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Model for atomic dielectric response in strong, time-dependent laser fields
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A nonlocal quantum-mechanical model is presented for calculating the atomic dielectric response to a
strong laser electric field. By replacing the Coulomb potential with a nonlocal potential in the Schrödinger
equation, a 3 + 1-dimensional calculation of the time-dependent electric dipole moment can be reformulated
as a 0 + 1-dimensional integral equation that retains the three-dimensional dynamics, while offering significant
computational savings. The model is benchmarked against an established ionization model and ab initio simulation
of the time-dependent Schrödinger equation. The reduced computational overhead makes the model a promising
candidate to incorporate full quantum-mechanical time dynamics in laser pulse propagation simulations.
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I. INTRODUCTION

High intensity ultrashort laser propagation gives rise to a
wide range of phenomena and has been an integral part of
several fields of research over the past few decades, such
as laser-wake-field acceleration [1], generation of terahertz
radiation [2,3], high harmonic generation [4], and atmospheric
filamentation [5–8]. For laser intensities near the ionization
threshold of tenuous propagation media, field and medium
dynamics are strongly nonlinear in the electric field, requiring
numerical simulation for proper treatment. In principle, this
could be accomplished by calculating the self-consistent
evolution of all fields and charges in the system. Consider
for a moment a collection of noninteracting hydrogen atoms:
for each atom with center of mass at position R, we can express
the atomic dipole moment in terms of the relative coordinate,
r′ ≡ r − R:

d(R,t) ≡ −e〈r′(t)〉, (1)

where 〈r′(t)〉 ≡ ∫
d3r′ ψ∗(r′,t)r′ψ(r′,t) is the expectation

value of the electron position relative to R in terms of the
electron wave function, ψ(r′,t). The dielectric contribution
over all of the atoms can be smoothed over some region
and weighted by the local gas density ng(R) to give the
macroscopic polarization density

P(R,t) = ng(R)d(R,t) (2)

that appears as a source term in a propagation equation
for the laser electric field E(R,t); iteratively solving P(R,t)
and E(R,t) allows one to solve for future states of the
system. In practice, simulating laser pulse propagation over
macroscopic distances is complicated by the need to include
quantum-mechanical laser-atom dynamics at atomic scales.
While calculations of this kind have been performed for
single atoms with the time-dependent Schrödinger equation
(TDSE), such simulations generally require supercomputing
resources, and scaling this up to a full three-dimensional (3D)
laser propagation simulation is a task well beyond current
capabilities.

Instead, the “standard” treatment [5,9–11] of material
dielectric response in propagation simulations consists of

breaking the total polarization density in Eq. (2) into separate
terms. In the limit that the laser field is small compared with
the atomic field, a “bound” atomic response is given by a
perturbative expansion in the laser field strength, and terms are
included that are proportional to powers of the laser electric-
field strength, such as P(1) ∝ E and P(3) ∝ E3. For larger field
strengths, electron ionization becomes important, giving rise
to “free” electrons that contribute a plasma response. Laser
induced ionization is a rich subject in itself and has given
rise to many theoretical [12–17] and experimental [18,19]
studies over the years. While such models are based on
various approximations and do not include the time history
of the material response, they are nevertheless employed for
efficiency to calculate terms for plasma response and field
energy lost due to ionization.

The shortcomings of this treatment are reflected in the
fact that several terms are necessary to describe the total
nonlinear polarization density given in Eq. (2). While ab initio
quantum simulations are not possible for the reason stated
above, we explore a nonlocal interaction (NLI) model [20]
that offers a promising alternative: by replacing the Coulomb
potential with a nonlocal potential term in the 3D TDSE, a
computationally inexpensive method can be used to calculate
d(R,t) for a single atom, putting a nonfragmented treatment
of P(R,t) for laser propagation simulations within reach. Our
objectives for this paper are then twofold: present the NLI
model, and motivate its validity. Sections II and III introduce
the formulation of the NLI model and explain the method used
for fast computation. Section IV gives expressions for the
ionization rate, bound-electron probability, and expectation
value of the electron position that are used to benchmark
the NLI model in Sec. V. Finally, Sec. VI briefly outlines
an extension to include an arbitrary number of bound states.
Other detailed analyses are deferred to the Appendix to permit
continuity of the main text.

