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Finite-temperature correlations in the Lieb-Liniger one-dimensional Bose gas
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We address the problem of calculating finite-temperature response functions of an experimentally relevant
low-dimensional, strongly correlated system: the integrable one-dimensional Bose gas with a repulsive
δ-function interaction (the Lieb-Liniger model). Focusing on the dynamical density-density function, we
present a Bethe ansatz-based method allowing for its accurate evaluation in finite but large systems, over broad
ranges of momenta, frequencies, temperatures, and interaction parameters which are difficult to access using
other methods. This allows us to quantify the reshaping of the zero-temperature critical behavior by thermal
fluctuations, in experimentally accessible regimes.
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I. INTRODUCTION

Important examples of strongly correlated systems occur
in reduced dimensionality [1], in which the nonperturbative
effects of interactions break any single-particle picture and
can lead to quantum critical states. In particular, bosonic
quantum gases confined to one-dimensional (1D) channels
have recently been subjected to intense theoretical and experi-
mental investigations [2]. On the theoretical side, the physical
responses of these systems, despite much progress, are still
insufficiently understood to allow for high-quality experimen-
tal phenomenology. At low temperatures, 1D gases benefit
from a universal Luttinger liquid description [3] allowing
one to obtain the low-energy, long-distance asymptotics of
observable correlations [1]. Alternately, methods based on
integrability have allowed for the computation of ground-state
(zero-temperature) dynamical correlations at arbitrary energy
for continuum gases with contact interactions [4].

In experimental situations [5–10] thermal fluctuations
cannot be discounted; since typical measurements (using,
e.g., Bragg spectroscopy [8,11]) require response functions
away from the low-energy universal limit, the theoretical
determination of correlations at finite temperature, energy,
and momentum scales is a crucial but difficult problem. In
the context of the 1D Bose gas this has up to now only been
partially addressed [12–18].

In this paper we focus on the dynamical density-density
response of the integrable Lieb-Liniger 1D Bose gas [19]
at finite temperatures. We present a Bethe ansatz-based
approach valid for interactions and temperatures covering
physically interesting regimes. The nontrivial line shapes
obtained give quantitative predictions for eventual matching
with experimental data.

II. THE MODEL

The Hamiltonian of the 1D Bose gas (Lieb-Liniger model
[19]) is (setting �

2 = 2m = 1)

H = −
N∑

i=1

∂2
xi

+ 2c

N∑
i>j

δ(xi − xj ) − μN, (1)
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where xi denotes the position of the ith atom and μ is
the chemical potential. The coupling c is related to the
scattering length [20]. At finite temperatures, the gas is
characterized by two parameters: the interaction strength
γ = c/n and temperature T , where n = N/L is the 1D density.
Hereafter we set n = 1 and kB = 1. Hamiltonian (1) is exactly
diagonalizable (in each sector of fixed particle number N )
by the Bethe ansatz [19]. Imposing periodicity, eigenstates
(labeled by quantum numbers {Ij }Nj=1) are fully characterized
by rapidities solving the Bethe equations [19]

λj +
N∑

k=1

φ(λj − λk) = 2π

L
Ij , j = 1, . . . ,N. (2)

Here φ(λ) = 2 arctan(λ/c) is the two-particle phase shift. The
momentum and energy are

Pλ =
N∑

j=1

λj , Eλ =
N∑

j=1

λ2
j . (3)

The ground state is formed by a Fermi-sea-like configuration
of quantum numbers [19]. Low-lying excitations can be
classified in terms of particles and holes, with these following
their respective dispersion relations ω±(k) [19]. At finite
temperatures, the equilibrium state is (similarly to a free
fermionic gas) a “melted” Fermi sea with smoothly varying
densities of the particles and holes [21].

We are interested in dynamical properties in equilibrium at
finite temperatures. Although our method in principle applies
to any few-point correlator, we focus on the experimentally
relevant density-density function

ST (k,ω) = 2π

L

∑
λ′

|〈λ′|ρ̂k|λρT
〉|2δ(ω − Eλ′ + EρT

), (4)

where |ρT 〉 is the thermal equilibrium state [21], and the
density operator is ρ̂(x) = ∑N

i=1 δ(x − xi). Its matrix element
for any two eigenstates of the system and any value of the
interaction parameter is known exactly [22] from the algebraic
Bethe ansatz (see Ref. [23] and references therein).

The density-density correlation function at T = 0 is charac-
terized by a singular behavior along the dispersion lines ω±(k)
[24,25]. It vanishes below the lower dispersion ω−(k) and has
a power-law singularity around ω+(k). At small momentum
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FIG. 1. (Color online) The full dynamic correlator plotted for the
intermediate values of interaction c = 1,4,16 and for zero and high
temperature. As the temperature increases, the correlation becomes
smeared but stays approximately within the same region in the k-ω
plane. The exception is the small correlation region at low momentum
and negative energy visible for c = 16.

and around umklapp excitations (with k ≈ 2mkF and ω ≈ 0),
this correlation is also singular with discontinuous support, as
usual for critical Luttinger liquids [26]. We show later how
these features are modified by thermal fluctuations.

