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Spin dephasing as a probe of mode temperature, motional state distributions,
and heating rates in a two-dimensional ion crystal
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We employ spin-dependent optical dipole forces to characterize the transverse center-of-mass (COM) motional
mode of a two-dimensional Wigner crystal of hundreds of 9Be+. By comparing the measured spin dephasing
produced by the spin-dependent force with the predictions of a semiclassical dephasing model, we obtain absolute
mode temperatures in excellent agreement with both the Doppler laser cooling limit and measurements obtained
from a previously published technique [B. C. Sawyer et al., Phys. Rev. Lett. 108, 213003 (2012)]. Furthermore,
the structure of the dephasing histograms allows for discrimination between initial thermal and coherent states
of motion. We also apply the techniques discussed here to measure the ambient-heating rate of the COM mode
of a 2D Coulomb crystal in a Penning trap. This measurement places an upper limit on the anomalous single-ion
heating rate due to electric field noise from the trap electrode surfaces of dn̄

dt
∼ 5 s−1 for our trap at a frequency

of 795 kHz, where n̄ is the mean occupation of quantized COM motion in the axial harmonic well.
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I. INTRODUCTION

Laser-cooled ions stored in radio frequency (RF) or Penning
traps readily form crystalline arrays. Sensitive measurements
of the motion of ions in these arrays are important for a
variety of studies in atomic physics, quantum information
science, and plasma physics. In atomic physics the small
residual motion of trapped ions produces systematic errors
that can limit the performance of atomic clocks and precision
measurements [1,2]. In quantum information science, where
trapped-ion crystals provide a promising platform for quantum
computation and simulation [3–7], the residual motion of
the trapped ions produces infidelities that require careful
evaluation. In plasma physics, trapped-ion crystals provide a
convenient laboratory platform for studies of strongly coupled
plasmas, which model dense astrophysical matter [8–11].
Careful measurements of ion motion are used to determine the
ion energy and the plasma coupling. Energy transport studies
require detailed measurements of the ion motion, typically as
a function of time and resolved spatially or between different
modes [12].

Here we discuss a new technique for measuring the
temperature and, more generally, the energy state distribution
of a trapped-ion crystal. The technique is mode specific in that
it can resolve the energy distribution of different modes of the
crystal. We demonstrate the technique by presenting measure-
ments of the energy distribution of the axial center-of-mass
(COM) mode of a single-plane array of several hundred Be+
ions stored in a Penning trap. The technique requires isolating
and controlling a two-level system—an effective spin-1/2 in
each ion—and employs a weak, global spin-dependent force
that couples the spin and motional degrees of freedom of
each ion. This general technique should be applicable to
other systems such as neutral atoms in optical lattices [13] or
optomechanical systems [14] where spin degrees of freedom
can be controlled and coupled to motional degrees of freedom.
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Spin-dependent forces are a key tool in trapped-ion quan-
tum simulation and quantum computing work. Application
of a spin-dependent force to a superposition of different
spin states can generate entanglement between the spins,
while the concomitant coupling of the spin and motional
degrees of freedom typically produces infidelities that must
be mitigated [15–21]. Here we focus on the coupling and
potential entanglement between the spin and motional degrees
of freedom produced by a spin-dependent force, and work in a
regime where the induced spin-spin entanglement is negligible.
However, the discussion and measurements presented here
provide insight into the size and nature of trapped-ion
quantum gate errors produced by coupling of the spins to
thermal fluctuations of the motional modes [22]. Spin-echo
as well as other dynamical decoupling techniques can remove
the coupling of the spin and motional degrees of freedom
[16,23,24], but their efficacy depends on the size of the
error and the coherence of the motional state throughout
an experiment, which can be evaluated with the techniques
discussed here.

This study extends the results of Ref. [15], where we
measured the decrease in the composite Bloch vector length
produced by the application of a homogeneous spin-dependent
optical dipole force. We showed that this decrease (or
decoherence) of the Bloch vector depended on the average
energy or temperature of the initial motional state. Here we
show that the dephasing responsible for this decoherence may
be directly measured, revealing more detailed information
about the motional state. In addition to the average energy or
temperature of a mode, information on the energy distribution
can also be obtained. Spin dephasing produced through the
application of a spin-dependent force provides an alternative to
the well known Raman sideband technique for determining the
energy distribution of motional states of trapped-ion crystals
[25]. The spin-dephasing technique is particularly well suited
for many-ion crystals, and for some setups—in particular for
higher frequency two-level systems such as the 124 GHz
spin-flip transition discussed here (see Sec. II)—can be simpler
to implement.