II. NLI MODEL FORMULATION

We consider a single atom of hydrogen at the origin, such
that R = 0 and r′ = r (the convention used hereafter). The 3D
TDSE for a single electron under the influence of a Coulomb
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potential and subject to a time varying electric field E(t) in the
dipole approximation is

i�
∂

∂t
ψ(r,t) =

[
− �

2

2me

∇2 − Ze2

|r| + eE(t) · r
]

ψ(r,t). (3)

The nonlocal interaction potential (NLI) model is formulated
by replacing the Coulomb potential in Eq. (3) with a nonlocal
potential term

−Ze2

|r| ψ(r,t) → −V u(r)S(t),

where

u(r) ≡ (πσ 2)−3/4 exp(−r2/2σ 2), (4a)

S(t) ≡
∫

d3r u(r)ψ(r,t). (4b)

Here u(r) represents the spatial extent of the binding
potential, while S(t) is the “nonlocal” portion of the potential.
Using the shorthand notation 〈f (r)|g(r)〉 ≡ ∫

d3r f (r)g(r),
it can be seen from Eq. (4a) that u(r) is a normalized
function such that |〈u|u〉|2 = 1 and S(t) = 〈u(r)|ψ(r,t)〉 is
the projection of the time-dependent wave function onto u(r).
We have introduced two free parameters with the above
definitions: V , the normalized binding energy, used to change
the overall strength of the binding potential, and σ , the spatial
extent of the binding potential. These may be chosen to match
the ionization properties of atomic hydrogen, as will be seen
later.

It is not immediately apparent that this is an appropriate
replacement for the Coulomb potential, and a few comments
are in order to motivate this substitution. In the limit σ → 0,
u(r) becomes a δ function and the NLI potential recovers
the familiar local potential term, −λδ3(r)ψ(r,t); while the
δ potential has been considered in 1D treatments of Eq. (3)
[21], the 3D extension produces solutions to ψ(r) that are
singular at the origin. The NLI potential can be considered one
modification of the 3D δ function that permits normalizable
solutions to the wave function. The NLI model has the
desirable features that it is Hermitian, norm-preserving, and
linear in ψ(r,t). However, it is not gauge invariant, and
we have written the Hamiltonian in the form in which the
time-dependent field enters as a potential. The consequences
of the nongauge invariance remain to be explored. For
simplicity, all equations and mathematical expressions in the
remainder of this paper will use the following normalization
convention unless otherwise specified: r/σ → r, �t/meσ

2 →
t , meσ

2V/�
2 → V , and σ 3meeE(t)/�

2 → E(t). These are
identical to atomic units except that all factors of length
are scaled to σ ≡ βa0 (β const) instead of the Bohr radius.
Although this normalization choice hides all factors of the free
parameter σ , for which we have not yet specified the value, it
has the advantage of producing considerably simpler algebraic
expressions than atomic units would produce. Below are the
previously defined quantities in the normalized coordinates, as
well as the modified TDSE. Together, these define the complete

system we wish to solve for a general electric field E(t):

u(r) = π−3/4 exp(−r2/2), (5a)

S(t) =
∫

d3r u(r)ψ(r,t), (5b)

i
∂

∂t
ψ(r,t) =

[
−1

2
∇2 + r · E(t)

]
ψ(r,t) − V u(r)S(t).

(5c)

III. REDUCTION TO 1D INTEGRAL EQUATION

In principle, the system given by Eqs. (5) could be simulated
directly by time evolving the modified Schrödinger equation
with a finite-difference [22], finite-volume [23], or spectral
method [24], and quantities of interest could be obtained
through the usual prescription of operators and expectation
values. This would be a computational task essentially equal
to solving the original TDSE, with no advantage gained
by using the modified binding potential. However, the NLI
model offers a considerably different approach to obtain the
same information. Specifically, we reduce the system given
by Eqs. (5) to an integral equation in time for S(t) without
explicitly calculating ψ(r,t). Quantities of interest, such as
the dipole moment d(t) and the bound probability of the
electron can, in turn, be derived directly in terms of S(t),
thereby eliminating the need to solve for the wave function
altogether.

The computational savings of the NLI model are a direct
result of the fact that no spatial representation for ψ(r,t)
is required to be calculated to obtain information about the
system. By contrast, a typical finite volume treatment of the
TDSE calculates ψ(r,t) on a spatial grid and evolves it at
each point in space over time. Accurate calculation of 〈r(t)〉
requires the spatial domain to be large enough to capture
free-wave-function excursions on the order of the quiver radius
rq = e|EL|/meω

2
L (where ωL and EL are the frequency and

amplitude of the applied field respectively) while maintaining
sufficient spatial resolution to resolve the wave function of
large momentum states. The time domain must resolve the
period of the quantum bound state (typically subfemtosecond),
while extending over the duration of the laser pulse simulation,
often on the order of hundreds of femtoseconds. While still
subject to the same time domain constraints, the NLI approach
lifts the restrictions in the spatial domain entirely, as will be
seen.