Equation (4) is exact in the thermodynamic limit and finite-
size corrections are of the order of 1/L [27]. Their origin is
twofold: from the saddle-point approximation, which was used
to derive Eq. (4) [23], and from the evaluation of Eq. (4) in a
finite system. We will quantify them later.

Let us now discuss the evaluation of Eq. (4). We first obtain
the distribution of rapidities in the thermal state following
Ref. [21]. Choosing a fixed N , this was then approximated
by a closest-matching state |{λT }N 〉. The representation (4)
could then be scanned through the Hilbert space of relevant
excitations (for this, the ABACUS algorithm [4] was extended
to arbitrary excited states). Convergence was measured by the
f -sum rule [28] ∫ ∞

−∞

dω

2π
ωST (k,ω) = nk2. (5)

To verify that the computed correlation was indeed thermal,
we used the f -sum rule combined with detailed balance
[S(k,ω) = e−βωS(k, − ω)] [28], yielding∫ ∞

0

dω

2π
ωST (k,ω)(1 − e−βω) = nk2. (6)

TABLE I. The levels of saturation of the f -sum rule combined
with the detailed balance relation [Eq. (6)] for the intermediate
interaction strengths and two values of momentum.

k = kF k = 2kF

c = 1 T = 1/4 (N = 100) 0.991 0.975
T = 1/2 (N = 64) 0.991 0.979

c = 4 T = 1/2 (N = 80) 0.992 0.982
T = 1 (N = 50) 0.987 0.982

c = 16 T = 1 (N = 100) 0.990 0.981
T = 2 (N = 64) 0.997 0.989

Repeating calculations for different system sizes then explic-
itly showed convergence to the thermodynamic limit.

III. RESULTS

A. Momentum space

The full k- and ω-dependent density-density correlation
function for various temperatures and interaction strengths is
plotted in Fig. 1. Representative f -sum rule saturations are
presented in Table I. The ω dependence of the correlation is
shown in Fig. 2 where fixed momentum cuts (at k = kF ) are
plotted. Figure 3 illustrates finite-size effects.
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FIG. 2. (Color online) Fixed momentum cuts through the cor-
relation function for c = 1,4,16,64 and at increasing values of
temperatures from the top to the bottom. A finite temperature
drastically modifies the line shape of the correlation. The upper
threshold singularities are washed out and the correlation becomes
almost symmetric around its maximum. Results agree with the
perturbative expansion in 1/c (dots) of Ref. [13]. The error bars,
based on the f -sum rule (see Table I), are below the plot resolution
(in the worst case they are around 1.5%; we include also the finite-size
smoothening effects in this estimate).
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FIG. 3. (Color online) Fixed momentum cuts for c = 4 and T =
0.5 for three different system sizes, explicitly showing convergence
towards the thermodynamic limit. The insets contain zooms of the
peak regions. Finite-size effects are largest around k = 2kF , where
the discrete nature of the thermal state is noticeable.

The interacting 1D Bose gas has a single phase; how-
ever, at finite interactions and temperatures, we can still
distinguish different regimes [14,29,30]. For example, when
interactions are strong and dominate over the temperature,
one is in a fermionization regime. For weak interactions
the gas resembles a quasicondensate and can be analyzed
using the Bogolyubov theory with T � √

c � 1. When the
temperature dominates, the system resembles an ideal gas
whose correlations can be obtained from a high-T expansion
[14]. Here we set our attention on the experimentally relevant,
but difficult to describe, intermediate regime with T/

√
c =

1/4,1/2 (T = 0 curves are shown for reference).
The fixed momentum curves show the importance of

thermal fluctuations in shaping the correlations. We begin
by ascertaining the effect of temperature on the mean ω̄ =∫ ∞

0 dωωST (k,ω) and variance σ 2 = ∫ ∞
0 dω(ω − ω̄)2ST (k,ω).

As seen from Eq. (6), the mean should increase with temper-
atures; similarly, the correlation should broaden. However, as
can be seen from Table II, both effects are small. Even at finite
temperatures, in the range we studied, the spread of the fixed
momentum cuts is mainly due to interactions.

However, thermal fluctuations have an important and much
more subtle effect in smoothening the singularities of the T =
0 correlator. Two effects occur: first, a rounding off of the
T = 0 threshold singularities along the particle and hole modes
ω±(k), and second, a broadening of the correlation at very
small momentum (also around umklapp excitations). The T =
0 response in this limit is singular with vanishing width, and
any thermal fluctuations destroy this feature. We come back to
this when discussing the real-space correlation function.

