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The superadiabatic quantum driving, producing a perfect adiabatic transfer on a given Hamiltonian by
introducing an additional Hamiltonian, is theoretically analyzed for transfers within a three-level system. Our
starting point is the stimulated Raman adiabatic passage, realized through different schemes of laser pulses. We
determine the superadiabatic correction for each scheme. The fidelity, robustness, and transfer time of all the
superadiabatic transfer schemes are discussed. We derive that all superadiabatic corrections are based on a π - (or
near-π )-area pulse coupling between the initial and final states. The benefits in the protocol robustness overcome
the difficulties associated to the actual implementation of the three-level superadiabatic transfer.
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I. INTRODUCTION

The ability to accurately control a quantum system is a
fundamental requirement in many areas of modern science
ranging from quantum information processing and coherent
manipulation of quantum systems to high-precision measure-
ments. Very often the quantum control aims at reaching a given
target state, as in the preparation of a given atomic or molecular
state, or the cooling of atomic ensembles and nanomechanical
oscillators. The optimum strategy designed for a given task
complies with the requirements of a nearly perfect fidelity of
the final state, of an operation speed close to the quantum speed
natural lower bound limit rooted in the Heisenberg uncertainty
principle, and finally of robustness against imperfections in the
quantum control protocol.

Superadiabatic [1,2] or transitionless [3–5] protocols and
shortcuts to adiabaticity [6] have recently received much
attention for the realization of the above targets. In the
superadiabatic or transitionless protocols the controlled system
follows perfectly the instantaneous adiabatic ground state of
a given Hamiltonian following the application of an ad hoc
additional Hamiltonian. The shortcuts to adiabaticity are based
on the preparation of the controlled system into eigenstates of
the Hamiltonian invariants that characterize all the transforma-
tions of the given Hamitonian. The superadiabatic protocols
were recently tested on two-level systems: an energy-level
anticrossing for a Bose-Einstein condensate loaded into an
optical lattice [7–9] and the magnetic resonance of a one-half
spin [10]. Those experiments demonstrated that superadiabatic
protocols realize quantum fidelity equal to 1, speed close to the
quantum limit, and robustness against parameter variations,
making them useful for practical applications. Protocols
based on the Hamiltonian invariants have not been tested
experimentally so far.

The theoretical treatment for the superadiabatic transfor-
mations [2] provides a quite general approach valid for any
multilevel system. The present work applies the superadiabatic
transformation to the population transfer in a three-level
system. The process of stimulated Raman adiabatic passage
(STIRAP) allows us to produce an adiabatic passage with the
use of two constant frequency suitably delayed laser pulses
[11,12]. The high fidelity requirement is achieved using large
pulse areas, i.e., large average Rabi frequencies and long

interaction times. For several applications this requirement is
a critical disadvantage. Superadiabatic STIRAP (sa-STIRAP)
protocols allow a perfect three-level transfer without the need
of intense pulses or long transfer times.

We determine several sa-STIRAP protocols, generalizing
the previous investigations of Demirplak and Rice [3,4] and of
Chen et al. [13]. The fidelity of the three-level STIRAP and
sa-STIRAP protocols, their robustness against variations of the
different parameters, and their transfer speeds are calculated.
Our analysis demonstrates that any sa-STIRAP configuration
requires the application of an additional pulse having a π (or
near-π ) area producing a direct transfer between the initial
and final states, as stated in Refs. [13–15] for Gaussian
laser pulses. We demonstrate that a very high fidelity can
be reached even releasing that requirement. The analysis of
fidelity and robustness is applied also to another scheme
of three-level transfer based on the Hamiltonian invariants
recently developed by Cheng and Muga [16]. Our attention is
focused on quantum computation applications of three-level
systems where fidelities close to 1 within one part in a thousand
is required.

Section II introduces the three-level system, the standard
STIRAP laser scheme, and also the protocol developed in
Ref. [16] based on the Hamitonian invariants. Section III
derives the sa-STIRAP Hamiltonian. The realization of the
Hamiltonian matrix element connecting the initial and final
states required to implement the sa-STIRAP is also presented
there. Section IV reports numerical analyses of the important
features, fidelity, losses, robustness, and transfer time for all the
previous introduced protocols. Section V concludes our work.