1050-2947/2014/89(3)/033408(11) 033408-1 Published by the American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.108.213003
http://dx.doi.org/10.1103/PhysRevLett.108.213003
http://dx.doi.org/10.1103/PhysRevLett.108.213003
http://dx.doi.org/10.1103/PhysRevLett.108.213003
http://dx.doi.org/10.1103/PhysRevA.89.033408


SAWYER, BRITTON, AND BOLLINGER PHYSICAL REVIEW A 89, 033408 (2014)

To illustrate the basic idea of spin dephasing produced
through the application of a spin-dependent force, we consider
the simple case of a single trapped ion whose motional degree
of freedom along the z axis (trap frequency ωz) is coupled to
two internal spin states through a sinusoidally time-varying
spin-dependent force. The interaction Hamiltonian for this
system is

Ĥ = F0 cos (μt) ẑσ̂ z, (1)

where ẑ is the position operator of the ion in the z direction, σ̂ z

is the Pauli spin matrix associated with the two internal energy
levels, and μ is the frequency of the applied spin-dependent
force. We assume the ion spin state is initialized in an equal
superposition {|↑〉 + |↓〉} /

√
2 of the |↑〉 , |↓〉 internal levels.

This spin state can be represented as pointing along the x axis
in the rotating frame of the Bloch sphere. Suppose the ion
temperature is large compared to �ωz/kB , where � and kB are
the Planck and Boltzmann constants, and we may treat the ion
motion as classical. The initial motional state of the ion can
then be written as z(t) = ZA cos(ωzt + φ), where ZA and φ

fluctuate from one shot (or realization) of the experiment to
the next, consistent with a thermal distribution. Application of
Eq. (1) produces an additional spin-dependent motion, but we
assume this driven spin-dependent motion is small compared
with the initial thermal fluctuation (ZA) (valid for our work
with hundreds of trapped Be+ ions), and we can approximate
the Hamiltonian Ĥ as

Ĥ ≈ F0 cos (μt) ZA cos (ωzt + φ) σ̂ z

= F0ZA

2
{cos [(μ−ωz) t−φ] + cos [(μ + ωz) t + φ]} σ̂ z .

(2)

For μ = ωz this Hamiltonian is simply a constant shift
F0ZA cos (φ) /� in the frequency difference between the
|↑〉 , |↓〉 levels, plus a rapidly varying term that averages
to zero for time intervals long compared to π/ωz. If the
spin-dependent force is applied for a time interval τ , then
the Bloch vector undergoes a precession by an angle �p =
[F0ZA cos (φ) /�] τ . Fluctuations in ZA and φ from one shot
(or realization) of the experiment to the next produce spin
dephasing when averaged over many experimental realiza-
tions. By measuring this dephasing directly we show that it is
possible to acquire information on the initial motional state (for
example, the energy distribution) of the trapped-ion harmonic
oscillator. The sensitivity to motion of this technique is very
high. For the modest parameters used in the measurements of
Sec. III and IV, F0 = 10−23 N and τ = 1 ms give �P = 30◦
for ZA 	 6 nm. With N � 100 trapped ions, a 30◦ precession
is much larger than the quantum projection noise [26], and can
be measured with good signal-to-noise in one experimental
shot.

The rest of the manuscript is structured as follows. In Sec. II
we describe the Penning trap setup where we implement
the spin dephasing technique to characterize the energy
distribution of the axial COM mode of a 2D trapped-ion
crystal of hundreds of 9Be+ ions. In Sec. III we discuss a more
detailed dephasing model assuming a thermal distribution of
coherent states. In Sec. IV we discuss dephasing measurements
of the COM mode energy distribution for both thermal

states and coherently excited thermal states. We also present
measurements of the heating rate of the axial COM mode. In
Sec. V we summarize and conclude.

II. EXPERIMENTAL SETUP

As described in previous publications, we employ a Penning
trap to confine crystals of hundreds of 9Be+ ions [7,15].
Depicted in Fig. 1(a), the trap consists of a static electric (E)
quadrupole produced from a stack of cylindrical electrodes
(inner radius of 2.0 cm) placed within the room-temperature
bore of a ∼4.46 T superconducting magnet. The orientation
of this uniform magnetic (B) field defines the z axis in
our system. Harmonic axial (z axis) ion confinement with
a frequency of ωz = 2π × 795 kHz is obtained by applying
−1 kV to the central ring electrodes relative to grounded
upper and lower end cap electrodes. The cylindrical axis of
the trap electrodes is aligned with the uniform magnetic field.
Radial ion confinement results from 
E × 
B induced rotation
through the magnetic field. We apply a weak quadrupolar
“rotating wall” potential to precisely control the rotation
frequency (ωr ) and hence, radial confining force, of the ion
cloud [27]. Neglecting the weak azimuthal dependence of the
rotating wall potential, the following trap potential describes
ion confinement in the Penning trap as seen in a frame rotating
at ωr [28]:

q�trap(r,z) = 1

2
Mω2

z (z2 + βrr
2), (3)

βr ≡ ωr (	c − ωr )

