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Application of the weak-field asymptotic theory to tunneling ionization of H2O
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The weak-field asymptotic theory of tunneling ionization in a static electric field is applied to H2O. The
orientation dependence of the ionization rate is studied. The use of polarization-consistent basis sets with up to
heptuble-zeta accuracy and variationally optimized exponents improves the asymptotic form of the wave function
and allows for an accurate extraction of the structure factor defining the ionization rate. The results are presented
based on Hartree-Fock wave functions and density functional theory. The density functional theory reproduces
closely the experimental vertical ionization potential. We find that the rate peaks at an angle of 81◦ between the
field and molecular principal inertial axis through the O atom. The predictions for the orientation dependence of
the rate are compared to available theoretical results.
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I. INTRODUCTION

For more than two decades H2O (D2O) has served as a test
example of the behavior of a nonlinear molecule in strong-
field ionization studies. Initially, the investigations focused
on ion yields as a function of laser intensity under radiation
from a CO2 (10.6 μm) laser pulse [1,2]. Later, ionization
and dissociation pathways were identified in the multiphoton
regime using 532-nm light [3]. Strong-field-induced geometry
modifications were addressed in Coulomb explosion experi-
ments [4], and the kinetic energy release spectra of H+ in the
breakup of H2O under intense few-cycle pulses were shown
to depend strongly on pulse duration [5]. Theoretically, the
strong-field ionization of H2O was studied with the molecular
Ammosov-Delone-Krainov (MO-ADK) model [6] in Ref. [7],
the molecular strong-field approximation (MO-SFA) [8,9] in
Ref. [10], and by time-dependent density functional theory
(DFT) [11], the time-dependent configuration-interaction sin-
gles and singles-doubles approach [12], and within the single-
active-electron approximation (SAEA) to the time-dependent
Schrödinger equation [13–16]. The results of these approaches
disagree on which orientation of the molecular principal
inertial axis through the O atom that maximizes the ionization
yield with respect to the field direction. One of the purposes
of the present work is to provide accurate reference data for
tunneling ionization of H2O using the weak-field asymptotic
theory (WFAT) within the SAEA [17].

The WFAT describes tunneling ionization of atoms and
molecules by an external static electric field F . To leading
order in F and within the SAEA, the theory was developed
and validated by calculations for model polar molecules
and HeH2+ by the authors of Ref. [17]. The techniques for
calculating the rate for general molecules in the frozen-nuclei
approximation were developed by the authors of Refs. [18,19].
This basic theory was applied to the analysis of experimental
photoionization spectra in Refs. [20–22]. In Ref. [23] the
theory was extended to include the first-order correction terms
in F . The comparison with exact results for atoms within
the SAEA showed that these terms extend the region of

applicability of the WFAT at the quantitative level toward
stronger fields, practically up to the boundary between tun-
neling and over-the-barrier ionization regimes. Very recently,
extensions of the WFAT to account for the effects of nuclear
motion were considered [24,25] and a generalization to
many-electron systems in the frozen-nuclei approximation was
developed [26].

The WFAT expression for the ionization rate factors to the
leading order in F into two terms. One term is the field factor
that depends on the field and the vertical ionization potential
of the system. The ionization potential difference between
ionization into the cationic ground state and an excited state
is typically several electron volts, and this leads to a strong
preference for ionization into the cationic ground state. In
the SAEA and Hartree-Fock approximation, this corresponds
to ionization from the highest-occupied molecular orbital
(HOMO), and the HOMO is taken as the active orbital in
the rest of this work. The other term in the WFAT ionization
rate expression is the structure factor that depends on the
asymptotic form of the HOMO and its dipole moment, and
this is what defines the orientation dependence. Hence, an
accurate description of the tail of the HOMO is essential for a
reliable evaluation of the tunneling dynamics.

