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This paper completes our previous studies of atomic [P. A. Batishchev, O. I. Tolstikhin, and T. Morishita,
Phys. Rev. A 82, 023416 (2010)] and molecular [L. Hamonou, T. Morishita, and O. I. Tolstikhin, Phys. Rev. A
86, 013412 (2012)] Siegert states (SSs) in an electric field by presenting illustrative calculations of the transverse
momentum distribution (TMD) for a molecular potential. The method of adiabatic expansion in parabolic
coordinates developed in this series for calculating the SSs is summarized. Its implementation is extended to
the calculation of the normalized molecular SS eigenfunction, which is required for calculating the TMD. We
consider a soft-core potential modeling the hydrogen molecular ion H2

+. The behavior of the parabolic adiabatic
potentials, channel functions and the total SS eigenfunction is illustrated, which was not included in the previous
publications. The TMDs for the 1sσ and 2pπ± states are calculated. Their dependence on field and orientation
of the molecule with respect to the field is compared with the predictions of the weak-field asymptotic theory.
On the example of the even 2pπ+ state, it is shown that TMD can rapidly change its shape in situations where
there is no a single dominant ionization channel.
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I. INTRODUCTION

In the general context of quantum mechanics, Siegert states
(SSs) are regular eigensolutions of the stationary Schrödinger
equation satisfying outgoing-wave boundary conditions in
the asymptotic region [1]. The bound states of atoms and
molecules turn into SSs in the presence of an external
static electric field. The complex SS eigenvalue defines the
Stark-shifted energy and ionization rate of the system in the
field. The SS eigenfunction defines the transverse momentum
distribution (TMD) of ionized electrons in the outgoing flux.
The SS eigenvalue and TMD amplitude are two fundamental
properties of atoms and molecules characterizing their interac-
tion with a static electric field. The current interest in numerical
[2,3] and analytical [4–6] methods to evaluate these properties
is motivated by their applications in strong-field physics [7].
In particular, they are required for calculating photoelectron
momentum distributions produced by intense low-frequency
laser pulses within the adiabatic theory [8]. They are also
needed for the analysis of experimental photoelectron and
harmonic spectra [9–12].

Recently, we have developed a powerful method of adia-
batic expansion in parabolic coordinates for calculating one-
electron SSs in axially symmetric potentials [2] and general
potentials without any symmetry [3]. Such potentials can
be used to model atoms and molecules in the single-active-
electron and frozen-nuclei approximations. Axially symmetric
potentials correspond to atoms and linear molecules aligned
along the field, and general potentials correspond to molecules
arbitrarily oriented with respect to the field. The method
reduces the three-dimensional stationary Schrödinger equation
for the SSs to a multichannel eigenvalue problem in one
variable, which can be efficiently solved by the slow variable
discretization method [13] in combination with the R-matrix
propagation technique [14]. This approach also enables one to

construct the asymptotic solution of the SS eigenvalue problem
in the weak-field limit. On this basis, the weak-field asymptotic
theory (WFAT) of tunneling ionization of one-electron [4,5]
and many-electron [6] systems was developed. In the atomic
case [2], both the SS eigenvalue and TMD amplitude were
treated in the formulation and illustrative calculations. The
program developed in Ref. [2] was used in Ref. [8] for
implementing the adiabatic theory. In the molecular case
[3], the calculations become more laborious and so far were
reported only for the SS eigenvalue. The formulation of the
method for calculating the TMD amplitude in this case was
given in Ref. [4]. The goal of this paper is to complete
our previous studies of SSs [2,3] by presenting illustrative
calculations of the TMD for a molecular potential.

The paper is organized as follows. In Sec. II we summarize
basic equations of the theory of SSs in an electric field in the
framework of the method of adiabatic expansion in parabolic
coordinates [2–4]. In the present implementation of the method
only one Coulomb singularity of the potential can be treated
accurately. This is sufficient for considering realistic atomic
potentials [2], but molecules should be described by soft-core
potentials. We consider the same soft-core potential modeling
the hydrogen molecular ion H2

+ as in Ref. [3]. In Sec. III
we present and discuss numerical results for the 1sσ and
2pπ states in this potential. Since this is the concluding paper
in the series [2,3] introducing the method, for completeness
of the presentation and in order to illustrate the method we
first discuss the behavior of the parabolic adiabatic potentials,
channel functions, and the total SS eigenfunction, which was
not included in the previous publications. Then we focus on
the TMD and discuss its dependence on field and orientation of
the molecule with respect to the field. The accurate numerical
results are compared with the predictions of the WFAT [4].
Section IV concludes the paper.
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II. ADIABATIC EXPANSION
IN PARABOLIC COORDINATES

We consider a molecule treated in the single-active-electron
and frozen-nuclei approximations interacting with an external
static uniform electric field F = F ez, F ≥ 0. The stationary
Schrödinger equation for the active electron reads (atomic units
are used throughout)[

−1

2
� + V (r) + Fz − E

]
ψ(r) = 0. (1)

The potential V (r) describes the interaction with the parent
molecular ion and implicitly depends on its shape determined
by the internuclear configuration and orientation with respect
to the field. The only assumption regarding V (r) is