A Green’s-function (or propagator) approach will be used to
obtain the integral equation for S(t). We first define G(r,t ; t ′)
as the solution to the equation

[
i

∂

∂t
+ 1

2
∇2 − r · E(t)

]
G(r,t ; t ′) = iu(r)δ(t − t ′), (6)

where we have taken Eq. (5c) and replaced −V S(t) by an
impulse in the time domain, iδ(t − t ′), and the boundary
condition is taken to be G(r,t < t ′; t ′) = 0. Because the
electric potential term −r · E(t) is linear in space, Eq. (6)
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admits a closed-form solution,

G(r,t ; t ′) = 1

π3/4 [1 + i(t − t ′)]3/2

× exp

[
iS0 + iv0 · (r − r0) − |r − r0|2

2 + 2i(t − t ′)

]
.

(7)

The function G(r,t ; t ′) depends on the trajectories of a classical
electron, designated with subscript “0,” subject to field E(t).
Here, r0(t ; t ′), v0(t ; t ′), and S0(t ; t ′), represent the position,
velocity, and action of a classical electron, related through the
coupled ordinary differential equations with associated initial
conditions:

dr0

dt
= v0(t), (8a)

dv0

dt
= −E(t), (8b)

S0(t,t ′) ≡
∫ t

t ′
dt ′′

[
1

2
v2

0(t ′′) − r0(t ′′) · E(t ′′)
]

, (8c)

where

v0(t = t ′; t ′) = r0(t = t ′; t ′) = 0. (8d)

Conceptually, these trajectories describe the path of an
electron “born” at the origin with zero initial velocity at t ′
and subsequently moving under the force of the electric field
until t . With the function G(r,t ; t ′) defined by Eqs. (6) and (7)
we can express the wave function as a convolution,

ψ(r,t) = iV

∫ t

−∞
dt ′G(r,t ; t ′)S(t ′). (9)

To make use of this expression for ψ(r,t), S(t ′) must be
known on the interval −∞ < t ′ � t . For problems of interest,
we will assume that the wave function is in the bound state
and E(t) = 0 for t � 0: this constraint is sufficient to obtain
an analytic expression for S(t ′ < 0), as shown in the next
section. For t > 0 (after the field is present) values of S(t ′) are
calculated with a general expression, obtained in the following
way: on inserting Eq. (9) into Eq. (5b) and integrating over all
space, an integral equation in time for S(t) for general field
E(t) is given by

S(t) = i23/2V

∫ t

−∞
dt ′S(t ′)

exp[iS0(t,t ′) + 
(t,t ′)]
[2 + i(t − t ′)]3/2 , (10)

where


(t,t ′) ≡ 1 + i(t − t ′)
2 + i(t − t ′)

|r0 − iv0|2
2

− 1

2
|r0|2.

Equation (10) will be used to calculate the time dependence
of all quantities of interest, including the dipole moment and
ψ(r,t) via Eq. (9), and as such is the primary computational
task in the NLI model. The time savings over typical
TDSE treatments is manifest by the absence of any spatial
dependence in Eq. (10). One might protest that we have traded
the problem of a large spatial simulation domain for an infinite
time integral, but solving for S(t) via Eq. (10) is more tractable
than it might seem: as with Eq. (9), the explicit form of S(t ′) on
−∞ < t ′ � 0 is obtained with the condition that the electron

is bound on this interval, while subsequent values of S(t)
can be calculated numerically via Eq. (10). A more detailed
discussion of the numerical treatment of Eq. (10) is given in
the Appendix.

IV. PROPERTIES OF THE NLI MODEL

A. Field-free system

To better understand the nonlocal potential, we first exam-
ine the system in the absence of an applied field. For E(t) = 0,
the NLI potential admits a single bound state ψ0(r) with energy
E0 that can be determined as follows: With no applied field,
classical variables r0(t,t ′), v0(t,t ′), and S0(t,t ′) in Eqs. (8)
are identically zero, and Eq. (10) simplifies to a convolution
whose kernel depends only on the time difference (t − t ′),

S(t) = i23/2V

∫ t

−∞
dt ′

S(t ′)
[2 + i(t − t ′)]3/2 . (11)

Solutions of Eq. (11) are of the form S(t) = S0e
−iE0t , where S0

is a complex constant. Inserting this expression into Eq. (11)
results in a transcendental equation for the energy E0 given by

V = 1

4
[1 −

√
2π |E0|e2|E0|erfc(

√
2|E0|)]−1. (12)

The expression in Eq. (12) is plotted in Fig. 1(a). Sufficiently
large values of V correspond to a single bound-state wave
function of the form ψ(r,t) = ψ0(r)e−iE0t and eigenvalue E0.
An expression for the bound-state wave function can be found
by inserting Eq. (7) into Eq. (9) with r0,v0,S0 = 0, and S(t) =
S0e

−iE0t to give

ψ0(r) = i
S0V

π3/4

∫ ∞

0
dt ′

eiE0t
′

[1 + it ′]3/2 exp

[ −|r|2
2 + 2it ′

]
. (13)

The profile of ψ0(r) is plotted in Fig. 1(b) alongside u(r) for
comparison.