Obtaining an accurate asymptotically correct (exponential)
long-range behavior of the HOMO is difficult with standard
quantum chemistry basis set methods. Standard basis sets em-
ploy Gaussian functions which individually have an incorrect
long-range behavior. An expansion in a large set of Gaussian
basis functions formally allows a description of an exponential
decay, but the wave-function tail contributes energetically not
enough to give proper weights to the long-ranged Gaussian
functions in self-consistent field calculations [19]. Numerical
grid-based HF calculations are possible for diatomic systems,
and they are capable of providing an accurate description
of the wave-function tail [18,27], and have been used in
connection with WFAT to the leading order in F [18].
Grid-based calculations are, however, limited to diatomic
systems, and for larger molecules it is necessary to resort
to basis-set methods. In Ref. [19] a systematic study of the
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possibility for reproducing the asymptotic tail of the HOMO
in calculations with Gaussian basis sets was performed for the
linear molecules CO2 and OCS. While standard basis sets lead
to an unpredictable oscillating behavior, it was established
that the explicit optimization of all basis-set exponents in
connection with the polarization consistent (pc) basis sets up
to pentuble zeta quality allowed a systematic improvement of
the description of the tail region of the HOMO. In the present
work, we extend the application of the WFAT to the nonlinear
water molecule and extract the structure factors needed for
the evaluation of the ionization rate from results with pc basis
sets up to heptuble-zeta quality. We, in addition, compare the
results obtained at the HF level to those from DFT, where in
the latter case the HOMO energy can be tuned to match the
experimental ionization energy.

The paper is organized as follows. In Sec. II, the formulas
needed for the evaluation of the WFAT are summarized. In
Sec. III the methodology is presented. In Sec. IV results
are given for the structure factors, the associated structure
coefficients and the orientation dependent rate. Section V
concludes.

II. WEAK-FIELD ASYMPTOTIC THEORY

In this section, we summarize the formulas needed to
evaluate the WFAT tunneling ionization rate from the HOMO
to the leading order in F [17]. The formulas are also given
in Ref. [18], and for the particular case of linear molecules
in Ref. [19], but included here for completeness. We choose
a geometry where the external electric field F is pointing in
the positive direction of the z axis of the laboratory frame,
so F = F ez with F > 0, while the molecule can be rotated
with respect to the laboratory frame. Let r and r′ = R̂r be the
coordinates of the HOMO measured from the center of mass
of the molecule in the laboratory and the molecular frame,
respectively, where R̂ describes a rotation between the two
frames. The rotation is parameterized by the three Euler angles
(α,β,γ ), where α is the angle of rotation around the laboratory
z axis [(x,y,z) → (x1,y1,z)], β is the angle of rotation around
the intermediate y1 axis [(x1,y1,z) → (x ′

1,y1,z
′)], and γ is the

angle of rotation around the molecular z′ axis [(x ′
1,y1,z

′) →
(x ′,y ′,z′)] [28]. Since the field is axially symmetric in the
laboratory frame, the ionization rate does not depend on α,
and can be assigned a fixed value α = 0. The orientation of
the molecule is therefore determined by the angles β ∈ [0,π ]
and γ ∈ [0,2π ]. The ionization rate can be obtained from
the field-free orbital energy E0 < 0, the orbital ψ0(r′), and the
dipole moment μ′ of the HOMO in the molecular frame, where
(atomic units are used throughout)

μ′ = −
∫

ψ∗
0 (r′)r′ψ0(r′) dr′. (1)

The corresponding orbital and dipole moments in the labora-
tory frame are ψ0(R̂r) and μ = R̂−1μ′.

The ionization rates of atoms and molecules in the SAEA
can be calculated numerically for arbitrary values of the field F

by the method of adiabatic expansion in parabolic coordinates
(ξ,η,ϕ) [17,23,29,30]. For weak fields the problem can be
treated analytically by the WFAT. The region where the WFAT

applies is defined by [23]

F � Fc ≈ 
4

8|2Z − 
(2nξ + |m| + 1)| , (2)

with Fc the boundary between the tunneling and overbar-
rier regimes of ionization, 
 = √

2|E0|, Z the charge in
the Coulomb tail of the one-electron potential, and (nξ ,m)
parabolic quantum numbers. The condition of Eq. (2) guar-
antees that the leading-order approximation in F is accu-
rate [17,23,30].