II. HAMILTONIAN AND STIRAP

A. Three-level Hamiltonian

The basic STIRAP process involves three quantum states,
linked by two time-dependent interactions to be referred to as
pump, at frequency ωp between state |1〉 of energy E1 and
the excited state |2〉 having energy E2, and Stokes interaction,
at frequency ωs , between the intermediate state |2〉 and the
final target state |3〉 having energy E3. Two different energy
level configurations will be examined, the ladder one with
E3 > E2 and the � one with E3 < E2. The Hamiltonian
within the rotating wave approximation [11,17]) reads as in the
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following:

H 0(t) = �

2

⎛
⎝ 0 �p(t) 0

�p(t) 2�p �s(t)
0 �s(t) 2�3

⎞
⎠, (1)

with �p and �s the pump and Stokes Rabi frequencies.
The detunings from resonance are defined by �p = ωp −
(E2 − E1)/�, �s = ωs − (|E3 − E2|)/�, and �3 = �p + �s

for the ladder configuration, and �3 = �p − �s for the �

configuration.
Since the phases of the pump and Stokes fields can be

included into the |1〉 and |3〉 definitions without loss of
generality, the Rabi frequency will be chosen real, except in the
Appendix. We define an effective Rabi frequency �0, denoted
as adiabatic energy in [18],

�0(t) =
√

�p(t)2 + �s(t)2. (2)

Population losses with a �2 rate from the |2〉 intermediate level
will be introduced into our model. We will analyze the case of
an open system with the |2〉 state decaying to a state external
to the three-level system. That represents an example of the
sa-STIRAP strength to eliminate all kinds of losses.

For the transfer process of our interest it is essential to apply
the �3 = 0 two-photon resonance condition, and this case will
be here examined. The three-level analysis can be written in a
simpler form by defining

tan θ (t) = �p(t)

�s(t)
, tan φ(t) = �0(t)

�p +
√

�2
p + �0(t)2

, (3)

with

θ̇ (t) = �̇p(t)�s(t) − �p(t)�̇s(t)

�0(t)2
. (4)

The Hamiltonian eigenvalues are written as

λ0(t) = 0,

λ−(t) = −�

2
�0(t) tan φ(t), (5)

λ+(t) = �

2
�0(t) cot φ(t)

and the instantaneous eigenvectors are [11,19]

|a0(t)〉 =
⎛
⎝ cos θ (t)

0
−sin θ (t)

⎞
⎠,

|a−(t)〉 =
⎛
⎝sin θ (t) cos φ(t)

−sin φ(t)
cos θ (t) cos φ(t)

⎞
⎠, (6)

|a+(t)〉 =
⎛
⎝sin θ (t) sin φ(t)

cos φ(t)
cos θ (t) sin φ(t)

⎞
⎠.

As the three-level key feature, the |a0(t)〉 eigenstate is a dark
state with zero projection on state |2〉.

B. STIRAP

The STIRAP protocol allows us to produce an efficient
transfer from |1〉 as initial state to |3〉 as final state [11,12]
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FIG. 1. (Color online) Time dependencies of the �p and �s

STIRAP exponential pulses (line 2 of Table I) and of the �d

sa-STIRAP correction. �T = 1 in the dimensionless units of Eq. (26).

following the evolution of the |a0〉 dark state. Within the (ti ,tf )
time interval the pump and Stokes lasers are applied as pulses
satisfying the well-known counterintuitive sequence with �s

first and �p later, as in Fig. 1.
We consider the STIRAP pulses listed in the top part of

Table I, most of them written as

�p(t) = �peakf

(
t − τ

T

)
, �s(t) = α�peakf

(
t + τ

T

)
,

(7)

where f (t) is a pulse envelope having unit maximum value,
�peak is the peak Rabi frequency, 2τ is the delay between
pulses, and T is the pulse width. α is a scaling parameter,
smaller than 1, introduced for two protocols of Table I
where the �s maximum is smaller than the �p one. The
counterintuitive sequence condition imposes τ > 0. Table I
includes the sin-cos protocol introduced in Ref. [18] and
rederived in Ref. [16] through the Hamiltonian invariant
approach. Few protocols, for instance the exponential of line 2
and the sin-cos of line 4, have finite Rabi frequencies applied at
initial or final times. For these protocols, outside the STIRAP
time interval �s and �p should be adiabatically switched
on/off, respectively.