V (r)|r→∞ = −Z

r
, (2)

where Z is the total charge of the parent ion. For F = 0,
Eq. (1) has real-energy eigensolutions satisfying ψ(r)|r→∞ =
0, which represent bound states of the unperturbed molecule.
For F > 0, these bound states turn into complex-energy SSs,
which are the eigensolutions of Eq. (1) satisfying outgoing-
wave boundary conditions in the asymptotic region. We solve
Eq. (1) in parabolic coordinates defined by [15]

ξ = r + z, 0 ≤ ξ < ∞, (3a)

η = r − z, 0 ≤ η < ∞, (3b)

ϕ = arctan
y

x
, 0 ≤ ϕ < 2π. (3c)

To construct the SSs, we rewrite this equation in the form [2–4][
∂

∂η
η

∂

∂η
+ B(η) + Eη

2
+ Fη2

4

]
ψ(r) = 0, (4)

where the adiabatic Hamiltonian

B(η) = ∂

∂ξ
ξ

∂

∂ξ
+ ξ + η

4ξη

∂2

∂ϕ2
− rV (r) + Eξ

2
− Fξ 2

4
(5)

is an operator acting on functions of ξ and ϕ and depending on
η as a parameter. This operator has a purely discrete spectrum.
Its eigenvalues and eigenfunctions defined by

[B(η) − βν(η)]�ν(ξ,ϕ; η) = 0, (6a)

�ν(ξ = 0,ϕ; η) < ∞, �ν(ξ → ∞,ϕ; η) = 0, (6b)

�ν(ξ,ϕ + 2π ; η) = �ν(ξ,ϕ; η), (6c)

also depend on η as a parameter. For F = 0, the eigenvalues
βν(η) are real and form a sequence unbounded from below

and the eigenfunctions �ν(ξ,ϕ; η) are chosen to be real. In
this case, the solutions to Eqs. (6) can be enumerated by a
single index ν = 1,2, . . . in decreasing order of βν(η). By the
analytic continuation in F , this enumeration can be applied for
F > 0 when the eigenvalues βν(η) are complex, because the
energy E in Eq. (5) becomes complex. For any η, the different
eigenfunctions are orthogonal and normalized by

〈�ν |�μ〉 ≡
∫ ∞

0

∫ 2π

0
�ν(ξ,ϕ; η)�μ(ξ,ϕ; η) dξ dϕ = δνμ.

(7)
Note that there is no complex conjugation in this equation. The
solutions to Eqs. (6) constitute the adiabatic basis. Taking into
account Eq. (2), the adiabatic Hamiltonian ceases to depend
on η in the asymptotic region,

B = B(η)|η→∞ = ∂

∂ξ
ξ

∂

∂ξ
+ 1

4ξ

∂2

∂ϕ2
+ Z + Eξ

2
− Fξ 2

4
.

(8)

The same holds for the solutions to Eqs. (6),

βν = βν(η)|η→∞, �ν(ξ,ϕ) = �ν(ξ,ϕ; η)|η→∞. (9)

The asymptotic channels are defined by

(B − βnξ m)�nξ m(ξ,ϕ) = 0. (10)

This equation allows separation of variables and has solutions
of the form

�nξ m(ξ,ϕ) = φnξ m(ξ )
eimϕ

√
2π

, (11)

where φnξ m(ξ ) and the corresponding eigenvalues βnξ m are
defined by[

d

dξ
ξ

d

dξ
− m2

4ξ
+ Z + Eξ

2
− Fξ 2

4
− βnξ m

]
φnξ m(ξ ) = 0,

(12a)

φnξ m(ξ → 0) ∝ ξ |m|/2, φnξ m(ξ → ∞) = 0, (12b)∫ ∞

0
φnξ m(ξ )φn′

ξ m
(ξ ) dξ = δnξ n

′
ξ
. (12c)

Here m = 0,±1,±2, . . . is the azimuthal quantum number
and nξ = 0,1,2, . . . enumerates the different solutions to
Eqs. (12) for a given value of m. The functions (11) constitute
the asymptotic basis. Note that the eigenvalues βnξ m do not
depend on the sign of m, and hence the asymptotic states with
m �= 0 are doubly degenerate. The left-hand sides of Eqs. (9)
are given by

βν = βnξ |m|, (13a)

�ν(ξ,ϕ) =
{

�nξ 0(ξ,ϕ), m = 0,

ei(λ−1)π/4√
2

[c|m|�nξ ,|m|(ξ,ϕ) + λc∗
|m|�nξ ,−|m|(ξ,ϕ)], m �= 0,

(13b)

where λ = ±1 and the coefficients c|m| satisfy |c|m||2 = 1.
These coefficients are determined by the behavior of V (r)

at η → ∞. Equations (13) show that in the asymptotic
region the adiabatic channels can be enumerated by the
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multi-index

ν = (nξ ,|m|,λ). (14)

By the analytic continuation in η, this classification by the
asymptotic quantum numbers can be applied to all values of
η. This provides an alternative way to label the solutions to
Eqs. (6).