The total ionization rate in the weak-field limit is given
by [17]

�(β,γ ) =
∞∑

nξ =0

∞∑
m=−∞

�nξ m(β,γ ) + O(�2), (3)

where �nξ m(β,γ ) is the partial rate for ionization into a channel
specified by (nξ ,m). The asymptotics of �nξ m(β,γ ) for F → 0
has the form [17]

�nξ m(β,γ ) = ∣∣Gnξ m(β,γ )
∣∣2

Wnξ m(F )[1 + O(F )], (4)

where Gnξ m(β,γ ) is the structure factor

Gnξ m(β,γ ) = lim
η→∞ Gnξ m(β,γ,η), (5)

given by the asymptotic value of the structure function

Gnξ m(β,γ,η) = e−
μzη1+|m|/2−Z/
e
η/2

×
∫ ∞

0

∫ 2π

0
φnξ |m|(ξ )

e−imϕ

√
2π

ψ0(R̂r) dξ dϕ,

(6)

and Wnξ m(F ) is the field factor

Wnξ m(F ) = 


2

(
4
2

F

)2Z/
−2nξ −|m|−1

exp

(
−2
3

3F

)
. (7)

Here μz is the z component of μ, and φnξ |m|(ξ ) is a parabolic
channel function

φnξ |m|(ξ ) = 
1/2(
ξ )|m|/2e−
ξ/2

√
nξ !

(nξ + |m|)! L(|m|)
nξ

(
ξ ), (8)

where L(α)
n (x) are the generalized Laguerre polynomials [31].

Equation (4) shows that the partial rate �nξ m(β,γ ) in
the leading-order approximation factorizes into two factors,
one of which depends only on the orientation angles β,γ

and the other only on the field F . The orientation-dependent
structure factor Gnξ m(β,γ ) is the most important characteristic
and it can be extracted from the HOMO by the procedure
described in Ref. [19]. The dependence on β and γ is contained
in μz and ψ0(R̂r) in Eq. (6). The field factor Wnξ m(F ) is
a simple analytical function which depends on the molecule
only via Z and 
. We emphasize that Gnξ m(β,γ ), and hence
�nξ m(β,γ ), are invariant under translations of the coordinate
origin of the HOMO [17], as they should be.

The different channels (nξ ,m) have different powers of
F in Eq. (7). For frozen nuclei, and in the leading-order
approximation, where the correction O(F ) in Eq. (4) is
neglected, one can retain only the dominant term in Eq. (3)
which corresponds to the channel with the smallest values of
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nξ and m. For H2O the dominating channel is (nξ ,m) = (0,0).
When nuclear motion is included, the WFAT restructures
and for each electronic channel the channels associated with
the nuclear degrees of freedom should be included in the
expression for the rate [25].

The structure factor Gnξ m(β,γ ) for the dominant channel
as a function of the orientation angles β and γ can be
expanded in terms of an appropriate set of standard functions.
This compresses the information needed for applications and
facilitates the exchange between researchers. We first note that
the bound-state wave function ψ0(r) can always be chosen to
be real, which leads to Eq. (9)

Gnξ ,−|m|(β,γ ) = G∗
nξ ,|m|(β,γ ). (9)

The structure factors Gnξ m(β,γ ) can, in the general case of
nonlinear molecules, be expanded as in Eq. (10)

Gnξ m(β,γ ) =
∑
lm′

C(lm′)
nξ m

Ylm′(β,γ ), (10)

where

Ylm(β,γ ) = lm(β)
eimγ

√
2π

(11)

are spherical harmonics and lm(β) is given in terms of the
associated Legendre polynomials P m

l (x) by

lm(β) =
√

(2l + 1)(l − m)!

2(l + m)!
P m

l (cos β). (12)

We use the Condon-Shortley [32] phase convention for
lm(β), i.e.,

l−m(β) = (−1)mlm(β). (13)

The structure factor for the dominant channel G00(β,γ ) is real,
leading to Eq. (14)

C
(l−m′)
00 = (−1)m

′
C

(lm′)∗
00 . (14)

The structure coefficients C(l)
nξ m

in the expansion of Eq. (10)
can be tabulated for the molecules under investigation and
used for calculating the structure factors Gnξ m(β,γ ). Given
these coefficients, the application of the WFAT becomes
straightforward.