The Rabi frequencies of the above protocols satisfy the
following relations:

lim
t→ti

�p(t)

�s(t)
= lim

t→ti
tan θ (t) = ε1,

(8)

lim
t→tf

�s(t)

�p(t)
= lim

t→tf
cotan θ (t) = ε2,

with ε1,ε2 small quantities, equal to zero for protocols on top
of Table I and different from zero for those on the bottom. The
Rabi frequencies’ temporal dependence implies

lim
t→ti

θ (t) = ε1, lim
t→tf

θ (t) = ±π

2
− ε2. (9)

Thus within the (ti ,tf ) time interval, θ (t) varies from ε1 to
±π

2 − ε2. For ε1 = ε2 = 0 the |a0(t)〉 dark state varies from |1〉
to |3〉, while for ε1,ε2 �= 0 the |a0(t)〉 wave function contains at
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TABLE I. Temporal dependencies of �p/�peak and �s/�peak in STIRAP schemes, and of � in sa-STIRAP schemes. In last column the
ε1,ε2 deviations of �d from a perfect π area pulse. For sin4 pulses �p and �s are different from 0 in the (τ < t < τ + T ) and (−τ < t < T − τ )
intervals, respectively; for sin-cos pulses both are different from 0 for (0 < t < T ).

�p(t)/�peak �s(t)/�peak �d (t) (ε1,ε2) Ref.

e−[(t−τ )/T ]2
e−[(t+τ )/T ]2

4τ [T 2cosh( 4τ t

T 2 )]−1 (0,0) [18]

(1 + e−t/T )−1/2 (1 + e+t/T )−1/2 [2T cosh ( t

2T
)]−1 (0,0) [18]

sin4 π (t−τ )
T

sin4 π (t+τ )
T

π

T
sin 2τπ

T
(cos 2πτ

T
− cos 2πt

T
)3{sin8 [ π

T
(t − τ )] + sin8 [ π

T
(t + τ )]}−1 (0,0) [19]

sin [ 1
2 arctan t

T
+ π

4 ] cos [ 1
2 arctan t

T
+ π

4 ] T [t2 + T 2]−1 (0,0) [20,21]

sin ( πt

2T
) cos ( πt

2T
) πT −1 (0,0) [16,18]

1
T

sech t

T

α

T

√
(1 − tanh t

T
) 4αet/T [T

√
2(α2 + e2t/T (2 + α2))

√
1 + e2t/T ]−1 (0,

√
2α) [22]

1
T

√
(1 − tanh t

T
) sech t

T

α

T
(1 − tanh t

T
) 4αet/T [T

√
2(α2 + e2t/T (2 + α2))

√
1 + e2t/T ]−1 (0,

√
2α) [22]

sech t−τ

T
sech t+τ

T
2 sinh 2τ

T
T −1[1 + cosh 2t

T
cosh 2τ

T
]−1 (e−2τ/T e−2τ/T ) [18]

initial and final times both |1〉 and |3〉 contributions, therefore
a small coherence between those states. We have not included
in our analysis other protocols based on the presence of a large
initial three-level coherence as in [16,21], and of higher-order
trapping states as in Ref. [21].

The local adiabaticity condition for a transfer via the |a0〉
eigenstate is [11,23]

|θ̇(t)| � 1
2

∣∣�p ±
√

�2
p + �0(t)2

∣∣. (10)

By assuming �p(t) � �p(t),�s(t), a global adiabaticity
condition is derived by time averaging Eq. (10) over the
τ characteristic time of the �p(t) and �p(t) overlap. For
the pulses of Eq. (7) using Eq. (9) the global condition
becomes

�peakτ � 1. (11)

III. SA-STIRAP PROTOCOLS

A. Hamiltonian

Following Refs. [1–5] the superadiabatic approach requires
the application of a total Hamiltonian

H (t) = H 0(t) + H 1(t), (12)

with the superadiabatic correction

H 1(t) = i�
∑

n

[|∂tn〉〈n| − 〈n|∂tn〉|n〉〈n|] (13)

determined from the instantaneous eigenvalues |n(t)〉 =
(|a0〉,|a−〉,|a+〉).

By applying H (t) the system evolution will follow exactly
the instantaneous eigenstate of the H 0 STIRAP Hamiltonian.
If the system initial state is in the dark one, the system will
remain in that dark state at all times. The adiabatic following
of the STIRAP H 0(t) eigenstates takes place for any choice
of the protocol parameters, even with very small values of
the applied pump and Stoke fields, and in arbitrary short
time.