The solution to Eq. (4) is sought in the form of an expansion
in the adiabatic basis,

ψ(r) = η−1/2
∑

ν

fν(η)�ν(ξ,ϕ; η). (15)

Substituting this into Eq. (4), one obtains a set of ordinary
differential equations defining the unknown functions fν(η),[

d2

dη2
+ 1

2
[E − Uν(η)]

]
fν(η)

+
∑

μ

[
2Pνμ(η)

d

dη
+ Qνμ(η)

]
fμ(η) = 0, (16)

where

Uν(η) = − 1

2η2
− 2βν(η)

η
− Fη

2
(17)

are the adiabatic potentials and the matrices

Pνμ(η) =
〈
�ν

∣∣∣∣∂�μ

∂η

〉
, Qνμ(η) =

〈
�ν

∣∣∣∣∂2�μ

∂η2

〉
(18)

represent nonadiabatic couplings. Taking into account Eqs. (9),
these matrices vanish in the asymptotic region. For F > 0
and arg F = 0, the outgoing-wave solutions to the uncoupled
equations satisfy [2–4]

fν(η)|η→∞ = 21/2fν

(Fη)1/4
exp

[
iF 1/2η3/2

3
+ iEη1/2

F 1/2

]
. (19)

The SSs are represented by the solutions to Eqs. (16) satisfying
regularity boundary conditions at η → 0 and the outgoing-
wave boundary conditions (19) at η → ∞. Such solutions
exist only for a discrete set of generally complex values of
E—this is the SS eigenvalue problem. The real and imaginary
parts of the SS eigenvalue E define the energy E and ionization
rate � of the state,

E = E − i

2
�. (20)

The SS eigenfunction is normalized by∫
ψ2(r) dr = 1

4

∫ ∞

0

∫ ∞

0

∫ 2π

0
ψ2(r)(ξ + η) dξdηdϕ = 1,

(21)

where the integral should be regularized by deforming the
integration path in η from the real semiaxis into a contour
in the complex η plane [2]. We again note that there is no
complex conjugation in Eq. (21), which is a general property
of the theory of SSs. The unperturbed bound state, which
coincides with the solution of the SS eigenvalue problem for
F = 0, is denoted by E0 and ψ0(r).

The outgoing-wave boundary condition for Eq. (1) can be
written in the form [2,4]

ψ(r)|z→−∞ =
∫

A(k⊥)eik⊥r⊥g(z,k⊥)
dk⊥

(2π )2
, (22)

where r⊥ = (x,y) = (r⊥ cos ϕ,r⊥ sin ϕ), k⊥ = (kx,ky) =
(k⊥ cos ϕk,k⊥ sin ϕk), and

g(z,k⊥) = e−iπ/122π1/2(2F )−1/6 Ai(ζ ), (23a)

ζ = 2e−iπ/3

(2F )2/3

[
E − Fz − k2

⊥
2

]
. (23b)

Here Ai(x) is the Airy function [16]. The function g(z,k⊥)
contains only an outgoing wave as z → −∞, and A(k⊥) is the
amplitude of the TMD in the outgoing flux. This amplitude is
given by [2,4]

A(k⊥) = 23/2πi

F 1/2

∑
ν

fν�ν

(
k2
⊥
F

,ϕk

)
. (24)

The TMD of the ionized electrons is

P (k⊥) ≡ |A(k⊥)|2 = 8π2

F

∣∣∣∣∣
∑

ν

fν�ν

(
k2
⊥
F

,ϕk

)∣∣∣∣∣
2

. (25)

The main objects of physical interest to be found in the
calculations are the SS eigenvalue (20) and the TMD amplitude
(24). Each step of the formulation must be implemented with
high precision in order to obtain accurate results for these
quantities.

III. ILLUSTRATIVE RESULTS AND DISCUSSION

A numerical procedure implementing the method described
above is documented in Refs. [2,3]. In Ref. [3] this procedure
was used to calculate the SS eigenvalue for the hydrogen
molecular ion H2

+ modeled by the soft-core potential

V (r) = − 1√
|r − R/2|2 + ε

− 1√
|r + R/2|2 + ε

. (26)

Here the nuclei are assumed to lie in the xz plane, R =
(R sin β,0,R cos β), R is the internuclear distance, β is the
angle between the internuclear axis and the electric field, and ε

is the softening parameter. This potential satisfies Eq. (2) with
Z = 2. In Ref. [3], the internuclear distance was set equal
to its equilibrium value R = 2 and the softening parameter
was chosen to be ε = 0.09, which is small enough for the
energies of the bound states be reasonably close to that in
the pure Coulomb potential with ε = 0. The potential (26) is
symmetric with respect to the xz plane, and the field does
not break this symmetry. Therefore for the present model the
solutions to Eq. (1) can be divided into even and odd with
respect to the xz plane. The even (odd) solutions are indicated
by the superscript + (−). This superscript coincides with the
value of λ in Eq. (13b). All the coefficients c|m| in this case
are equal to 1, so even and odd adiabatic channel functions
�ν(ξ,ϕ; η) depend on ϕ as cos(mϕ) and sin(mϕ), respectively.
In the following, to avoid duplication in the notation, we omit
λ from the multi-index (14) and label the adiabatic channels
by ν = (nξ ,m), where m ≥ 0. The unperturbed bound states in
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the potential (26) are characterized by the projection M of the
electronic angular momentum on the internuclear axis. States
with M = 0 (σ states) are even; they are not degenerate, so the
superscript + in this case can be omitted. States with M �= 0
are doubly degenerate, since their energy does not depend on
the sign of M; the even and odd states discussed above are
linear combinations of the degenerate states. In Ref. [3], to
illustrate the different symmetry cases, the SSs originating
from the unperturbed ground state 1sσ and two degenerate
excited states 2pπ± were considered. The energies E and
ionization rates � of these states as functions of the field F

and orientation angle β were calculated and compared with
the predictions of perturbation theory [15] and the WFAT [4],
respectively.