B. Dipole moment

With the ultimate goal of finding the polarization density
in mind, we seek a computationally efficient expression
for the atomic dipole d(t) = −〈r(t)〉 expressed in terms of
S(t) without explicit reference to ψ(r,t). We start with the
definitions of the expectation values for normalized position
and momentum,

〈r(t)〉 ≡
∫

d3r ψ∗(r,t) r ψ(r,t), (14)

and

〈p(t)〉 ≡ −i

∫
d3r ψ∗(r,t)∇ψ(r,t), (15)

noting that both 〈r(t)〉 and 〈p(t)〉 are real. A set of ordinary
differential equations relating 〈r(t)〉 and 〈p(t)〉 is obtained by
following the steps used to derive the Ehrenfest relations. The
result is similar to Eqs. (8) with additional terms resulting from
the nonlocal binding potential:

d〈r(t)〉
dt

= 〈p(t)〉 − 2V Im{S(t)∇0S
∗(t)}, (16a)
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FIG. 1. (Color online) (a) Normalized bound-state energy E0 as a function of normalized potential strength V . Sufficiently small V does
not admit a bound state. (b) Normalized profiles for the bound-state wave function ψ0(r) and the NLI function u(r) for parameter values
V = 3.77, σ = 2.494a0 used for modeling atomic hydrogen. (c) The quantity |S0|2 = |〈u(r)|ψ0(r)〉|2 as a function of normalized bound-state
energy: ψ0(r) approaches u(r) in the high-energy limit.

and

d〈p(t)〉
dt

= −E(t) − 2V Re{S(t)∇0S
∗(t)}, (16b)

where

∇0S(t) ≡ i23/2V

∫ t

−∞
dt ′ S(t ′)

r0 + (i − t + t ′)v0

[2 + i(t − t ′)]5/2

× exp[iS0(t,t ′) + 
(t,t ′)], (16c)

using definitions for S0(t,t ′) and 
(t,t ′) given in Eqs. (8c)
and (10) respectively. After S(t) has been found via Eq. (10),
Eqs. (16) can be integrated in time to compute d(t). It is worth
noting that Eqs. (16) depend only on time, having performed
the spatial integration analytically over all space. Calculating
the dipole moment in this way prevents any error introduced by
considering a finite simulation domain, and is computationally
more efficient than representing the wave function on a grid or
with basis modes and computing d(t) directly with Eq. (14).

C. Bound probability and ionization rate

A time-dependent measure of the bound probability is given
by the projection of ψ(r,t) onto the electron’s bound-state
wave function, ψ0(r):

ρ0(t) = |〈ψ0(r)|ψ(r,t)〉|2. (17)

The bound probability is related to the ionization rate w

through the equation

ρ0(t) = ρ0(t0) exp

[
−

∫ t

t0

dt ′ w(t ′)
]

, (18)

or

w(t) ≡ − d

dt
ln[ρ0(t)/ρ0(t0)] . (19)

While this is the most natural expression for the bound
probability, it is not always the easiest to calculate. For this
reason, we introduce two additional definitions for the electron
bound probability. A particularly convenient measure of the
bound probability for the NLI model is defined by projecting

onto u(r) in place of ψ0(r) and normalizing to unity:

ρu(t) ≡ |〈u(r)|ψ(r,t)〉|2
|〈u(r)|ψ(r,t = 0)〉|2 = |S(t)|2

|S(0)|2 , (20)

with associated ionization rate

wu(t) ≡ − d

dt
ln [ρu(t)] = − d

dt
ln

[ |S(t)|2
|S(0)|2

]
. (21)

The values of ρ0(t) and ρu(t) [and hence w(t), wu(t)]
are exactly equal when the electron is entirely bound, i.e.,
before the laser field is introduced. As the atom undergoes
ionization, some fraction of the bound-electron wave function
will transition to the continuum of free states, during which the
projection of ψ(r,t) onto u(r) and ψ0(r) will not in general give
the same result. After the pulse has passed, free components of
the wave function continue to spread out in space, leaving only
the remaining bound wave function to project significantly
onto u(r); free state contributions to ρu(t) are accordingly
reduced, and ρu(t) → ρ0(t) in the long-time limit.

The extent that ρu(t) ≈ ρ0(t) for intermediate times (i.e.,
during the simulation) depends on the similarity of the spatial
profiles of u(r) and ψ0(r). For parameters used to model
atomic hydrogen, the spatial profiles of u(r) and ψ0(r) are
compared in Fig. 1(b). The similarity in profiles suggests that
ρu(t) should be a good approximation of ρ0(t)—this is later
confirmed with simulation results in Sec. V A. Moreover, the
accuracy of ρu(t) improves for larger values of the bound-state
energy; if E0 is increased (achieved by increasing V ), the
bound wave function ψ0(r) more closely conforms to u(r), and
|S0|2 = |〈u(r)|ψ0(r)〉|2 approaches unity, as seen in Fig. 1(c).
In the limit E0 → ∞, ρu(t) = ρ0(t) exactly. For the profile
shown in Fig. 1(b), |〈u(r)|ψ0(r)〉|2 ≈ 0.98.