Using Eqs. (6) the Hermitian H 1 Hamiltonian becomes

H 1(t)

= �

⎛
⎝ 0 iφ̇(t) sin θ (t) iθ̇ (t)

−iφ̇(t) sin θ (t) 0 −iφ̇(t) cos θ (t)
−iθ̇ (t) iφ̇(t) cos θ (t) 0

⎞
⎠.

(14)

with the matrix elements given by

φ̇(t) sin θ (t) = �p(�̇p�0 − �p�̇0)

2�0
(
�2

p + �2
0

) , (15)

φ̇(t) cos θ (t) = �s(�̇p�0 − �p�̇0)

2�0
(
�2

p + �2
0

) , (16)

and θ̇ (t) given by Eq. (4). For �̇p(t) = 0 the above equations
reduce to those reported in Ref. [13]. For real phases of the
pump and Stokes Rabi frequencies, all the H 1 elements are
purely imaginary; for not-real phases see the Appendix.

The H 1
12(t) and H 1

23(t) matrix elements represent a correc-
tion to the pump and Stokes pulses. They impose a phase
relation between their Rabi frequencies and modify their
temporal dependence. These matrix elements vanish in the
trivial case �p(t) = �s(t) = �0(t) = 0,�p(t) �= 0, or in the
more interesting case of

�p(t) = C�0(t). (17)

Here C is any constant, also zero, leading to the convenient
choice of �p(t) a constant equal to zero for annulling those
corrections.

The most interesting H 1
13(t) matrix element couples directly

the initial and final states. It will be written as

H 1
13(t) = �

i�d (t)

2
, (18)

having defined the detuning pulse as

�d (t) ≡ 2θ̇ (t). (19)

Such definition was introduced in Ref. [14] and analyzed
in Ref. [21] because in the |an(t)〉 basis, �d (t) represents
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a detuning energy of the |a0(t)〉 dark state. In the |1,2,3〉
basis i�d (t) represents a Rabi frequency connecting states
|1〉 and |3〉. Because the H 1 Hamiltonian is written within
the rotating-wave approximation, the i�d Rabi coupling is
created by a field oscillating at frequency ωp − ωs in the �

configuration, and frequency ωp + ωs in the ladder one. The
�d (t) functions associated to the different STIRAP pulses
are reported in the last column of Table I, and that for the
exponential pulses is plotted in Fig. 1.

If a proper time dependence of �p(t) and �s(t) could be
found such that the detuning pulse, i.e., H 1

13(t), is identically
zero, a superadiabatic evolution of the system could be
produced only by changing the shape of the pump and Stokes
fields. But this is not the case because �d (t) = 0 only if

�p(t) ∝ �s(t). (20)

For this noncounterintuitive configuration the |a0(t)〉 dark state
does not link anymore the |1〉 and |3〉 states. The Appendix
deriving �d (t) in the presence of a time dependence of the
pump and Stokes field phases demonstrates that also in that
case the H 1

13(t) = 0 requirement cannot be satisfied. While the
key role of θ̇ in controlling the nonadiabaticity of STIRAP was
pointed out by several authors, see [18,21], we derive that the
θ̇ Rabi frequency coupling between initial and final states is
strictly required in the sa-STIRAP realization.

The time dependence of �d (t), i.e., θ̇ (t), is determined
by Eq. (4). Using Eq. (9) for our STIRAP pulses, that time
dependence leads to

∫ tf

ti

�d (t)dt =
∫ tf

ti

2θ̇ (t)dt = ±π − 2(ε1 + ε2). (21)

Therefore the �d (t) dependence corresponds to a nearly
π -area pulse, a perfect one for several pulses, for instance the
Gaussian one, as shown by the ε1,ε2 values in the last column
of Table I. Notice that a resonant π -area pulse connecting the
states |1〉 and |3〉 produces a complete population transfer by
itself. Thus we obtain a deceiving result: the superadiabatic
STIRAP realization implies the application of an additional
electromagnetic field that in the π -area pulse configuration
produces by itself the required transfer. As investigated in the
following, the combination of STIRAP and near π -area detun-
ing pulses becomes useful when examining the robustness of
the different transfer schemes. The π -area pulse requirement
was derived in [14,21] while searching for an improvement of
the STIRAP efficiency by adding a low-frequency field. We
have demonstrated that the near π -area pulse condition derives
from the superadiabatic construction and leads to the complete
cancellation of the nonadiabatic losses.