In the present work we extend the numerical procedure of
Ref. [3] to the calculation of the normalized SS eigenfunction
ψ(r). This enables us to obtain the TMD amplitude (24). In
the calculations reported below, we use the same potential (26)
with the same values of R and ε and consider the same states
as in Ref. [3]. The goal of the calculations is to illustrate the
field and orientation dependence of the TMD (25).

A. Ground 1sσ state

We begin with the ground 1sσ state. The field-free energy
of this state in the present soft-core model is E0 = −0.962 366,
which is slightly higher than the corresponding energy
−1.102 634 for ε = 0. The critical field Fc giving a boundary
between tunneling and over-the-barrier ionization regimes can
be estimated as [3,4]

Fc = �4

8|2Z − �(m + 1)| , (27)

where � = √
2|E0| and m is the azimuthal quantum number

of the dominant ionization channel. For the 1sσ state from
Eq. (27) we obtain Fc = 0.18. In the calculations below we
consider fields in the interval 0 ≤ F ≤ 0.3, where the upper
boundary is well above Fc.

1. Adiabatic channels and the total SS eigenfunction

We use the 1sσ state as an example to illustrate the behavior
of the different functions involved in the formulation of the
present method. This information is helpful for understanding
the method, but also provides a valuable insight into the
underlying dynamics; for the sake of brevity, it was not
included in our previous studies of SSs [2,3]. In this subsection
we fix the orientation of the molecule at β = 90◦. We discuss
only the four lowest adiabatic channels with ν = (0,0), (0,1),
(1,0), and (0,2), but in the calculations, to achieve convergence
of the results, 70 channels were coupled.

Figure 1 illustrates the behavior of the adiabatic potentials
(17) as functions of η for the four lowest adiabatic channels
at two representative values of F . The potentials involve the
eigenvalues βν(η) defined by Eqs. (6). The left panel shows
the real part of the potentials. The horizontal lines indicate the
energy E of the state. For the present state in the interval of
F considered and all orientation angles β, the lowest channel
(0,0) produces the dominant contribution to the expansion (15)
for the SS eigenfunction (see Fig. 6 below). The evolution
of the corresponding adiabatic potential with F illustrates a
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FIG. 1. (Color online) Adiabatic potentials (17) for the four low-
est adiabatic channels ν = (nξ ,m) in the 1sσ state at the orientation
angle β = 90◦. Solid (dashed) lines: results for F = 0 (F = 0.3).
The horizontal (black) lines in the left panel show the real part E of
the SS eigenvalue (20).

transition from the tunneling to the over-the-barrier ionization
regime. For F = 0, the potential approaches 0 as η → ∞, and
the state is bound, since E < 0. For 0 < F � Fc, the behavior
in the interval of η shown in the figure remains similar to the
case F = 0, but at larger η the potential linearly goes down,
because of the field term, and eventually becomes lower than
E . Now the electron can escape from the system by tunneling.
This is the situation treated in the WFAT [4]. As F grows
further, the potential barrier becomes narrower and lower. For
F > Fc it becomes lower than E , and then the electron can fly
away through a classically accessible window over the barrier.
This is the case for F = 0.3. We note that this simplified
one-channel picture should not be taken too literally: one
should remember that there exist non-negligible nonadiabatic
couplings to other channels. The right panel of the figure
presents the imaginary part of the potentials which originates
from the imaginary part of the eigenvalues βν(η). The results
are shown only for F = 0.3, since for F = 0 the eigenvalues
are purely real. The curves monotonically approach 0 as η

grows and behave asymptotically as 1/η.
Figure 2 illustrates the behavior of the adiabatic channel

functions �ν(ξ,ϕ; η) for F = 0. In this case the functions
are real. We consider the same four channels as in Fig. 1 at
three representative values of η. The even solutions to Eqs. (6)
as functions of the azimuthal angle ϕ can be expanded in
the basis of cos(mϕ); this approach is indeed used in our
numerical procedure [3]. The set η = 0 coincides with the
positive half of the z axis. Here only the m = 0 component
exists in the expansion. Therefore the channel functions at
η = 0 do not depend on ϕ. The set η = 1 is a paraboloid
that passes through the inner regions of the potential well.
Here the channel functions demonstrate strong dependence
on ϕ, which corresponds to the presence of components
with m > 0. For example, for channels (0,0) and (1,0) the
component m = 0 still dominates, but the contribution from
m = 2 becomes appreciable; the higher components remain
small. The dominant components for channels (0,1) and (0,2)
now are m = 1 and m = 2, respectively, instead of m = 0. The
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FIG. 2. (Color online) Channel functions �ν(ξ,ϕ; η) [see Eqs. (6)] for the same four adiabatic channels as in Fig. 1 at three representative
values of η in the field-free case, F = 0.