The last measure of bound probability considered in this
paper does not directly relate the NLI model but is included
here for organizational purposes and used exclusively in the ab
initio simulation. Here, an approximate measure of the bound
probability is given by the cumulative probability density of
the electron wave function integrated out to radius |r| = rc and
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normalized to unity at t = 0:

ρc(t) ≡
∫
|r|<rc

d3r |ψ(r,t)|2∫
|r|<rc

d3r |ψ(r,0)|2 . (22)

This definition is convenient if the value of ψ(r,t) is known,
but requires a value of rc to be chosen. Ideally, the value rc

is large enough to include the bound-electron wave function
and small enough to exclude free wave-function components
as they propagate outward; as these cannot be simultaneously
satisfied (bound wave functions are generally infinite in spatial
extent, and low momenta free states propagate slowly), there is
some flexibility in the choice of rc and hence the value of ρc(t).
As with the quantity ρu(t), normalizing to the initial integrated
probability ensures that ρc(t) will match ρ0(t) at t = 0 and in
the long-time limit.

Each of these definitions are included in this paper for
separate reasons: While ρ0(t) is the most desirable measure of
bound probability, it requires spatial integration of the wave
function and is generally time consuming. By contrast, ρu(t) is
an approximate measure of bound probability, but efficiently
obtained for the NLI model. Finally, the available data for the
ab initio simulation is ρc(t), and is used to calibrate the NLI
model for suitable choice of rc.

V. MODELING HYDROGEN

Having presented some of the basic properties of the NLI
model, we now attempt to simulate atomic hydrogen. In
particular, we would like to replicate the dipole response and
ionization properties of atomic hydrogen for typical laboratory
ultrashort laser pulse parameters.

We proceed by comparing simulations of the NLI model
against two established models: an ab initio TDSE simulation,
and a modified version of the well-known Keldysh ionization
model [12]. Comparison to each of these provides a different
type of validation. The ab initio simulation [23] numerically
simulates the electron wave function time evolution via Eq. (3),
and provides the highest fidelity treatment of the system we
consider in this paper. While such a comparison is invaluable,
the computational demands of full TDSE simulations allow
a limited number of runs for comparison. To investigate the
accuracy of the NLI over a range of different parameters, we
turn to the Popruzhenko, Mur, Popov, and Bauer (PMPB) [25]
ionization rate model. In contrast to the TDSE simulation,
the PMPB model does not simulate the time dynamics of the
electron wave function. Rather, it only predicts the atomic
ionization rate for a monochromatic electric field. While the
PMPB model offers significantly less information than a full
TDSE simulation, it can be used to validate the NLI model over
a large range of laser frequencies and intensities in relatively
short computation time.

To compare the NLI model with those mentioned above,
values must be determined for V and σ . The value for V was
determined by Eq. (12) such that E0 = −13.6 eV; in as far as
we wish to simulate hydrogen, this is the only choice. This was
modified slightly in the case of the ab initio simulation to match
the numerical ground-state eigenenergy. The value of σ was
determined by matching the total drop in bound probability of
the NLI model with that of the ab initio simulation (Fig. 3),
and used for all comparisons in this paper.
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FIG. 2. (Color online) Measures of the bound probability given
by Eq. (22) for three different radii in the ab initio simulation.

A. ab initio TDSE simulation comparison

A brief summary of the ab intio TDSE simulation is as
follows: the Coulomb potential in Eq. (3) is replaced with
a soft-core potential, |r|−1 → (|r|2 + δr2)−1/2, where δr =
0.05 a.u. is a small constant to accommodate the divergent
Coulomb potential on a finite spatial grid. The Schrödinger
equation is put into conservative form and ψ(r,t) is propagated
via the finite-volume method. The spatial domain consists of
4096 × 32 768 (r⊥ × z) cells of size 0.04 × 0.04 a.u., and
the time domain consists of 40 000 × 0.04 a.u. time steps
(approximately 40 fs). Use of the soft-core potential and
finite spatial resolution results in a similar eigenspectrum as
hydrogen for the first several bound states. The numerical
ground-state energy is equal to E0 = −13.385 eV.

In the simulation, a single hydrogen atom initially in the
ground state is subjected to a 14.1 fs (full width at half
maximum) linearly polarized laser pulse of 800 nm light
with a maximum intensity Imax = 2.12 × 1014 W/cm2. The
exact form of the field is E(t) ≡ −∂AL/∂t with AL(t) =
A0 sin2 (πt/τ ) cos(ωLt), where A0 = 1.37, ωL = 0.057, and
τ = 800 in atomic units.