B. Detuning pulse realization

1. Magnetic-dipole in � scheme

Owing to the parity selection rules, in the � systems of
Figs. 2(a) and 2(b) the i�d coupling between the |1〉 and
|3〉 states may be originated by a magnetic dipole interaction
between the J atomic or molecular angular momentum and an
external magnetic field B,

HB = μBgJ J · B, (22)

FIG. 2. In (a) and (b) sa-STIRAP realization in a � system
between the Jg = 1 Zeeman sublevels and an excited Je = 0 state.
(a) Laser configuration defined within a Cartesian |i〉, (i = X,Y,Z)
basis set with linearly polarized lasers and static magnetic field Bx .
(b) Laser configuration defined in the basis of the Jz eigenstates with
π/σ− lasers and a σ+ circularly polarized magnetic radio frequency
field. (c) sa-STIRAP in a ladder system with the the detuning pulse
produced by an additional two-photon transition.

μB being the Bohr magneton and gJ the Landé factor. The
detuning pulse is

i�d (t)

2
= μBgJ

〈1|J · B(t)|3〉
�

. (23)

As proposed in Ref. [14] that magnetic coupling may be
realized for a Jg = 1 ground state and an excited Je = 0 state.
A � system with two ground Zeeman states and the excited
state is selected by properly choosing the laser polarizations.
In the |X〉, |Y 〉, and |Z〉 Cartesian basis of the Jg = 1 state
and for pump and Stokes laser fields linearly polarized along
the y and z axis, the scheme works out with |1〉 = |Y 〉 and
|3〉 = |Z〉, as in Fig. 2(a). A Bx magnetic field along the x axis
produces the imaginary detuning pulse,

〈Y |H13|Z〉 = i�
�d (t)

2
= −iμBgJ Bx. (24)

Another simple realization based on the spherical basis of
the Jg = 1 state is shown in Fig. 2(b) in the presence of a
magnetic splitting between the |Jg,mJ = 0〉 and |Jg,mJ = 1〉
Zeeman sublevels. In this case the pump and Stokes fields have
π and σ− polarizations and the detuning pulse is based on a σ+
circularly polarized resonant radio frequency magnetic field
B in the x-y plane. This field phase should be π/2 shifted in
respect to that of ωp − ωs . The generalization of these schemes
to different atomic configurations is not obvious.

2. Two-photon transition in ladder

In a ladder level scheme the direct interaction between
states |1〉 and |3〉 may take place via a two-photon transition, as
in Fig. 2(c). Two new lasers with Rabi frequencies �1(t) and
�2(t)ei(π/2) are added to the system in order to satisfy the two-
photon resonance. The one-photon resonance is detuned by
�1 from the |2〉 intermediate state. We impose the sa-STIRAP
H 1

13(t) matrix element of Eq. (18) equal to the two-photon Rabi
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FIG. 3. (Color online) Time dependence of the |1,2,3〉 populations for the STIRAP and sa-STIRAP exponential protocols in (a) and (b),
respectively, for �T = 1. �2 = 0 in all cases.

frequency [24] and obtain

i
�d (t)

2
= −�1(t)�2(t)e−i(π/2)

2 · 2�1
= i

�1(t)�2(t)

4�1
. (25)

At fixed �1 a simple choice is to �1(t) = �2(t) =√
2�1�d (t). For an experimental realization of this scheme

two sidebands of the pump and Stokes frequencies at radio
frequencies ωrf and −ωrf , respectively, could be created. In
addition by imposing a 90◦ phase shift of the radio frequency
fields the imaginary sign of the detuning field can be produced.

IV. NUMERICAL ANALYSES

This section derives fidelity, robustness, population loss
from the intermediate state, robustness, and speed-limit for
the STIRAP or sa-STIRAP protocols having ε1 = ε2 = 0.
Four parameters describe the laser and atom evolutions:
(i) the �peakpeak Rabi frequency, (ii) the T laser pulses
duration, (iii) the 2τ delay between pulses measuring their
overlap, and (iv) the �2 decay rate of the |2〉 state. The system
evolution is characterized by a time-scale invariance. Then for
all values of the previous parameters, except for a time-scale
factor, the system evolution is fully defined by three quantities:

�T = �peakT , τT = τ

T
, �T = �2T . (26)

That is easily verified for the Gaussian pulses, and it was
numerically verified also for other pulses. In the following we
will use T = 1 μs as reference time scale, and the presented
plots should be properly scaled for analyzing other pulse
durations.