set η = const → ∞ is a plane parallel to the xy plane, which
crosses the z axis at z = −η/2. Here the channel functions
acquire a separable form following from Eqs. (11) and (13b).
Thus for channels (0,0) and (1,0) they become independent of
ϕ, while for channels (0,1) and (0,2) they become proportional
to cos ϕ and cos 2ϕ, respectively. This asymptotic behavior
of the channel functions is illustrated for η = 70. One can
notice that the dependence of the channel functions on ξ

in the asymptotic region also agrees with their classification
by parabolic quantum numbers (nξ ,m). The function (0,0)
monotonically decays with ξ , the functions (0,1) and (0,2)
have one zero at ξ = 0, and the function (1,0) turns zero at
some intermediate value of ξ . For F > 0 the adiabatic channel
functions become complex. Figure 3 illustrates the behavior
of the real and imaginary parts of the lowest channel function
for F = 0.3. This function and its evolution in η look similar
to the case F = 0 shown in the top row of Fig. 2. The same
holds for the other channels, so we do not show them.

In the asymptotic region η → ∞ the adiabatic channels are
defined by the solutions to Eqs. (12). For F = 0, the solutions
to this eigenvalue problem can be found analytically [4],

β(0)
ν = Z − �

(
nξ + |m| + 1

2

)
, (28a)

φ(0)
ν (ξ ) = �1/2(�ξ )|m|/2e−�ξ/2

√
nξ !

(nξ + |m|)! L(|m|)
nξ

(�ξ ),

(28b)

where L(α)
n (x) are the generalized Laguerre polynomials [16].

For F > 0, the solutions become complex. Figure 4 illustrates
the behavior of the asymptotic eigenvalues βν as functions
of F for the four channels discussed above. Figure 5 shows

the corresponding eigenfunctions φν(ξ ) for two values of F .
For sufficiently small F , the departure of the real parts of
βν and φν(ξ ) from their field-free values given by Eqs. (28)
has power-series dependence on F and can be described by
perturbation theory [5]. Even for F = 0.3, which is in the
over-the-barrier regime, this departure is rather small. The
imaginary parts of βν and φν(ξ ) originate from the imaginary
part of the SS eigenvalue E in Eq. (12a) which cannot be
accounted for by perturbation theory. Their magnitudes grow
exponentially with F in the tunneling regime, and continue to
grow, but less rapidly, in the over-the-barrier regime.

Having discussed the adiabatic channels, we now turn to
the coefficient functions fν(η) in the expansion (15). These
functions satisfy Eqs. (16) and the outgoing-wave boundary
conditions (19). Figure 6 illustrates the behavior of fν(η) for
two values of F . Note that for the 1sσ state at β = 90◦ these
functions for channels with odd m identically vanish, because
the SS eigenfunction in this case is even with respect to the yz

plane. This explains the absence of channel (0,1) in the figure.
Also note that for both values of F channel (0,0) dominates
in the expansion (15). For F = 0, the functions fν(η) are
localized in the potential well and rapidly decay beyond
η ≈ 5. For F > 0, they become delocalized. Their oscillatory
behavior in the region η � 10 represents the outgoing wave
described by Eq. (19). The oscillations of the real and
imaginary parts are shifted in phase by π/2, in accordance
with Eq. (19). In the tunneling regime the amplitude of
the outgoing wave is exponentially small in F [4], but in
the over-the-barrier regime shown in the figure it is similar
to the values of fν(η) inside the potential well. By comparing
fν(η) at large η with Eq. (19) the asymptotic coefficients fν are
obtained. Figure 7 illustrates the behavior of fν as functions
of F . These coefficients are complex and their phase depends
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FIG. 3. (Color online) Channel function �ν(ξ,ϕ; η) for the lowest adiabatic channel ν = (0,0), as in the top row of Fig. 2, but for F = 0.3.

on F . Their absolute value squared gives the partial rate for
ionization into the corresponding channel [4]. The ionization
into channel (0,0) is seen to be dominant in the interval of F

considered.
We finally discuss the total SS eigenfunction ψ(r). It is

given by Eq. (15) as a function of parabolic coordinates
(ξ,η,ϕ). To illustrate its behavior in a two-dimensional figure,
we average it over ϕ,

ψ̄(ξ,η) = 1

2π

∫ 2π

0
ψ(r) dϕ. (29)

Figure 8 shows this function for F = 0, when ψ(r) coincides
with the unperturbed bound state ψ0(r). In this case ψ̄(ξ,η) is
real and rapidly decays as its arguments grow, as it should be
for a bound state. The decay in ξ and η can be related to the
corresponding behavior of the channel functions �ν(ξ,ϕ; η)
and coefficient functions fν(η) shown in Figs. 2 and 6,
respectively. Figure 9 shows ψ̄(ξ,η) for F = 0.3. Now the
function is complex. It still decays in ξ , but has an outgoing
wave as η → ∞. Its oscillations approximately reproduce the
behavior of f00(η) shown in Fig. 6, because channel (0,0)
produces the dominant contribution to Eq. (15) in the present
case.
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FIG. 4. (Color online) Asymptotic eigenvalues βν [see Eqs. (12)]
as functions of F for the four lowest adiabatic channels ν = (nξ ,m)
in the 1sσ state at the orientation angle β = 90◦.

