportional to reffa

2
aa, where reff is the effective

range [48]. Our comparisons between the numerical and
perturbative results accounted for first- and higher-order
effective range corrections nonperturbatively by introducing
the quantity Es-wave

gr in Eq. (29). In the weakly interacting
regime, we find that the leading-order interplay between the
spin-orbit coupling term and the effective range scales as
reffa

2
aak

2
so (or higher order) for the ground state. We estimate

that this term, for |kso|aho > |aaa|/aho, is smaller than the
terms that describe the interplay between the s-wave contact
interaction and the spin-orbit coupling term considered in this
paper.

It would be interesting to extend the perturbative and
numerical calculations presented in this paper to more than
two particles. In pure s-wave systems, effective three- and
higher-body interactions have been shown to emerge [47,48].
An intriguing question is how these effective few-body
interactions depend on the spin-orbit coupling term. Another
interesting question is how the thermodynamics of Bose
and Fermi gases with spin-orbit coupling differs from the
thermodynamics of Bose and Fermi gases without spin-orbit
coupling. A first answer to this question can be obtained by
looking at the virial equation of state up to second order in
the fugacity [62]. The virial equation of state depends on the
second-order virial coefficient, which can be calculated if the
complete energy spectrum of the trapped two particle system
is known [63]. Thus, a natural extension of the present work
is to push the two-particle calculations to higher energies and
to larger spin-orbit coupling strengths. The large spin-orbit
coupling regime has received a great deal of attention recently.
In free space, the two-body binding energy has been calculated
and analytic expressions applicable in weak and strong binding
limits have been derived [64–66]. It will be interesting to
perform analogous calculations for the trapped two-particle
system with large |kso|aho.
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APPENDIX: BASIS SET EXPANSION APPROACH

To determine the eigenenergies of the two-particle system
numerically, we expand the eigenstates in terms of basis
functions that contain explicitly correlated Gaussians whose
parameters are optimized semistochastically and solve the
resulting generalized eigenvalue problem [67,68]. We first
consider the situation where the first particle feels the spin-
orbit coupling while the second particle does not. We write the
eigenstate �soc,a(�r1,�r2) of the Hamiltonian Hsoc,a [see Eq. (2)]
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with V σ
2b(�r12) = V σ

g (�r12) as

�soc,a(�r1,�r2) = ψ↑(�r1,�r2)|↑〉1 + ψ↓(�r1,�r2)|↓〉1 (A1)

and expand ψ↑ and ψ↓ in terms of geminals gj [67],

ψσ (�r1,�r2) =
Nb∑
j=1

c
(σ )
j gj ( �R,A(j ),�s(j )), (A2)

where the c
(σ )
j denote expansion coefficients and Nb denotes

the number of basis functions or geminals included in the
expansion. The eigenstate of interest can be the ground state
or an excited state. The vector �R collectively denotes the spatial
degrees of freedom, �R = (�r1,�r2).

Each geminal gj is written in terms of a real and symmetric
2 × 2 matrix A(j ) and a six-component vector �s(j ), �s(j ) =
(s(j )

1 , . . . ,s
(j )
6 ):

gj ( �R,A(j ),�s(j )) = exp
[− 1

2
�RT A(j ) �R + (�s(j ))T �R]. (A3)

For concreteness, we write the argument of the exponential
out explicitly; we have

(�s(j ))T �R = s
(j )
1 x1 + s

(j )
2 y1 + · · · + s

(j )
6 z2 (A4)

and

�RT A(j ) �R = (A(j )
11 + A

(j )
22

)(�r2
1 + �r2

2

)
+ 2A

(j )
12 (x1x2 + y1y2 + z1z2), (A5)

where A
(j )
kl denotes the kl’s element of the matrix A(j ). The

geminals gj have neither a definite orbital angular momentum
or projection quantum number nor a definite parity and are
thus suited to describe the eigenstates of the two-particle
system with spin-orbit coupling. A key characteristic of the
geminals is that the Hamiltonian and overlap matrix elements
reduce to compact analytical expressions [67] if the atom-atom
interaction is modeled by the Gaussian potential V σ

g [see
Eq. (9)].

To construct the basis, we follow Ref. [69]. We start with
just one basis function; i.e., we set Nb = 1. We calculate the
2 × 2 Hamiltonian and overlap matrices and diagonalize the
resulting eigenvalue problem. In general, the Hamiltonian and
overlap matrices have dimension (2Nb) × (2Nb). The factor
of 2 has its origin in the two internal degrees of freedom

(pseudospin states) of the first particle. To add a new basis
function, we generate several thousand trial basis functions
semistochastically; i.e., we choose the A

(2)
kl and s

(2)
k randomly

from physically motivated preset “parameter value windows”
and select the basis function that lowers the energy of the state
of interest the most. This procedure is repeated until the basis
set has reached the desired size, i.e., until the energy of the
state of interest is converged to the desired accuracy.

The above approach generalizes readily to the situation
where both particles feel the spin-orbit coupling [see Eq. (3)
for the Hamiltonian]. In this case, we write

�soc,soc(�r1,�r2) = ψ↑↑(�r1,�r2)|↑〉1|↑〉2 + ψ↑↓(�r1,�r2)|↑〉1|↓〉2

+ψ↓↑(�r1,�r2)|↓〉1|↑〉2 + ψ↓↓(�r1,�r2)|↓〉1|↓〉2

(A6)

and expand the ψσσ ′(�r1,�r2) in terms of geminals [Eq. (A2)
with σ replaced by σσ ′]. Since each particle has two internal
degrees of freedom, the overlap and Hamiltonian matrices that
define the generalized eigenvalue problem are (4Nb) × (4Nb)
dimensional.

To validate our implementation, we performed several
checks. (i) We set the atom-atom potential to zero and
determine the eigenenergies for various kso. We find that
the ground-state energy obtained by the numerical basis set
expansion approach agrees, within the basis set extrapolation
error, with the sum of the single-particle energies (see
Sec. III A for the determination of the single-particle energies).
(ii) We set kso = 0 and determine the eigenenergies for various
depths of the Gaussian model potential. In these calculations,
we fix r0 at r0 = 0.02aho. We find that the ground-state energy
obtained by the basis set expansion approach agrees, within
the basis set extrapolation error, with the energies obtained by
a highly accurate B-spline approach that separates the relative
and center-of-mass degrees of freedom and takes advantage of
the spherical symmetry of the system for kso = 0. We find that
the basis set expansion approach describes the two-particle
systems with aho/aσ � 2 (aho/aσσ ′ � 2) quite accurately. In
Secs. III and IV, we compare the energies obtained by the basis
set expansion approach with those obtained perturbatively
in the small |kso|aho regime. Our calculations reveal a rich
interplay between the atom-atom interaction and the spin-orbit
coupling term. The basis set expansion calculations reported
in Secs. III and IV use Nb ≈ 200–400.
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