ω2
z

− 1

2
, (4)
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FIG. 1. (Color online) (a) Simplified illustration of the Penning
trap electrode structure in cross section (not to scale). Static voltages
are applied to the electrodes in the foreground (orange), while three
of the six rotating wall electrodes (red) are shown in the background.
A simulated single-plane ion configuration is shown at the trap center
and magnified by ∼100 for visibility. The 313 nm intersecting optical
dipole force beams are also illustrated. (b) Low-lying electronic levels
of 9Be+ in the 4.46 T B field of the Penning trap. Projection of total
electronic angular momentum (mJ ) is given to the right of each level.
Nuclear spin projections have been excluded for clarity. Relevant
transitions near 313 nm are labeled.
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where M (q) is the mass (charge) of a single 9Be+, 	c =
2π × 7.597 MHz is the cyclotron frequency, and z (r) is
the axial (radial) distance from the trap center. For rotation
frequencies where the radial confinement is weak relative
to transverse confinement (βr � 1), we obtain a single ion
plane. The rotation frequency at which the ion configuration
transitions from two planes to one plane depends sensitively
on the ion number [29]. For most experiments, we operate
with 100 to 300 ions, which necessitates ωr � 2π × 48 kHz
for single-plane conditions with ωz = 2π × 795 kHz.

We use Doppler laser cooling along both the axial (z axis,
out-of-plane) and radial (in-plane) trap dimensions to produce
the Coulomb crystal. As shown in Fig. 1(b), the hyperfine
structure of 9Be+ exhibits a strong Zeeman shift in the
large uniform B field of the Penning trap. We laser cool
along the ∼313 nm |J = 1/2,mJ = +1/2〉 → |3/2, + 3/2〉
cycling transition between the 2S1/2 and 2P3/2 manifolds,
where J and mJ are the total electronic angular momentum
and its projection along the B-field axis, respectively. The
linewidth of this cooling transition is 
 ∼ 2π × 17.97 MHz
[30], yielding a Doppler cooling limit of �
/2kB ∼ 0.43 mK.
For all experiments described here, the 9Be+ are optically
pumped to the |I = 3/2,mI = +3/2〉 nuclear spin state [31].

The two qubit states for our experiments are the |↑〉 ≡
|1/2,+1/2〉 and |↓〉 ≡ |1/2,−1/2〉 valence electron spin pro-
jections of the 2S1/2 electronic ground state. The cooling
and repump transitions illustrated in Fig. 1(b) allow for
efficient preparation of all N trapped ions to the state |↑〉N ≡
|↑↑ . . . ↑〉. The splitting between qubit levels is ∼124 GHz,
and we perform global qubit rotations via direct application of
resonant millimeter-wave radiation to the ions. We typically
achieve π -pulse times (tπ ) of ∼70 μs. As discussed below, for
the experiments described here we perform global readouts of
the qubit state through state-dependent resonance fluorescence
on the Doppler cooling transition.

Figure 2(a) illustrates a typical pulse sequence for qubit
manipulation. We first prepare |↑〉N using the Doppler cooling
and repump lasers. The spin echo sequence shown includes
both π/2 and π pulses about the given Bloch sphere axes. The
phase of the final pulse (�φ) is defined relative to that of the
first π/2 pulse, which we define to be a rotation about the y

axis, and is varied depending on the intended final spin state.
We use a spin echo sequence with free evolution periods of τ ∼
0.1 to 1 ms to mitigate the deleterious effects of radial B-field
inhomogeneity over the ∼400 μm ion plane diameter, and to
cancel B-field fluctuations at frequencies below τ−1 [32,33].
After the pulse sequence, we measure the population of spins in
state |↑〉 (P↑) by switching on the Doppler cooling beams and
counting scattered photons collected by an ultraviolet-sensitive
photomultiplier. An f/5 objective imaging the side of the ion
plane collects the scattered cooling photons, and a typical
photon count rate per ion is 103 s−1.

The histograms of Fig. 2(b) give experimental results for
three different values of �φ as measured in a system of N =
174(10) spins. Each color-coded histogram is the result of
1000 pulse sequences [see Fig. 2(a)] and subsequent qubit state
readouts. Bin widths for the three histograms are adjusted for
clear presentation on a single vertical scale, and the horizontal
axis is scaled to the photon counts collected for the state |↑〉N .
The standard deviation of the �φ = π histogram suggests

y
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y

z

x
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x

Photon Counts (arb. units)

π/2 |y π |x π/2 |Δφ

N
τ τ(a)

(b)

Δφ = 0 Δφ = π/2 Δφ = π

FIG. 2. (Color online) (a) An example spin echo pulse sequence
used for qubit state manipulation. Spins are initialized to |↑〉N , and
the 124 GHz is pulsed for the given duration at a specific phase, where
�φ is defined relative to the y axis and is varied depending on the
intended final spin state. (b) Detected histograms for three collective
spin orientations of the qubit ensemble consisting of 174(10) spins.
The collective state at the end of the spin-echo sequence is represented
on a Bloch sphere above the corresponding histogram. The horizontal
axis is scaled such that the mean photon counts detected when in
state |↑〉N corresponds to unity. Each histogram is the result of 1000
state preparation and detection sequences, and bin widths have been
adjusted between the three histograms to place them on the same
vertical scale.

technical noise that is comparable to shot noise with 3510
photons collected. The increase in the standard deviation of
the �φ = π

2 data is due to quantum spin projection noise
(∝ N−1/2) [26].