III. METHODOLOGY

The asymptotic behavior of the HOMO ψ0(R̂r) at large η

is the key quantity for the application of WFAT [see Eqs. (5)
and (6)]. Grid-based HF codes are limited to diatomic systems
and we here employ a basis-set quantum chemistry approach
using the pc basis sets. These basis sets have been designed
and optimized for DFT, which have very similar basis-set
requirements as HF, and are available in five different quality
levels from (unpolarized) double zeta to (polarized) pentuble
zeta quality (pc-n, n = 0–4) [33]. It has been shown that these
basis sets are capable of reproducing grid-based numerical HF
energies for diatomic systems to micro-Hartree accuracy [34].
In the present work we have extended the basis sets to hextuble
and heptuble zeta quality (pc-5 and pc-6) which allow the
calculation of total energies to nano-Hartree accuracy. All basis
sets in the present work have been used in their uncontracted

forms and variationally optimized with respect to all basis-set
exponents. Analytical gradients of the HF or DFT energy with
respect to basis function exponents have been calculated with
the DALTON program [35]. Basis exponent optimizations have
been done using a pseudo-Newton-Raphson method. The start-
ing values were taken from the standard pc-n basis sets [33].
In Ref. [19] it was shown that this procedure greatly improves
the asymptotic behavior of the wave function at the HF level
of theory. Here, the methodology is furthermore extended
to DFT, which can be tuned such that the HOMO energy
matches the experimental ionization potential, which should
ensure a more accurate asymptotic behavior than HF. We have
here used a molecular specific Coulomb-attenuating method
Becke three-parameter Lee-Yang-Parr (CAM-B3LYP) [36]
DFT functional, which employs a range-separated exchange
functional. The range-separated exchange functional switches
from a Becke density functional to pure HF exchange as a
function of the interelectronic distance using an error function
as the interpolating function. The error function switching
is controlled by a range parameter which we have chosen
such that the DFT HOMO energy reproduces the experimental
ionization potential [37].

IV. RESULTS AND DISCUSSION

We now turn to a discussion of our results. In all calculations
the nuclei are frozen in the molecular fixed y ′z′ plane at
the positions H: (x ′,y ′,z′) = (0,1.43143164,−0.886665171),
H: (x ′,y ′,z′) = (0,−1.43143164,−0.886665171), and O:
(x ′,y ′,z′) = (0,0,0.221666765). The orientation of the
molecule with respect to the laboratory-fixed z axis defined
by the direction of the electric field is specified by the Euler
angles β and γ (see Sec. II).

Table I shows the convergence of the HF and DFT HOMO
energies and dipoles [Eq. (1)] as a function of the basis-set
quality, pc-n (n = 1, . . . ,6). These quantities are converged to
at least six digits with the optimized pc-6 basis set. The DFT
result are tuned (see Sec. III) such that the HOMO energy
reflects the experimental ionization potential. The asymptotic
long-range behavior of any wave function within HF or DFT
is determined by the HOMO energy. Because of the more

TABLE I. Convergence properties of the HF (EHF
HOMO, μ′HF

HOMO)
and DFT (EDFT

HOMO, μ′DFT
HOMO) HOMO energies and dipoles for H2O

using optimized pc-n basis sets. ẑ′ is a unit vector in the di-
rection of the molecular z′ axis through the O atom. The nu-
clei are fixed at H: (x ′,y ′,z′) = (0,1.43143164, −0.886665171); H:
(x ′,y ′,z′) = (0, −1.43143164, −0.886665171); and O: (x ′,y ′,z′) =
(0,0,0.221666765). The experimental ionization potentials are
−0.4634 [40], −0.4630 [41], and −0.46386 [42].