A. Fidelity

The following fidelity characterizes completely the |�(t)〉
wave-function transfer to the |3〉 state:

F = |〈3|�(tfin)〉|2. (27)

For the �2 = 0 case F > 0.95 values are achieved applying
a STIRAP protocol with area parameter A = �peakτ around
10–20. Therefore the sa-STIRAP protocol is useful mainly at
low values of A, where the STIRAP fidelity greatly depends on
the f (t) temporal dependence. For the exponential pulses of
Fig. 1 with τT = �T = 1 STIRAP produces a maximum final

fidelity around 0.7, as in Fig. 3(a). Instead the sa-STIRAP final
fidelity is 1 for all the τ , �peak values, as in Fig. 3(b).

For a quantum computation target, where F > 0.999
fidelities are required, the STIRAP protocol is not good
enough, as it appears in Fig. 4 for the Gaussian protocol. Its
fidelity is characterized by an oscillating dependence on the �T

parameter, with the required very high fidelities reached only
in narrow parameter regions. A similar oscillating dependence
occurs also for exponential STIRAP pulses, with reduced
oscillation amplitude. For the sin-cos transfer protocol of
Table I Chen et al. [16] presented the following oscillating
dependence of F on the �peak value:

√
F = 1 − sin2 ε

[
1 − cos

(
π

1 sin ε

)]
, (28)

with ε = arccot(�T /π ). This dependence is also shown in
Fig. 4. In all cases the F = 1 maxima appear when the Rabi
oscillations between the system levels are in phase with the
interaction time. The successive maxima are obtained for an
increasing number of Rabi oscillations. A similar oscillating

0 5 10 15 20 25 30 35 40

ΩT

0.80

0.85

0.90

0.95

1.00

F

Sin / Cos
Sin / Cos w loss
Gauss (τT = 1/2)

Gauss (τT = 1/2) w loss
Gauss (τT = 1/3)
Gauss (τT = 1/3) w loss

FIG. 4. (Color online) Fidelity vs �T for STIRAP Gaussian and
sin-cos protocols of Table I, the Gaussian ones with different values
of τT . No loss (�2 = 0) and with loss at �T = 4.
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FIG. 5. (Color online) L STIRAP losses vs τT and �T for
Gaussian pulses with �T = 10.

dependence of the fidelity on the protocol parameters was also
found in Ref. [8] for a nonlinear Landau-Zener sweep.

The introduction of a loss rate for the |2〉 intermediate state
decreases the fidelity because of losses all along the temporal
evolution; see curves in Fig. 4 for the case of an open system.

B. Population loss

In presence of the �2 loss rate the population loss to internal
and external states during the system evolution is an important
parameter of the transfer protocol. For a �2 decay to external
states that loss is given by

L = �2

∫ tf

ti

|〈2|�(t)〉|2dt. (29)

(1 − F ) represents a good approximation to this quantity,
except for population left over in the |1〉 state. Figure 5 reports
L results for Gaussian STIRAP transfers. Optimum transfer,
i.e., L minimum, is produced for large �T values and for an
optimum τT . These losses are totally eliminated in sa-STIRAP
protocols.

C. Robustness

In order to test the sensitivity of the STIRAP and sa-STIRAP
protocols to a (simulated) variation in the control parameters,
we varied the protocol parameters around the optimum value
of the F fidelity.