2. Transverse momentum distribution

We now turn to the discussion of the TMD for the 1sσ state.
We consider P (k⊥) defined by Eq. (25) as a function of either
Cartesian (kx,ky) or polar (k⊥,ϕk) coordinates in the plane of
the transverse momentum k⊥ [the definitions are given below
Eq. (22)]. The TMDs for atomic potentials in states with a
certain value of the projection of the angular momentum on
the field discussed in Ref. [2] are isotropic, i.e., do not depend
on ϕk . Here we consider two-dimensional distributions in the
plane k⊥. To understand the shape of the TMD, it is helpful
to recall asymptotic results defining its behavior in the limit
F → 0. In the leading-order approximation of the WFAT the
TMD is given by [4]

Pas(k⊥) = (2 − δm0)�as
4π

F

[
φ

(0)
0m(k2

⊥/F )
]2

×
{

cos2(mϕk), even states,

sin2(mϕk), odd states,
(30)

where �as is the ionization rate,

�as = (2 − δm0)|g0m(β)|2W0m(F ). (31)
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FIG. 5. (Color online) Asymptotic eigenfunctions φν(ξ ) [see
Eqs. (12)] for the same four adiabatic channels as in Fig. 4. Solid
(dashed) lines: results for F = 0 (F = 0.3).
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FIG. 6. (Color online) Coefficient functions fν(η) in Eq. (15) for
the three lowest adiabatic channels ν = (nξ ,m) contributing to the
expansion [channel (0,1) does not contribute] in the 1sσ state at the
orientation angle β = 90◦. Solid (dashed) lines: results for F = 0
(F = 0.3).

Here g0m is the asymptotic coefficient (which for the
present nonpolar molecule coincides with the structure
factor [17–19]),

g0m(β) = η1+|m|/2−Z/�e�η/2

×
∫ ∞

0

∫ 2π

0
φ

(0)
0m(ξ )

e−imϕ

√
2π

ψ0(r)dξdϕ

∣∣∣∣
η→∞

, (32)
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FIG. 7. (Color online) Asymptotic coefficients fν in Eq. (19) as
functions of F for the same channels as in Fig. 6.
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FIG. 8. (Color online) SS eigenfunction averaged over ϕ [see
Eq. (29)] in the 1sσ state at the orientation angle β = 90◦ in the
field-free case, F = 0.

W0m(F ) is the field factor,

W0m(F ) = �

2

(
4�2

F

)2Z/�−|m|−1

exp

(
−2�3

3F

)
, (33)

and m is the azimuthal quantum number for the dominant
ionization channel. In this approximation the ionization rate is
given in terms of the TMD by

�as =
∫

Pas(k⊥)
dk⊥

(2π )2
. (34)

As a particular case of Eq. (30), one obtains the well-known
isotropic Gaussian shape of the TMD for even states with
m = 0 [20]

Pas(k⊥) = �as
4π�

F
exp

(
−�k2

⊥
F

)
. (35)

For the present state the dominant ionization channel has m =
0, so Eq. (35) applies.

These equations show that the magnitude of the TMD is
proportional to the ionization rate, and hence rapidly varies
with F . To bring the vastly different results for the different
values of F to a common scale, we divide P (k⊥) by

N = F−1
∫

P (k⊥) dk⊥, (36)
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FIG. 9. (Color online) Same as in Fig. 8, but for F = 0.3.
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FIG. 10. (Color online) Normalized TMD P (k⊥)/N [see Eqs. (25) and (36)] as a function of the scaled transverse momentum k⊥/F 1/2

for the 1sσ state at several representative orientation angles β and fields F .

and present thus defined normalized TMD as a function of
the scaled transverse momentum k⊥/F 1/2. As follows from
Eq. (34), within the WFAT the normalization factor (36) is
given by Nas = (2π )2F−1�as. Then from Eq. (30) one obtains
that in the weak-field limit P (k⊥)/N as a function of k⊥/F 1/2

should not depend on F . Another goal of the normalization
and scaling is to reveal a departure of the exact results from
this prediction of the WFAT.

Figure 10 presents normalized TMDs at four orientation
angles β and two values of F . At all orientations, the TMDs
look almost isotropic and have quite similar Gaussian-like
shapes, in accordance with Eq. (35). However, a more careful
inspection of the figure can detect some differences. To explore
the differences, we show in Fig. 11 cuts of the TMDs as
functions of k⊥/F 1/2 along the ray ϕk = 0. For comparison, we
also show the WFAT results obtained from Eq. (35) and divided
by Nas. For the weaker field F = 0.05, the exact results are in
close agreement with Eq. (35), although there still is a small
difference that depends on β. For the stronger field F = 0.3,
the difference is more pronounced. One obvious strong-field
effect is that the widths of the TMDs measured at half height
become smaller. This is explained [2] by the role of the field
term Fξ 2/4 in Eq. (12a). This term makes the functions φν(ξ )
shrink towards ξ = 0 as F grows (see the left column in Fig. 5).
Therefore the asymptotic channel functions (13b) also shrink
in ξ , which reduces the width of the TMD amplitude (24). We
note that although the shapes of the normalized TMDs are in
good agreement with the predictions of the WFAT, there is a
big difference between the absolute magnitudes. For F = 0.3,
for example, Eq. (35) overestimates the values of P (k⊥) by
about a factor of ten. This difference, however, originates from
the difference between �as and the exact ionization rate � (see
Fig. 2 in Ref. [3]) and amounts to a common factor; it results
in the different values of Nas and N and is canceled in the
normalized representation.