Integration over ω yields the static correlator (Fig. 4)

S(k) =
∫ ω

−ω

dω

2π
S(k,ω). (7)

In the small momentum limit the dispersion relation of
excitations becomes linear (see Refs. [26,28], Fig. 1) with
the sound velocity given by the isothermal compressibility

TABLE II. Effects of temperature on the mean and variance of
the positive energy part of the correlator (see the main text for the
definitions). We note that both mean and variance vary slightly while
changing the temperature, with the strongly interacting case (c =
256) being an exception. The very slight decrease of the mean at
lower temperatures is within the precision given by the f -sum rule
(see Table I) and does not carry any physical meaning.

ω̄(kF )/ω̄T =0(kF ) σ 2(kF )/σ 2
T =0(kF )

c = 1/4 T = 1/8 0.989 1.023
T = 1/4 0.993 1.055

c = 16 T = 1 0.990 1.033
T = 2 0.995 1.115

c = 256 T = 4 1.006 1.240
T = 8 1.051 1.595

vs =
√

2n( ∂μ

∂n
)T , which can be calculated from the thermo-

dynamic Bethe ansatz [21]. The f -sum rule combined with
detailed balance then captures the correlation function, which
becomes in this limit [28]

S(0) =
{ |k|

vs
+ O(k2), T = 0,

2T
v2

s
+ O(k2), T > 0.

(8)

The static correlator plotted in Fig. 4 agrees with this low
momentum prediction and, moreover, for weak interactions,
confirms the validity of the Bogolyubov theory.
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FIG. 4. (Color online) Static structure factor for three represen-
tative values of the interaction strength (c = 1/4, c = 16, c = 256).
In the weakly interacting regime results agree with the Bogolyubov
approximation (dots) [31]. The k → 0 limit agrees with the hydrody-
namic predictions, Eq. (8) (black dashed lines).
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FIG. 5. (Color online) The density-density correlation function
in real space [see Eq. (9)]. The points are the Luttinger liquid
predictions supplied with the zero-temperature prefactor A [see
Eq. (10) and the discussion below it]. The region of validity of the
hydrodynamic predictions varies with the interaction strength and is
the largest for c → ∞. The value of the correlator at x = 0 (squares)
is calculated via the Hellmann-Feynmann theorem [16,29] and agrees
with our predictions.

B. Real space

The Fourier transform of the static correlator yields the pair
correlation (Fig. 5)

S(x) = 1

L

∑
k

e−ikxS(k). (9)

Luttinger liquid theory [1,3,26] predicts exponential decay of
this function at finite temperatures (x 
 n−1),

SLL(x) = 1 − K

2π2

(
πT/vs

sinh(πT x/vs)

)2

+A cos(2πx)

(
πT/vs

sinh(πT x/vs)

)2K

+ · · · , (10)

where · · · represent terms that decay faster with distance, and
where the prefactor A is a nonuniversal number. The Luttinger
parameter K depends on the interaction strength c and can be
computed as in Ref. [26]. For the 1D Bose gas at T = 0,

A can be explicitly computed from the scaling limit of a
single, specific matrix element of the density operator [32].
At finite temperatures the relationship is more intricate; at
low temperatures the prefactor is, however, expected to be
temperature independent [17]. For the temperatures considered
here (which go beyond the low-temperature limit) we find that
the T = 0 prefactor indeed gives predictions consistent with
our results (see Fig. 5). The correlation weight in the vicinity
of the umklapp excitation is still the same (thus the same
prefactor A) but is smeared over a finite region in energy and
momentum. At T = 0 this region shrinks to zero, yielding a
power-law decay instead of an exponential.

Throughout this paper we considered a homogeneous
gas with a constant density of particles. In an experimental
situation, where the presence of an external trapping potential
leads to a spatially varying distribution of particles, the
correlation function can be well approximated by fixing the
density to an average density of particles in the trap.

IV. CONCLUSIONS

In this paper we presented results for the finite-temperature
correlation function of the 1D Bose gas obtained through a
combination of the Bethe ansatz and numerical evaluations
of states and matrix elements. The results cover the experi-
mentally relevant regime of intermediate physical parameters
(temperature, interaction, energy, and momentum) which is
difficult to access through other, analytical or numerical,
methods. We showed that for intermediate temperatures the
correlation function carries remnants of T = 0 characteristics,
such as signs of threshold singularities and exponential
decay closely resembling the power-law decay. The exact
line shape of the correlation is, however, significantly and
observably modified. The exact quantitative nature of our
results should facilitate fitting with experimental predictions,
perhaps paralleling what can be done, for example, in the
context of ground-state correlations in spin chains [33]. In fact,
besides extensions to other correlators, the method presented
here is generalizable to other models solved by the Bethe
ansatz, e.g., the XXZ spin chain. We will address this problem
in future work.
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