In the case of �2 = 10/T , i.e., a |2〉 decay rate much greater
than T −1, STIRAP and sa-STIRAP results for Gaussian pulses
are compared in Fig. 6 as a function of τT and �T . The STIRAP
numerical results are in Fig. 6(a) and the bottom surface of (c).
The F > 0.999 requirement is not satisfied in the explored
range of delay and Rabi frequency values. The (a) and (b) plots
evidence out that in the presence of the �2 loss all the fidelity
contours shrink in space and a high fidelity requires larger
Rabi frequencies. Similar F tests for the sa-STIRAP protocol,
assuming the application of the �d pulse, are in Fig. 6(b) and
the top surface of (c), while L losses are plotted in (d). In all
these plots the detuning pulse remains locked at its value for
τT = 1/2, and that demonstrates that very high fidelities, and
very small losses, are reached even if the detuning pulse is not
perfectly matched at the value given by Eqs. (19) and (4). As
a test of the sa-STIRAP robustness, from the area in Fig. 6(b)
we derive that the the F > 0.999 condition is verified when

�τ/τ < 0.35, �T > 2. (30)

FIG. 6. (Color online) F and L vs τT and �T for STIRAP and sa-STIRAP Gaussian pulses at �T = 10. Fidelity F in (a) and
(b) two-dimensional (2D) plots, and in 3D surfaces of (c). Losses L in 2D plot (d). In (a) and bottom surfaces of (c) for STIRAP protocols; in
(b), top surface of (c) and (d) for sa-STIRAP protocols. For the sa-STIRAP’s F deviates from one and L from zero because the detuning pulse
is blocked at its value for τT = 1/2.
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FIG. 7. (Color online) 2D plot of the sa-STIRAP fidelity vs �T

and the detuning pulse area around the π optimal value, for Gaussian
pulses with τT = 0.5 and �T = 1.

In Fig. 7 the fidelity is plotted varying both the detuning
pulse area and the pump and Stokes maximum Rabi frequency.
Those results show that the presence of the pump and Stokes
pulses makes the π -area pulse more robust against a variation
of its area. Finally testing under the same conditions the
robustness of the detuning pulse phase, we found that the
F > 0.999 condition is verified for a detuning phase different
from π less than π/40 in the worst condition of �T ≈ 0.7. At
smaller (larger) �T values the detuning pulse (the pump and
Stokes pulses) dominate the system evolution and the stability
conditions are more relaxed.

The plots of Fig. 4 indicate the limited robustness of the
Gaussian and sin-cos STIRAP protocols produced by the
oscillating behavior: the F > 0.999 condition requires a �T

control around 3%.

D. Protocol quantum speed

We investigate here the time required for the three-level
quantum transfer. We define the three-level quantum transfer
time T 0.9 as the time interval between the 99% occupation
of the initial and the 90% occupation of the final |2〉 state.
This definition does not match the standard one with an initial
total occupation of the |1〉 state [25], in order to deal with
the STIRAP protocols switched on at t = −∞. Our results of
T 0.9 vs the �peak value for the Gaussian protocol are plotted
in Fig. 8. For each data point both the T and τT values were
optimized.

We compare those data to the quantum speed limit required
for the three-level transfer. The previous analyses on the quan-
tum speed limit in two-level systems [7,8,25] have demon-
strated that the quantum speed limit is reached by a NMR-type
π pulse, with constant Rabi frequency. Taking into account our
initial and final conditions on the state occupation for a π pulse
we obtain the following relation between the quantum speed
limit time T 0.9

QSL and the applied Rabi frequency �:

T 0.9
QSL = 2.29

�
. (31)

If � is nonconstant, the denominator of the above equation
should be replaced by its time average. T 0.9

QSL is plotted in Fig. 8
vs the � amplitude of an electromagnetic field producing
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FIG. 8. (Color online) Three-level T 0.9 transfer time vs a charac-
teristic �̃ Rabi frequency. In the top vs �̃ = �peak for the Gaussian
STIRAP protocol with optimized T and τ parameters. In the
center line vs �̃ = �d peak value for the Gaussian or exponential
sa-STIRAP protocols. In bottom line vs the �̃ = � Rabi frequency
of a |1〉 and |3〉 direct coupling for the quantum speed limit, this
limit reached also by the sa-sin-cos protocol with �̃ = �d . �2 = 0
everywhere.

the direct transfer between initial and final states given by
Eq. (19). None STIRAP transfer is faster than the quantum
speed limit. The difference between the quantum speed limit
(QSL) and STIRAP transfer times greatly depends on the
temporal superposition of the pump and Stokes pulses.