There is also another strong-field effect, which manifests
itself in the anisotropy of the TMDs at nonzero β (for the
present state at β = 0◦, the TMD remains isotropic for all

fields). To make this anisotropy visible, we subtract from
P (k⊥) its average over ϕk ,

P̄ (k⊥) = 1

2π

∫ 2π

0
P (k⊥) dϕk, (37)
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FIG. 11. (Color online) Cuts of the normalized TMDs shown in
Fig. 10 along the ray ϕk = 0. Dashed (black) lines: the leading-order
WFAT results obtained from Eq. (35) divided by Nas.
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P̄ (k⊥)]/N [see Eq. (37)] of the TMDs shown in Fig. 10.

and again divide the difference by N . The results are shown in
Fig. 12. The subtraction eliminates the isotropic contribution
from the dominant channel (0,0) and reveals small contribu-
tions from higher channels with nonzero m, which depend on
ϕk . The anisotropy of the TMD reflects the symmetry of the SS
eigenfunction. For all orientations, the SS is even with respect
to the xz plane, and so is the TMD. At small β, the main
correction to the dominant isotropic term in Eq. (24) comes
from channel (0,1), whose contribution is ∝ cos ϕk . But at
β = 90◦ the coefficient of this term vanishes, because at this
orientation the SS acquires an additional symmetry—the SS
eigenfunction is even with respect to the yz plane. In this case
the main correction comes from channel (0,2) and is ∝ cos 2ϕk .
Figure 12 illustrates this evolution of the anisotropic part of the
TMD with the variation of β. It also shows that the magnitude
of the anisotropic part grows with F .

To summarize, although the TMDs shown in Fig. 10
look like what one would expect from Eq. (35), there exist

strong-field effects resulting in the deviation of their magni-
tudes and shapes from the predictions of the leading-order
WFAT [4]. The difference in magnitudes is accounted for by
the difference between the exact and WFAT ionization rates; it
grows with F and becomes large for F � Fc. The difference
in shapes is seen in a smaller width of the TMD and the
appearance of anisotropy. For the 1sσ state, these deviations,
however, remain rather small even for an over-the-barrier field
F = 0.3.

B. Excited 2 pπ± states

We now consider the 2pπ± states. For F = 0 these states
are degenerate. Their energy in the present soft-core model is
E0 = −0.418 947 [21], which is again slightly higher than the
corresponding energy −0.428 772 for ε = 0. For the 2pπ+
state at β �= 0◦, the dominant channel is (0,0) and the critical
field estimated using Eq. (27) is Fc = 0.029. For the 2pπ+
state at β = 0◦ and the 2pπ− state at any β, the dominant
channel is (0,1) and the critical field is Fc = 0.042. We discuss
the TMDs for these states in the interval of fields up to F =
0.07, which is well above the critical fields.

We first consider the even 2pπ+ state. Figure 13 shows the
normalized TMDs for this state at several representative values
of the orientation angle β and field F . The main difference
from the results for the 1sσ state shown in Fig. 10 is that
now the TMD changes its shape as β and F vary. For the
parallel geometry, β = 0◦, the dominant channel is (0,1). As
follows from Eq. (30), the TMD in this case is ∝ cos2 ϕk . Its
nodal line at ϕk = ±π/2 reflects the nodal plane yz of the SS
eigenfunction. At sufficiently large angles β for a given field F ,
the dominant channel is (0,0). Then the TMD becomes almost
isotropic and acquires a Gaussian-like shape, in accordance
with Eq. (35). This is the case for β = 60◦ and 90◦. The change
of the dominant channel for a given F occurs at a critical angle
βc(F ) ∝ F 1/2 [3,17]. At β ≈ βc(F ), the contributions from
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-3

-1.5

0

1.5

3

-3

-1.5

0

1.5

k
y
/F

1
/
2

(a
.u

.)

-3 -1.5 0 1.5
-3

-1.5

0

1.5

-3 -1.5 0 1.5 -3 -1.5 0 1.5

kx/F
1/2 (a.u.)

-3 -1.5 0 1.5

F
=

0
.0

1
5

F
=

0
.0

5
0

0.00

0.15

0.30

-3 -1.5 0 1.5 3

F
=

0
.0

7
0

FIG. 13. (Color online) Normalized TMD P (k⊥)/N as a function of the scaled transverse momentum k⊥/F 1/2 for the 2pπ+ state at
several representative orientation angles β and fields F .
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FIG. 14. (Color online) The asymptotic coefficients fν in
Eq. (19), squared and normalized, as functions of F for the 2pπ+

state.

channels (0,0) and (0,1) to the ionization flux are comparable.
The interplay of these competing ionization channels causes
the rapid variation of the shape of the TMD seen in the results
for β = 5◦ and 30◦.