pc-n EHF
HOMO EDFT

HOMO μ′HF
HOMO μ′DFT

HOMO

1 −0.5011915 −0.4524208 −0.1756614 ẑ′ −0.1683711 ẑ′

2 −0.5096242 −0.4631005 −0.1505280 ẑ′ −0.1410246 ẑ′

3 −0.5104304 −0.4641310 −0.1454070 ẑ′ −0.1350633 ẑ′

4 −0.5104643 −0.4641849 −0.1455538 ẑ′ −0.1352472 ẑ′

5 −0.5104686 −0.4641902 −0.1455675 ẑ′ −0.1352648 ẑ′

6 −0.5104687 −0.4641904 −0.1455675 ẑ′ −0.1352644 ẑ′
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FIG. 1. (Color online) Structure function G00(β = 90◦,γ =
0◦,η) [Eq. (6)] for the HF and DFT HOMO of H2O using optimized
pc-n basis sets. The nuclei are fixed at the geometry given in the
caption of Table I.

accurate HOMO energy, the DFT should be more accurate
than the HF results.

We investigate in detail the asymptotic form of the HOMO
determining the structure factor of the WFAT. Figure 1 shows
the structure function G00(β = 90◦,γ = 0◦,η) as a function
of η for the HF and DFT HOMO of H2O for optimized basis
sets of increasing quality. An accurate representation of the
asymptotic form of the HOMO requires that G00 attains a
constant value at large η as discussed in Sec. II. Figure 1 shows
that an onset of a plateau is formed as the quality of the basis
is increased, but also that the value of the plateau is different
for HF and DFT. The decrease in the G00 function for large η

values reflects the inadequacy of Gaussian-type basis functions
for reproducing the (exact) exponential HOMO fall-off. As the
quality of the basis set is improved, the correct exponential
behavior is reproduced to increasingly larger η values. The
exponent optimization becomes numerically very difficult for
the largest pc-5 and pc-6 basis sets, and the small residual
exponent gradient results in slight oscillations for large η

values. The pc-5 and pc-6 results agree out to η = 15, and
this is the value of η we use to determine the structure factor.
We stress that standard basis sets without optimization do not
display a plateau region as illustrated and discussed in detail
in Ref. [19]. It is hence essential to use the present approach
which optimizes the basis-set exponents for each molecule to
obtain a reliable asymptotic form of the wave function. The
structure factor G00 extracted in this way for each orientation

TABLE II. Structure coefficients [Eq. (10)] for the HOMO of
H2O obtained using Gaussian [43] and HF and DFT with an optimized
pc-6 basis set. The coefficients are extracted at η = 15. The structure
coefficients C

(lm′)
00 are real and equal to zero for even m′. The nuclei

are fixed at the geometry given in the caption of Table I. a[b] = ab.

l/m′ 1 3 5

HF
1 2.235
2 1.601[−1]
3 1.403[−2] −4.087[−2]
4 −3.718[−4] −8.582[−3]
5 −8.869[−5] −6.330[−4] 4.095[−4]

DFT
1 1.984
2 1.476[−1]
3 1.211[−2] −3.602[−2]
4 −3.096[−4] −7.053[−3]
5 −7.430[−5] −5.212[−4] 2.602[−4]

can now be expanded in terms of the structure coefficients
[Eq. (10)]. Table II gives the HF and DFT coefficients for
future reference. As the DFT HOMO energy is tuned to match
the experimental ionization potential, the DFT structure factors
are the recommended values.

Figure 2 shows |G00(β,γ )|2, which according to Eq. (4),
gives the orientation dependence of the WFAT ionization rate
to leading order in F . The results using HF or DFT differ in
absolute value, but the behavior of the results with β and γ

is very similar. The figure shows that the molecule is most
readily ionized for β � 81◦, and γ = 0◦, 180◦, or 360◦. These
geometries correspond to the cases when the HOMO of H2O is
almost along the field direction. In our geometry the HOMO is
a p-like orbital with the p lobes perpendicular to the molecular
y ′z′ plane. When the orientation of the molecule is such that the
nodal plane lies in the direction of the field, ionization from the
HOMO is suppressed, and lower-lying orbitals contribute [38].
These contributions are suppressed by a factor of F/(2
2) and
the contribution quickly decays away from the node [18,19].
The offset in the maximal ionization yield from the β = 90◦
geometry is due to the presence of a small dipole of the HOMO.
For β slightly smaller than 90◦, the dipole has a component
antiparallel to the field direction, which lowers the ionization
potential, while the major part of the p-like lobes is still in the
direction of the field. The shift in the maximum away from 90◦
can thus be understood as a competition between a geometric
charge density effect and the shift of the ionization potential,
both of which are accounted for by the structure factor G00.