We generate a spin-dependent optical dipole force (ODF)
by interfering two ∼313 nm laser beams at the ion plane to
create a one-dimensional optical lattice [see Fig. 1(a)] [7,15].
The resulting lattice wavelength (λl) is determined by the
crossing angle of the ODF beams as λl = λODF[2 sin( θR

2 )]−1,
where θR is the full beam crossing angle and λODF is the
ODF laser wavelength. For this work, θR = 4.2(2)◦, which
results in λl ∼ 3.7 μm. The ODF laser frequency is detuned by
∼20 GHz from the nearest resonances for the |↑〉 and |↓〉
states [see Fig. 1(b)] and the linear polarization of each
beam is chosen so as to produce a polarization gradient at
the ion plane that imparts equal-magnitude, opposite-sign
forces to the two qubit states with a magnitude of ∼10−23

N per spin at 1 W cm−2 per beam. The optical lattice wave
vector (

−→
�k) is aligned to within 0.05◦ of the z axis of the

trap to preferentially excite motion transverse to the crystal
plane and to maximize homogeneity of the ODF drive phase
across the sample. The two ODF laser beams are produced
from a single beam using a 50:50 beamsplitter, and their
relative frequency is adjusted from zero to ∼10 MHz using
acousto-optic modulators, enabling production of a standing-
or running-wave spin-dependent optical lattice.
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III. THERMAL DEPHASING MODEL

In Ref. [15] we excited arbitrary drumhead modes of a
2D trapped-ion crystal through application of a homogeneous
spin-dependent force. The spin-dependent force coupled the
9Be+ ground state valence electron spin and transverse
motional degrees of freedom. We measured the decrease in
the composite Bloch vector of the spins due to this coupling,
and showed that this decrease (or decoherence) depended on
the average energy or temperature of the motional state. We
sketch the calculation of Ref. [15] in Appendix A. In the Fock
state basis thermal motional states are described by a diagonal
density matrix. The calculation proceeds by assuming an initial
Fock state |n〉 for a mode. Application of a spin-dependent
force produces spin-dependent displacements of the Fock
state and decoherence of the spins is naturally described
in terms of spin-motion entanglement and the increasing
displacement sensitivity of Fock states with n. Here we use a
model motivated by the dephasing picture of the Introduction
that does not require quantum entanglement of the spin and
motional degrees of freedom for thermal excitations large
compared with the ground state size.

For simplicity, we describe the dephasing model for the
axial COM mode, although a generalization to other drumhead
modes is straightforward. Center-of-mass motional modes
play an important role in quantum information experiments
with trapped ions. If all trapped ions possess the same charge-
to-mass ratio, the COM mode frequency is independent of ion
number and, in the case of transverse modes, constitutes the
highest-frequency and longest-wavelength oscillation. For the
experimental parameters presented in this article, the COM
mode is >10 kHz from the nearest transverse modes and is
well resolved [21]. In traps whose electrode dimensions are
much larger than those of the ion crystal (i.e., Penning traps),
the COM mode is the transverse mode most susceptible to
noise from fluctuating potentials on trap electrodes.

The interaction Hamiltonian for the spins and the COM
degree of freedom is

ĤODF = F0 cos(μt + ϕ)
z0√
N

(â e−iωzt + â† eiωzt )
N∑

i=1

σ̂ z
i ,

(5)

where the sum is over the N spins, z0 = √
�/ (2Mωz) is the

ground state wave function size of a single trapped ion, â (â†)
are the lowering (raising) operators for the COM mode, and ϕ

is the ODF phase. In general the time evolution operator for
the above Hamiltonian can be written as the product of a spin-
dependent displacement operator, exp([αâ† − α∗â]

∑N
i=1 σ̂ z

i ),
and an evolution operator for a general Ising interaction
that involves only pairwise spin interactions [15,17]. For
resonant drives (μ ≈ ωz), the effect of the spin-dependent
displacement typically dominates, and we neglect the induced
Ising interaction throughout this manuscript. In this case the
evolution operator for ĤODF separates into a product of N

individual spin-dependent displacement operators,

D̂SD(α) =
N∏

i=1

exp
(
[αâ† − α∗â]σ̂ z

i

)
. (6)

The displacement amplitude α for resonant (μ = ωz) spin-
dependent excitation of the COM mode for a time τ and phase
ϕ is

α(τ,ϕ) = −i
F0z0τ

2�
√

N
eiϕ. (7)

For pulse sequences involving separated periods of ODF
excitation (e.g., spin echo), the final motional displacement is
simply a sum of individual displacements of the form of Eq. (7)
with appropriate phases (ϕ) and times (τ ) for each of the ODF
excitations within the sequence. We define spin-independent
displacements, D̂(α0), in the usual way:

D̂ (α0) = exp(α0â
† − α∗

0 â). (8)

In contrast to Ref. [15], we consider the initial state of the
COM mode for each experiment to be a coherent state |α0〉. We
denote the expectation value of a quantum operator Ô at the
end of an experiment as 〈Ô〉. We then perform an average over
a thermal distribution of expectation values which we denote
as 〈〈Ô〉〉th. More precisely, we calculate thermal averages of a
function, A(ξ ), of the continuous variable ξ ≡ |α0|2 as