Figure 14 illustrates the same interplay from a different
side. The relative role of the different channels in Eq. (24)
is determined by the coefficients fν . The figure shows the
behavior of these coefficients, squared and properly normal-
ized, as functions of F . We consider the same values of β

as in Fig. 13 except for β = 0◦, because in this case f00 = 0
for all values of F . At all β, only channels (0,0) and (0,1)
produce non-negligible contributions to the TMD. At β = 5◦,
their contributions are comparable. Which of the channels
dominates depends on F . The crossover occurs at F ≈ 0.033;
thus, for this field the critical angle is βc = 5◦. At β = 30◦,
channel (0,0) is dominant in the interval of F considered, but
the contribution from channel (0,1) is still appreciable. As
β grows, the relative role of channel (0,1) decreases, and at
β = 90◦ channel (0,0) remains the only dominant channel.

To compare the TMDs shown in Fig. 13 with the WFAT,
we again consider their cuts along the ray ϕk = 0. The cuts are
shown in Fig. 15. The WFAT results are obtained from Eq. (30)
for even states with m = 1, for β = 0◦, and with m = 0, for
the other values of β. At β = 0◦, 60◦, and 90◦, the situation
is similar to the case of the 1sσ state. The agreement between
the normalized exact results and the WFAT is generally good,
although there is some difference in the shapes, which grows
with F . At β = 5◦ and 30◦, the exact and WFAT results
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FIG. 15. (Color online) Cuts of the normalized TMDs shown in
Fig. 13 along the ray ϕk = 0. Dashed (black) lines: the leading-order
WFAT results obtained from Eq. (30) divided by Nas.

look quite different, except for the weakest field considered
F = 0.015 at β = 30◦. The difference is explained by the fact
that in the leading-order approximation of the WFAT only
the contribution from the dominant ionization channel can
be retained. This approximation obviously fails in situations
where there is no a single dominant ionization channel. This
is generally the case, e.g., for π+ states of linear molecules
at small angles β. To include the contributions from both
competing channels (0,0) and (0,1), one must simultaneously
include the first-order corrections to channel (0,0), which have
the same order in F [5]. Such an analysis of the present TMDs
within the WFAT is a subject for future work [22].

Figures 16 and 17 present TMDs and their cuts for the odd
2pπ− state at several values of β and F . For this state at any β,
the plane xz is the nodal plane of the SS eigenfunction, so the
cuts are made along the ray ϕk = π/2. At β = 0◦, the TMD for
the 2pπ− state can be obtained from that for the 2pπ+ state
by a rotation in the k⊥ plane through the angle π/2, therefore
the top panels in Figs. 15 and 17 actually show the same cuts.
In this case the TMDs shown in Fig. 16 are ∝ sin2 ϕk , because
of the symmetry of the state. The dominant ionization channel
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FIG. 16. (Color online) Normalized TMD P (k⊥)/N as a function of the scaled transverse momentum k⊥/F 1/2 for the 2pπ− state at
several representative orientation angles β and fields F .

for the present state is (0,1), so this dependence on ϕk should
approximately hold for all values of β, according to Eq. (30).
This is indeed the case. In general, the leading-order WFAT
predicts the shape of the TMDs in as good agreement with the
exact results as was the case for the 1sσ state. There are some
deviations that, however, remain small for the values of F
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FIG. 17. (Color online) Cuts of the normalized TMDs shown in
Fig. 16 along the ray ϕk = π/2. Dashed (black) lines: the leading-
order WFAT results obtained from Eq. (30) divided by Nas.

considered. Regarding the absolute magnitudes of the TMDs,
the conclusion made in the end of Sec. III A 2 can be repeated
here.

IV. CONCLUSION

The implementation of the method of adiabatic expansion in
parabolic coordinates, developed in Refs. [2–4] for calculating
one-electron atomic and molecular SSs in a static uniform
electric field, is extended to the calculation of the normalized
molecular SS eigenfunction. This enables us to calculate
TMDs for a general class of soft-core molecular potentials,
which can be used to model arbitrarily oriented polyatomic
molecules. The formulation of the method is summarized and
its implementation is illustrated by calculations for the 1sσ

and 2pπ± states of a soft-core H2
+. In contrast to the atomic

case [2], when the TMD is isotropic and depends only on the
absolute value of the transverse momentum, in the molecular
case it depends also on the direction of the momentum and
generally exhibits a rich structure reflecting the symmetry of
the unperturbed ionizing orbital. The results are compared with
the predictions of the WFAT [4]. While for the 1sσ and 2pπ−
states the shape of the TMDs is robust to the variation of field
F or the orientation angle β, for the 2pπ+ state it undergoes a
rapid transformation at small β. Such a behavior is explained
within the WFAT by the existence of two competing ionization
channels. Since TMD defines the photoelectron momentum
distribution within the adiabatic theory [8], we believe that
this finding should have implications in strong-field physics.

As was already stated in the Introduction, the SS eigenvalue
and TMD amplitude are two major properties characterizing
the interaction of atoms and molecules with a static electric
field. Accurate numerical methods to calculate these proper-
ties, like the one developed in Refs. [2–4] and the present
paper, are needed for a variety of applications. In particular,
the present method provides benchmark results required to
confirm the validity and gauge the accuracy of the WFAT
[4,5,22] in the tunneling regime, and becomes indispensable
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for calculating Stark shifts, ionization rates, and TMDs in the
over-the-barrier regime. But the most interesting application
of the method, the one for which it was actually developed, is
in the adiabatic theory [8]. Now the theory can be implemented
for molecules, and work in this direction is in progress.
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