For the ab initio simulation, ρc(t) was calculated for
rc = 3,10, and 100 a.u., corresponding to initial integrated
probabilities [numerator of Eq. (22)] of 0.934, 0.999 999 4,
and ∼1, respectively. The results are plotted in Fig. 2 [with
E(t) for reference], with some notable differences: The rc =
100a0 curve is still decreasing at 40 fs, indicating that free
components of the wave function are still propagating out
of the integration region, and therefore not a good measure
of bound probability. To a lesser extent, this same effect
smoothes out the features in the rc = 10a0 curve; the 3a0

curve is therefore the most appropriate of the three to use for
comparison with the NLI model. The oscillatory features seen
in the 3a0 curve are a result of the electric field distorting the
(total) potential; as the applied field translates the minimum of
the potential well, the “bound” portion of the wave function
shifts against the fixed integration region, resulting in the
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FIG. 3. (Color online) A comparison of the rc = 3a0 integrated
probability (ab initio simulation) with the approximate bound
probability ρu(t) (NLI model).

observed minima. While this detail is largely absent in the
rc = 10a0 curve, both curves give approximately the same
bound probability by the end of the simulation, indicating that
approximately 47% of the wave function has transitioned to
free states and dispersed beyond rc = 10a0.

These data provide one means of calibrating the NLI
model. On performing the analogous NLI simulation, the free
parameter σ is adjusted such that the value of ρu(tf ) matches
that of ρc(tf ) for the ab initio run. The value σ = 2.494a0 was
determined as a best fit for the rc = 3a0 ab initio run, shown in
Fig. 3. Agreement of these curves demonstrates that the NLI
model can produce an ionization rate similar to that obtained by
the ab initio simulation as defined by Eq. (19) for these laser
parameters. Later comparison with PMPB ionization theory
demonstrates more generally that a single value of σ can be
used to reproduce predicted ionization rates over a range of
laser pulse intensities and frequencies.

Although this agreement suggests that ρu(t) can be used
as a measure of bound probability, it is worth examining how
accurately ρu(t) represents ρ0(t) as defined in Eq. (17) for the
NLI model. Figure 4 compares ρu(t) and ρ0(t) for several runs
of various laser intensity. Values for ψ0(r) and ψ(r,t) were
calculated via Eqs. (9) and (13) on a spatial grid in r⊥ × z

(30a0 × 30a0), and numerically integrated to obtain ρ0(t). For
the data provided, the accuracy of ρ0(t) is limited by integrating
on a spatial grid and truncation of the integral in Eq. (9). This
plot demonstrates the efficiency of the NLI model: a ∼ 1000×
increase in computation time required to compute ρ0(t) gives
essentially the same result as given by ρu(t).

Nevertheless, rendering ψ(r,t) can be an aid to under-
standing the time dynamics of the system. Figure 5 shows
a time series of the NLI electron wave function responding
to E(t) (Fig. 3). Here, the probability density |ψ(r,t)|2 is
calculated in the r⊥ × z (167a0 × 167a0) plane and plotted on
a natural log scale. The first pane (0 fs) shows the bound-state
probability density profile, the following six frames show the
evolution over approximately one laser cycle from 10.5 to
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FIG. 4. (Color online) Top: a direct comparison of ρu(t) (dark
blue) with ρ0(t) (light blue) for the NLI model for five different
laser intensities of a 14.1-fs 800-nm light laser pulse. The quantity
ρ0(t) is produced by calculating ψ0(r) and ψ(r,t) via Eqs. (13) and
(9), respectively. These are then numerically integrated on a spatial
grid r⊥ × z (30a0 × 30a0) and normalized to the numerical value of
|〈ψ0(r)|ψ0(r,t = 0)|2 = 0.95. Bottom: an inset of the data is shown
for greater detail. On the completion of each laser cycle (relative
maxima), the plots agree to within 0.06%, the order of error in the
normalization of |〈ψ0(r)|ψ(r,t)〉|2.

FIG. 5. The NLI wave function density in the r⊥ × z plane
(167a0 × 167a0), plotted on a natural log scale. The frames depict the
bound-state profile (0 fs), approximately one laser cycle of evolution
(10.5–13.8 fs), and a frame shortly after the laser pulse has passed
(41.7 fs). Throughout, rescattering is observed as free components of
the electron make subsequent passes across the binding potential.
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FIG. 6. (Color online) The predicted ab initio hydrogen and NLI
dipole moments are compared. The inset (10–18 fs) shows the point
at which the dipole transitions from a “bound” to “free” response.
The dipole shown in the first half of the inset corresponds to the wave
function depicted in Fig. 5.