〈A(ξ )〉th ≡ β

∫ ∞

0
A(ξ )e−βξdξ, (9)

where β = �ωz(kBT )−1 for COM mode temperature T . For
completeness, the Fock state calculations in the appendices
involve the corresponding thermal average over discrete Fock
state expectation values An as

〈An〉th ≡ (1 − e−β )
∞∑

n=0

Ane
−βn. (10)

A. Bloch vector length (�φ = 0)

Here we are interested in calculating the expectation value
of a component of the composite Bloch vector, (Ŝx,Ŝy,Ŝz) =
(
∑N

i=1
σ̂ x

i

2 ,
∑N

i=1
σ̂

y

i

2 ,
∑N

i=1
σ̂ z

i

2 ), for initial spin states which are
product states. This reduces to calculating the expectation
value of a component of an individual spin 
σi . For the
evolution operator of Eq. (6), which is a product of commuting
displacement operators involving individual spins, only the
displacement operator involving σ̂ z

i nontrivially enters into
the calculation. We assume that each experiment begins with
the state |↑〉|α0〉 = |↑〉D̂(α0)|0〉, where |α0〉 is a coherent state
of COM motion. In Secs. III A and III B, we consider a
Ramsey pulse sequence consisting of two π/2 pulses separated
by a time τ as shown in Fig. 3. For this Ramsey sequence
consisting of a single ODF excitation period, Eq. (7) is used to
calculate spin-dependent displacements, α. The measurements
of Sec. IV involve spin echo sequences, but all of the theory
results of Secs. III A and III B apply with small modifications
for calculating the spin-dependent displacement α.

The first π/2 pulse of the sequence of Fig. 3 yields the qubit
rotation

|ψ1〉 = R̂

(
π

2
,0

)
|↑〉|α0〉

= 1√
2

(|↑〉 + |↓〉) D̂(α0)|0〉, (11)
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124 GHz

ODF 

π/2 |y π/2 |Δφ

τ

ψ1
ψ2 ψf

FIG. 3. (Color online) Ramsey pulse sequence for global
124 GHz qubit rotations (upper) and ODF excitation (lower) as used
for the derivations of Sec. III. The quantum states |ψ1〉, |ψ2〉, and
|ψf 〉 are labeled at appropriate points in the sequence as described in
the text.

where we define the following qubit rotation matrix:

R̂(θ,φ) =
(

cos
(

θ
2

) −e−iφ sin
(

θ
2

)
eiφ sin

(
θ
2

)
cos

(
θ
2

)
)

. (12)

We now consider the effect of the spin-dependent ODF acting
for the free evolution time τ . This yields the state

|ψ2〉 = 1√
2
|↑〉D̂(α)D̂(α0)|0〉 + 1√

2
|↓〉D̂(−α)D̂(α0)|0〉

(13)

= 1√
2
e−iθ0 |↑〉|α + α0〉 + 1√

2
eiθ0 |↓〉| − α + α0〉,

(14)

where θ0 = Im{αα∗
0}. It is useful to pause at Eq. (14) before

applying the final microwave pulse and evaluate 〈Ŝx〉 and 〈Ŝy〉.
We find

〈Ŝx〉 = N

2
〈σ̂ x〉 = N

2
cos (4 Im{α∗α0})e−2|α|2 , (15)

〈Ŝy〉 = N

2
〈σ̂ y〉 = N

2
sin (4 Im{α∗α0})e−2|α|2 . (16)

From Eqs. (15) and (16), we see that the ODF has caused a
coherent rotation of the composite Bloch vector about the z

axis by

θcoh = arctan (〈Ŝy〉/〈Ŝx〉) = 4 Im{α∗α0}. (17)

The effect of spin-motion entanglement is reflected in the term
e−2|α|2 of Eqs. (15) and (16), which deviates negligibly from
unity for the dephasing measurements discussed in Sec. IV.
Thermal averages may be performed over the continuous
variable ξ ≡ |α0|2, where the magnitude ξ is now weighted
according to Boltzmann statistics and the phase of α0 ∈ C is
evenly distributed over 2π radians. Defining α = |α|eiφ′

and
α0 = |α0|eiφ0 , we calculate

〈
θ2

coh

〉
th

= β

2π

∫ 2π

0

∫ ∞

0
16|α|2ξ sin2 (φ′ − φ0)e−βξ dξdφ0

= 8|α|2β−1. (18)

In Sec. IV, a typical |α| for a 30 yN ODF driving at ωz for
100 μs is ∼0.05, while β−1 ∼ 12 at the Be+ Doppler cooling

limit, producing a nonnegligible rotation angle standard
deviation of ∼30◦.