The MO-ADK model [7] predicts a maximum in the rate
at 80◦ (see Fig. 3 in Ref. [7]). The closeness of this result to
our reference value of 81◦ is accidental since the MO-ADK
model does not take into account the presence of the dipole
of the HOMO (see Ref. [17] for a detailed discussion of the
deficiencies of the MO-ADK model). In Ref. [13], the strong-
field ionization of H2O in 800-nm few-cycle laser pulses
was investigated. The approach was a particular realization
of the SAEA (see Refs. [14,39]), where all orbitals are
evolved independently of each other (see also Ref. [15] for
an application to high-order harmonic generation in H2O). In
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FIG. 2. (Color online) Norm squared of the structure factor
|G00(β,γ )|2 [Eq. (5)] extracted at η = 15 as a function of γ and
β for the HF and DFT HOMO of H2O using the pc-6 basis set.
The nuclei are fixed at the geometry given in the caption of Table I.
The angle β represents the angle between the field direction and the
principal inertial axis of the molecule going through O. The angle γ

represents the angle of rotation around the molecular principle axis.

Ref. [13] it was found that the orbital shape is reflected in
the orientation-resolved total ionization yield. In the results
there is an indication of a small peak in the rate below 90◦
(see right panel in Fig. 6 in Ref. [13]), which is consistent
with our work and the physical role of the HOMO dipole.

Time-dependent DFT calculations have also been performed
for H2O by means of the Voronoi-cell finite difference method
(TDVFD) [11]. The ionization probability from the HOMO
was considered for β ∈ [0; 90] in Fig. 9 in Ref. [11] and found
to peak at 90◦ in contradiction with our findings. Finally, we
mention that the ionization of H2O by intense laser pulses
was recently investigated within the MO-SFA at 800 nm
and for a field strength of F = 0.6 [10]. That work found a
maximal ionization probability from the HOMO for β = 90◦
(see Fig. 7(c) in Ref. [10]). This value can be understood from
the geometry of the HOMO, and from the fact that the dipole of
the HOMO was not accounted for by the authors of Ref. [10].

V. CONCLUSION

By using a hierarchical sequence of fully optimized basis
sets, we show that it is possible to determine the asymptotic
behavior of the wave function for the polyatomic water
molecule in the form of the HOMO for HF and DFT wave
functions with Gaussian basis functions for expanding the
molecular orbitals, such that a useful accuracy can be obtained
for extracting structure factors, and consequently determine
the tunneling rate in the WFAT. The DFT approach is expected
to provide the more accurate results because the HOMO
energy can be tuned to match the experimental ionization
potential, and thus provide the correct asymptotic form of the
wave function. Within the SAEA, the present tunneling data
provided for H2O are of unprecedented precision. It will be
interesting to see in the future if the inclusion of many-electron
effects [26] has an impact on the tunneling ionization of H2O.
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[8] J. Muth-Böhm, A. Becker, and F. H. M. Faisal, Phys. Rev. Lett.

85, 2280 (2000).
[9] T. K. Kjeldsen and L. B. Madsen, J. Phys. B 37, 2033 (2004).

[10] R. D. Picca, J. Fiol, P. D. Fainstein, J. P. Hansen, and A. Dubois,
J. Phys. B 45, 194009 (2012).

[11] S.-K. Son and S.-I. Chu, Chem. Phys. 366, 91 (2009).
[12] P. Krause, T. Klamroth, and P. Saalfrank, J. Chem. Phys. 127,

034107 (2007).
[13] S. Petretti, A. Saenz, A. Castro, and P. Decleva, Chem. Phys.

414, 45 (2013).
[14] M. Awasthi, Y. V. Vanne, A. Saenz, A. Castro, and P. Decleva,

Phys. Rev. A 77, 063403 (2008).
[15] J. P. Farrell, S. Petretti, J. Förster, B. K. McFarland,

L. S. Spector, Y. V. Vanne, P. Decleva, P. H. Bucksbaum,
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