13.8 fs, and the last frame shows the wave function shortly
after the pulse has passed. The free components still in view at
41.7 fs do not contribute significantly to the bound probability
(see Fig. 3) and continue to disperse from the region as time
progresses. For these simulation parameters, the ionized wave
function continues to interact with the binding potential over
the course of the laser period, and interference patterns in the
free wave function are observed. Such effects are accounted
for in the NLI quantities ρu(t) and 〈r(t)〉, and are not included
in ionization rate models. For this simulation, ρu(t) and 〈r(t)〉
can be calculated in less than a minute on a typical laptop
computer.

The last quantity compared with the ab initio simulation is
the dipole moment, d(t) (−〈r(t)〉), shown in Fig. 6. Again,
agreement is observed. One feature of interest occurs at
approximately 13 fs, shown in the inset, at which point r(t)
changes relative phase with the applied field E(t). Prior to 13 fs,
both plots of 〈r(t)〉 are seen to be out of phase with the electric
field, and afterwards largely in phase. This can be understood in
the following way: The “bound” electron response is largely
out of phase with the field and initially dominates. As E(t)
increases in strength, some of the electron wave function is
excited to continuum states, leaving the vicinity of the ion
and contributing as a “free” response to the dipole moment.
Because the spatial excursions of the free wave function are
large compared to the wave function in the ground state, a
comparatively small fraction of unbound wave function will
dominate the atomic dipole, causing the net dipole moment to
change sign with respect to the field.

B. PMPB ionization theory comparison

In this section we compare the ionization rate predicted
by the PMPB model with that of the NLI model as given by
Eq. (21). The PMPB ionization model predicts the probability

of ionization of a Coulomb bound electron in the presence
of a low-field amplitude [max|E(t)| < |E0|/a0] sinusoidally
varying electric field. The rate shares the same exponential
dependence on the electric-field amplitude as the rate pre-
dicted by Keldysh, but includes an improved field-dependent
Coulomb correction. Direct comparison with the PMPB model
is complicated by the fact that it only predicts a cycle averaged
rate for monochromatic fields. Since NLI simulations are
performed in the time domain and require that E(t) = 0 on the
semi-infinite range of t < t0, any electric field is necessarily
enveloped and therefore contains a range of intensities and
frequency components.

For this reason, it is easier to perform laser pulse simulations
in the time domain and compare the net ionization predicted by
the NLI and PMPB models. We define an effective ionization
rate in terms of the total drop in bound probability and full
width half maximum pulse time as

weff ≡ − 1

Tfwhm
ln[ρ(tf )/ρ(t0)]. (23)

To compute weff for the PMPB model, the PMPB rate is first
converted to a bound probability based via Eq. (17) based
on the field envelope, which is then evaluated after the the
pulse has passed to generate weff. To analogous quantity for
the NLI model is given by calculating ρu(t) [Eq. (20)], and
again evaluating after the pulse has passed. For all the NLI
data compared with the PMPB rate model, a best-fit value is
used of σ = 2.45a0 (2% different than the value used to match
the ab initio simulation), and V was chosen via Eq. (12) such
that |E0| = 13.6 eV for both the PMPB and NLI models.

1. Frequency dependence

Comparison of the frequency dependence is a crucial test for
the NLI model. The PMPB model predicts a strong dependence
of ionization rate on the laser frequency, with local maxima
in the rate w occurring for each N -photon resonance, when
N�ωlaser ≈ |E0|. This expression is only approximate because
the laser field distorts the effective binding potential energy
(i.e., they are ac stark shifted [26]). To compare the frequency
dependence of the PMPB and NLI ionization rates, simulations
were performed in which a hydrogen atom is subject to a single
frequency laser pulse, and weff computed for both models. The
electric-field envelope is piecewise defined to have a 15-fs
sin2(t) ramp to a constant amplitude of 1 × 1013 W/cm2 for
55 fs before symmetrically ramping back down to zero; this
profile was chosen to minimize dependence of the ionization
rate on intensity and isolate frequency dependence in weff.
Figure 7 shows the results for several simulations of varied
carrier frequency. The NLI model is seen to reproduce each
N -photon resonance predicted by the PMPB model; the
highest peak occurs at the single-photon ionization rate, where
�ωlaser ≈ 1.2|E0|. Above this frequency, the ionization rate
drops off as the electron cannot respond quickly enough to the
laser field oscillations. On increasing the intensity of the laser
to 1.9×1013 W/cm2, the procedure was repeated for typical
laboratory laser frequencies, shown in the bottom panel of
Fig. 7.
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FIG. 7. (Color online) Top: the PMPB and NLI effective ioniza-
tion rates (weff) show agreement when compared over a range of
frequencies. Bottom: the same result for optical frequencies, with the
laser intensity increased to I0 = 1.9 × 1013 W/cm2.