For completeness, we present |ψf 〉, P↑, and 〈Ŝz〉 results
following the final π/2 pulse, R̂(π

2 ,0):

|ψf 〉 = 1

2
|↑〉(e−iθ0 |α + α0〉 − eiθ0 | − α + α0〉)

+1

2
|↓〉(e−iθ0 |α + α0〉 + eiθ0 | − α + α0〉), (19)

P
(α0)
↑ ≡ 1

2
[1 − cos (4 Im{α∗α0})e−2|α|2 ], (20)

P↑ = 〈P (α0)
↑ 〉th

= 1

2

(
1 − e−2|α|2(2β−1+1)

)
, (21)

〈Ŝz〉 = −N

2
cos (4 Im{α∗α0})e−2|α|2 , (22)

〈Ŝz〉th = −N

2
e−2|α|2(2β−1+1). (23)

We note that β−1 = 〈|α0|2〉th. Also, for n̄ � 1, β−1 ∼ n̄ and
the P↑ of Eq. (21) agrees with the treatment that assumes
a thermal distribution of Fock states [Eq. (A5)] given in
Appendix A, but offers a more classical description. That is, for
each possible coherent state amplitude and phase, the result of
the experimental sequence is that the composite Bloch vector
undergoes coherent rotation by some angle θcoh. Over many
such experimental sequences, we measure a dephasing of the
composite Bloch vector associated with the angular variance,
〈θ2

coh〉th, of Eq. (18).

B. Dephasing (�φ = π
2 )

A final qubit rotation of R̂(π
2 , π

2 ) (�φ = π/2) transforms
rotations and dephasing in the xy plane of the Bloch sphere
to the detection (z) basis. Below we calculate the thermal
average of the expectation value 〈Ŝ2

z 〉 from which a temperature
determination can be obtained. In addition, we discuss the
implementation of a Monte Carlo analysis (see Sec. IV) that is
in excellent agreement with measurements of thermal as well
as nonthermal motional state distributions with n̄ � 1.

For the �φ = π
2 pulse sequence, we obtain the following

expression for 〈Ŝz〉 after the final π/2 pulse:

〈Ŝz〉 = N

2
sin (4Im{α∗α0})e−2|α|2 . (24)

Note that the thermal average of the expression in Eq. (24)
vanishes, so we instead calculate dephasing through the second
moment of Ŝz:

〈
Ŝ2

z

〉 = 1

4

N∑
i=1

〈
σ̂ z

i σ̂ z
i

〉 + 1

4

∑
i �=j

〈
σ̂ z

i σ̂ z
j

〉
(25)

= N

4
+ N (N − 1)

4

〈
σ̂ z

1 σ̂ z
2

〉
, (26)

where 〈σ̂ z
1 σ̂ z

2 〉 is an expectation value involving any two
nonidentical spins within the ensemble. We simplify to
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Eq. (26) since, for COM excitation, all spins feel a force of
equal magnitude and there is no differentiation between spin
pairs. In evaluating the two-spin expectation, 〈σ̂ z

1 σ̂ z
2 〉, only

the displacement operators in Eq. (6) involving σ̂ z
1 and σ̂ z

2
nontrivially enter into the calculation. We then compute the
thermal average of this expectation value and obtain

〈〈
Ŝ2

z

〉〉
th

= N

4
+ N (N − 1)

4
σ 2, (27)

σ 2 ≡ 〈〈
σ̂ z

1 σ̂ z
2

〉〉
th

(28)

= 1

2

[
1 − 〈cos (8 Im{α∗α0})〉the−8|α|2] (29)

= 1

2

(
1 − e−8|α|2(2β−1+1)

)
. (30)

The first term of Eq. (27) is the contribution of spin projection
noise while the second is due to dephasing. The quadratic
scaling of the dephasing with N relative to the linear scaling
of projection noise indicates that thermal dephasing can be
more accurately measured with larger ion numbers. We may
recast the normalized thermal dephasing portion (σ 2) in terms
of the COM mean phonon number (n̄ ∼ β−1):

n̄ ∼ 1

16|α|2 ln

[
1

1 − 2σ 2

]
− 1

2
. (31)

Using Eq. (31), we can now extract the mean phonon
occupation of the COM mode from measurements of spin
dephasing. To determine σ 2 we subtract the calculable spin
variance (N

4 ) from the measured 〈〈Ŝ2
z 〉〉th and normalize by the

squared length of the composite Bloch vector (| 
S|2 = N2

4 ). For

N > 100, the difference between N2

4 and N(N−1)
4 is below 1%.

In Appendix B we derive an analogous expression to Eq. (30)
using Fock states that agrees in the limit β−1 ∼ n̄.

As detailed in Sec. IV, this approach to calculating spin
dephasing using coherent states motivates a straightforward
Monte Carlo analysis in which, for each experiment, we choose
a random initial coherent state of motion and subsequently
apply the experimental pulse sequences and state readout.
The initial coherent state magnitudes are weighted according
to a thermal distribution while the phase is random and
unweighted in the range [0,2π ). Each simulation includes a
Bloch vector rotation of θcoh determined by the randomized
initial coherent state and fixed spin-dependent displacement α.
After many such Monte Carlo runs, we bin the outcomes into
simulated histograms for direct comparison with experimental
histograms.