The temporal evolution of all sa-STIRAP protocols is
determined by the �d (t) detuning pulse. The associated
transfer time is derived from Eq. (31) by inserting the time
average value of �d

T 0.9 = π
t
f

0.9 − t i0.99∫ t
f

0.9

t i0.99
�d (t)dt

, (32)

where t i0.99 and t
f

0.9 are the initial and final times, respectively,
where fidelity reach those values. Because of the area relation
of Eq. (21) the �d temporal average is very close to π ,
and therefore the transfer time depends on the temporal
evolutions of �d reported in column 3 of Table I. Both
T and τ parameters appear in those evolutions, and for
each protocol the transfer time has a specific dependence
on the parameters. Notice that for the sa-sin-cos protocol,
where a constant �d = π/T pulse is applied (see line 5
of Table I), the speed limit of Eq. (31) is reached. In the
case of the sa-sin4 protocol the transfer time depends on τT

reaching T 0.9 = 1.10(3)T 0.9
QSL at τT = 1/15. For the Gaussian

or exponential pulses T 0.9 = 1.48(3)T 0.9
QSL, independently of

τT . Finally for the sa-sin-cos(arctan) protocol, line 4 of Table I,
not containing the τ parameter, T 0.9 = 2.73(5)T 0.9

QSL.

V. CONCLUSIONS

The present work determines the corrections to the STIRAP
pulses required to produce a superadiabatic transfer with
fidelity equal to 1 in a three-level system. Each STIRAP
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protocol has a different superadiabatic correction. The supera-
diabatic Hamiltonian requires the application of the detuning
pulse as a direct coupling between the initial and final
states. For the � level scheme a magnetic field, and for
the ladder configuration a two-photon transition with laser
fields created as radio frequency sidebands from the pump
and Stokes laser beams, will produce that coupling. That
direct interaction should be applied in a π -area, or near
π -area, pulse configuration, and the application of the detuning
pulse alone could produce the desired transfer. However, we
demonstrate that the combination of STIRAP and detuning
pulse has a robustness much larger than each separate transfer.
The sa-STIRAP transfer occurs within a temporal window
imposed by the applied detuning pulse. Transfer times close
to a three-level quantum speed limit may be reached.

Even if the technical effort, and the energy requirement,
required to realize a sa-STIRAP protocol may be considerable,
its implementation is very useful in quantum driving realiza-
tions with heavy requirements of efficiency and stability. The
application of additional electromagnetic fields is required,
for instance, also in the robust composite stimulated Raman
adiabatic passage proposed in Ref. [15]. We conclude that any
gain in fidelity and in stability requires additional resources in
experimental tools and laser power irradiating the sample.
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APPENDIX: DETUNING PULSE WITH PHASE CONTROL
OF PUMP AND STOKES PULSES

This Appendix examines the sa-STIRAP Hamiltonian by
introducing temporal dependencies for the phases of the pump

and Stokes Rabi frequencies:

�p(t) = eiφp(t)|�p(t)|, �s(t) = eiφs (t)|�s(t)|. (A1)

Assuming �p(t) = 0, as in Eq. (17), in order to have H 1(t)12

and H 1(t)23 identically zero, the superadiabatic Hamiltonian
of Eq. (12) for the ladder system becomes

H (t) = �

2

⎛
⎝ 0 �∗

p(t) i�∗
d (t)

�p(t) 0 �∗
s (t)

−i�d (t) �s(t) 0

⎞
⎠, (A2)

and for the � one

H (t) = �

2

⎛
⎝ 0 �∗

p(t) i�∗
d (t)

�p(t) 0 �s(t)
−i�d (t) �∗

s (t) 0

⎞
⎠. (A3)

In a definition of the detuning pulse more general than in
Eqs. (19) and (4), here

�d (t)

2
= �̇p(t)�s(t) − �p(t)�̇s(t)

|�p(t)|2 + |�s(t)|2 for ladder,

(A4)
�d (t)

2
= �̇p(t)�∗

s (t) − �p(t)�̇∗
s (t)

|�p(t)|2 + |�s(t)|2 for �.

For the ladder system the detuning may be written as

�d (t)

2
= ei(φp+φs )[|�p(t)|2 + |�s(t)|2]−1

× [ ˙|�p(t)||�s(t)| − |�p(t)| ˙|�s(t)|
+ i(φ̇s − φ̇p)|�p(t)||�s(t)|]. (A5)

In order to reduce the detuning pulse we obtain an additional
condition on the pump and Stokes phases, φ̇s = ±φ̇p in the
ladder/� schemes respectively, or φ̇s = φ̇p = 0. However also
with that phase control the sa-STIRAP protocol �d cannot be
identically zero.
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