2. Intensity dependence

The intensity dependence of the NLI and PMPB models was
also compared. Here, a hydrogen atom is subject to an 14.6-fs
800 nm laser pulse with a sin2(t) envelope, and weff calculated
for both models. This procedure was repeated while varying
peak laser intensity and plotted in Fig. 8. The lower limit of ion-
ization rate detection is limited by the accuracy of measuring
changes in ρu(t), while agreement at high intensity is limited by
the effect of depletion: at 1 × 1015 W/cm2, the electron is (al-
most) completely ionized before the end of the pulse. Residual
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FIG. 8. (Color online) Intensity dependence of the NLI and
PMPB effective ionization rate for a 14.6-fs pulse of 800-nm light.

wave function in the vicinity of u(r), either from rescattering
events or numeric in origin, eventually suppresses the NLI
effective rate when compared with the PMPB effective rate.

VI. EXTENSIONS OF THE NLI MODEL

One of the noticeable omissions of the NLI model, as
explored in this paper, is the existence of multiple bound states.
While the single state model is appropriate for many systems
in the single active electron regime, there is utility in including
multiple bound states; it has been suggested, for example, that
the presence of additional bound states can have an effect on
the nonlinear polarizability of atoms [27]. The NLI model
explored in this paper can be extended to include an arbitrary
number of bound states using the following substitution:

V u(r)S(t) →
N∑
i

Viui(r)Si(t), (24a)

Si(t) →
∫

d3r ui(r)ψ(r,t), (24b)

where ui(r) represents a set of orthogonal basis functions.
The NLI model then permits N bound states with eigenvalues
determined by the associated Vi . A natural choice of basis
functions is the three-dimensional Gaussian-Hermite polyno-
mials of which the u(r) used in this paper is the first, but other
choices are possible. Multiple bound states will be explored in
future work.

VII. CONCLUSIONS

This paper examines a phenomenological nonlocal poten-
tial model for the atomic response to a laser electric field. When
compared to an ab initio simulation of atomic hydrogen, the
NLI model gives remarkably accurate results for the bound
probability and atomic dipole moment. Further comparisons
show agreement with the PMPB model and NLI model
predicted ionization rates over a range of laser frequencies and
intensities. The ability to obtain these results for a 3D quantum
simulation with extremely low computational overhead (when
compared to ab initio TDSE simulations) makes the NLI
model a promising tool for investigating laser ionization and
propagation phenomena.
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APPENDIX

Here we provide a sketch of the method used to treat the
infinite integral in Eq. (10). We begin by representing the
integral equation for S(t) schematically as

S(t) =
∫ t

−∞
dt ′K(t,t ′)S(t ′), (A1)

where E(t) = 0 for t < 0. We would like to make use of the
fact that the integral contribution over the infinite past can be
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expressed analytically in the absence of E(t):

S(t) =
∫ 0

−∞
dt ′K0(t,t ′)S(t ′)

= 25/2V√
2 + it

[1 −
√

(2 + it)π |E0|

× erfc(
√

(2 + it)|E0|)e(2+it)|E0|], (A2)

where K0(t,t ′) is the field free kernel in Eq. (11). We
rewrite the general form of S(t) by splitting the integral as
follows:

S(t) =
∫ 0

−∞
dt ′K1(t,t ′)S(t ′) +

∫ t

0
dt ′K(t,t ′)S(t ′), (A3)

where

K1(t,t ′) = 23/2iV

[2 + i(t − t ′)]3/2 exp

[
iS (t ; 0) − 1

2
r2

0(t ; 0)

]
exp

[
1 + i(t − t ′)
2 + i(t − t ′)

|r0(t ; 0) − iv0(t ; 0)|2
2

]
. (A4)

The trajectory variables v0(t ; 0), r0(t ; 0) in K1 depend only on t , inviting the kernel to be written in terms of K0(t,t ′) as follows:

K1(t,t ′) = f (t)K0(t,t ′) − f (t)K0(t,t ′)
[

1 − exp

(−|r0(t ; 0) − iv0(t ; 0)|2
4 + 2i(t − t ′)

)]
, (A5)

where

f (t) ≡ exp

[
iS (t ; 0) − 1

2
r2

0(t ; 0) + |r0(t ; 0) − iv0(t ; 0)|2
2

]
.

(A6)

The advantage gained is that the first term in Eq. (A5) is
solvable analytically via Eq. (A2), since f (t) can be pulled
out of the integral over t ′. Although the remaining terms (in

square brackets) must be truncated and solved numerically,
they vanish in the limit that E(t) → 0 (i.e., v0,r0 → 0)
and as (t − t ′) � 1. Evaluating S(t) this way permits a
smooth transition from the analytic value of S(t < 0) to the
numerically calculated value for S(t > 0), whereas truncation
of the integral in Eq. (A1) creates a sharp discontinuity even
for E(t) = 0. Finally, calculating the second term in Eq. (A3)
is straightforward, having obtained the history of S(t) by the
method outlined above.
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