IV. CENTER-OF-MASS MEASUREMENTS

In this section, we describe measurements of spin dephasing
for different initial states of COM motion. We show experi-
mentally that such measurements reveal not only the effective
temperature of the COM mode (n̄) [15], but allow for a more
detailed characterization of the initial motional state (e.g.,
thermal, coherent, or a mixture of the two).

Figure 4(a) shows the experimental pulse sequences for
ODF laser beams and qubit rotations used to measure the
Bloch vector length (�φ = 0, Sec. III A) as in Ref. [15], along
with a plot of experimental data and corresponding theory fit.

The collective spin of the trapped ions is first prepared in the
state, |↑〉N , and the pulses at ∼124 GHz constitute a Hahn spin
echo that, in the absence of the ODF beams, leaves the spins
in state |↓〉N with >99% fidelity [34]. We apply the ODF laser
beams during each free evolution period of the spin echo for a
duration τ1 = 500 μs. The relative frequency of the two beams
is μ, and the relative phase of the ODF beat between the first
and second arms is given by φODF. Note that for φODF = π

and μ = ωz, the net result of the experimental sequence is
identical to that of the Ramsey sequence of Fig. 3 with no
intermediate π pulse and a single free-precession period of
2τ1. This is due to the condition that the ODF on state |↑〉 (F↑)
is opposite in sign but equal in magnitude to that on |↓〉 (F↓),
where (F↑ − F↓) = 2F0 [see Eq. (5)]. In this case the ODF of
the second arm reinforces that of the first. In other words, the
phase advance of the ODF beat by π radians reverses the effect
of the intermediate qubit π pulse but retains the suppression
of spin decoherence inherent in the spin echo. However, for
the case μ �= ωz, the finite duration of the qubit π pulse leads
to a phase offset between the ion crystal oscillation and ODF
drive at the start of the second arm given by δ(τ1 + tπ ), where
δ ≡ (μ − ωz), that must be included in the theoretical analysis.
Assuming that we interact exclusively with the COM mode,
the final position (αSE) of the ion crystal in phase space after
application of the two ODF pulses of Fig. 4(a) is given by

αSE(τ ) = F0z0

2�
√

N

(1 − eiδτ )

δ
(eiϕ0 − ei[ϕ0+δ(τ+tπ )+φODF]), (32)

where τ is the duration of each evolution period, ϕ0 is the
ODF phase at the start of the first free evolution period, and
we have included the additional φODF to denote the added
phase advance in the second free evolution period of the spin
echo sequence. The common phase ϕ0 does not contribute to
any experimental observables and may be disregarded. The
relative minus sign between phase factors in the final term
of Eq. (32) is due to the intermediate π pulse of the spin
echo sequence, which removes displacements common to both
free evolution periods since F↑ = −F↓. Using Eq. (32), we
can estimate the phase-space excitation magnitude of lower
frequency drumhead modes when resonantly exciting COM
motion. The nearest mode to the COM is detuned by ∼10 kHz
[15]; therefore its maximum excitation magnitude relative to
that of the COM mode is ∼(2τ1δ)−1, which gives more than
an order-of-magnitude suppression for all data presented here.

Previous experiments with ions confined within RF Paul
traps have shown that Doppler laser cooling produces thermal
states of ion motion [35]. In Fig. 4(a), we show that
measurements of the Bloch vector length under application
of a spin-dependent force with μ ∼ ωz are consistent with
that of a thermal state of motion whose temperature is
0.4(1) mK, the Doppler cooling limit. The frequency width
of the spectral feature is approximately given by the Fourier
width of the ODF pulse duration of 2τ1 = 1 ms, and the degree
of decoherence measured near δ = 0 is determined by the
ODF magnitude and n̄ according to Eqs. (21) and (32) [15].
The detuning-independent background decoherence level of
P↑ ∼ 0.07 in Fig. 4(a) is due to spontaneous emission from
the off-resonant ODF laser beams, and is fully characterized
for this system [15,36].
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124 GHz

ODF 
(μ, 0) (μ, π)

π/2 |y π |x π/2 |y (b)(a)
N τ1

0.4(1) mK

124 GHz

ODF
(ωz, 0) (ωz, φODF)

π/2 |y π |x π/2 |x
N

0.42(7) mKφODF = 0
φODF = π

δ / 2π  (kHz)

τ1 τ2 τ2

Photon Counts (arb. units)

FIG. 4. (Color online) Experimental pulse sequences for global 124 GHz qubit rotations (upper) and ODF excitation (lower) along with
corresponding data. Relative phases and rotation angles are given for each qubit rotation. The ODF drive frequencies (μ) and phases (φODF) are
given as (μ,φODF). (a) Measurement of COM temperature using collective Bloch vector length. The microwave spin echo sequence produces
the state |↓〉N (P↑ = 0) in the absence of the ODF, and the ODF frequency is swept over the COM resonance (ωz = 2π × 795 kHz) with
τ1 = 500 μs. Frequency-dependent deviation from P↑ = 0 is fitted to a theoretical expression derived in Ref. [15]. The resulting experimental
data (black points with error bars) is fitted (solid red line) to extract a mode temperature of 0.4(1) mK given the applied ODF. (b) Extraction of
COM mode temperature through direct measurement of spin dephasing. The COM mode is resonantly driven in each arm for τ2 = 100 μs and
φODF for the second arm is chosen to either undo (φODF = 0) or enhance (φODF = π ) the Bloch vector rotation produced by the spin-dependent
force. Temperature is extracted from the excess width of the φODF = π histogram (red bars) using Eq. (31), and the solid black-line histogram
is the result of a Monte Carlo simulation of 50 000 experimental runs with no adjustable parameters. We determine a COM temperature of
0.42(7) mK using this dephasing measurement.

A. Thermal distributions

The measurement of Fig. 4(a) is one of composite Bloch
vector length, and is only second-order sensitive to spin
dephasing. To measure dephasing more directly and gain more
complete knowledge of the spin statistics, we implement the
experimental pulse sequence of Fig. 4(b). For this experiment,
we resonantly drive the COM mode (δ = 0) with the spin-
dependent ODF during free-evolution periods of τ2 = 100 μs.
We set the phase of the final π/2 pulse of the sequence to
be the same as the intermediate π pulse (�φ = π

2 ), thereby
rotating any dephasing within the xy plane to lie along the
qubit axis. After each such sequence, we perform a projective
measurement of P↑ and repeat for a total of 1000 experiments.
The collection of 1000 P↑ values are binned and displayed as
histograms in Fig. 4(b). As an additional check, we choose
φODF to be either 0 or π . In the case of φODF = 0 (light gray
bars), the spin echo effectively cancels the spin-dependent
excitation and concomitant Bloch vector rotation, allowing for
characterization of other sources of dephasing such as spin
projection noise, photon shot noise, ac Stark shift fluctuations
from the ODF lasers between the two spin echo arms, and
excess magnetic field fluctuations not fully canceled by the
spin echo. For φODF = π (red bars), the precession induced
by the spin-dependent force in the first arm is enhanced in
the second and we observe that the detected spin variance is
greatly increased relative to the φODF = 0 case. We extract
a COM temperature of 0.42(7) mK from this measurement
by applying Eq. (31) to the excess variance of the φODF = π

experiments. This temperature is in excellent agreement with

the theoretical Doppler cooling limit as well as the Bloch
vector length measurement of Fig. 4(a).

To further compare the measurements of Fig. 4(b) with
the model of Sec. III B, we use a Monte Carlo algorithm to
produce simulated histograms consisting of 50 000 “detection”
events. This is a factor of 50 more detections than for the
experimental measurements, and is so chosen to reduce noise
in the Monte Carlo histograms for clearer distinction between
experiment and simulation. Importantly, the simulations have
no adjustable parameters—all inputs to the Monte Carlo
algorithm are experimental parameters (e.g., αSE, τ , tπ ) or
obtained from measurement (e.g., n̄ from the measured σ ).
The simulated histograms are scaled vertically to match the
experimental data given bin widths and total detection events.

The simulation procedure is the following: for each Monte
Carlo run, k ∈ {1, . . . ,5 × 104}, we choose a random ini-
tial coherent state of COM motion given by |αk|eiφk . The
probability of choosing a given magnitude, |αk|, is given by
Boltzmann statistics for a thermal state. As such, the chosen
magnitudes |αk| follow a probability distribution proportional
to exp(−β|αk|2). The random value of φk is unweighted and
assigned from the set [0,2π ), which assumes the phase of the
initial state of COM motion is uncorrelated with that of the
ODF and varies for each experimental sequence. Following the
pulse sequence of Fig. 4(b) with φODF = π , we apply relevant
qubit rotations in sequence with coherent z-axis rotations due
to the spin-dependent ODF given by Eqs. (15) and (16), where
αk constitutes the initial coherent state for each run and αSE is
the spin-dependent displacement calibrated as in Refs. [7,15].
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For completeness, we also include the smaller measured
variance in the φODF = 0 case phenomenologically by adding
another, uncorrelated random rotation to the composite Bloch
vector. The angle of this additional rotation follows a Gaussian
probability distribution with the measured variance [light
gray bars in Fig. 4(b)] [37]. The simulated histogram (black
line) of Fig. 4(b) shows good agreement with experimental
measurements, and further supports the absolute temperature
measurement of Fig. 4(a). Note that the higher sensitivity of
the direct spin-dephasing measurements enables the use of a
shorter free-evolution period. As a result, direct measurements
of spin dephasing are less sensitive to COM frequency and
ODF phase drift within a single experiment. The effects of
spontaneous emission decoherence are also negligible in this
parameter regime.

B. Thermal distributions with large coherent displacements

We now describe the spin dephasing signature of relatively
large coherent motional displacements, αd , acting in addition
to thermal fluctuations characterized by n̄. Such analysis may
be relevant when narrow-bandwidth electric field fluctuations
exist on trap electrodes at frequencies near that of the COM. As
in the previous section, we assume that the phases of thermal,
coherent, and ODF displacements are all uncorrelated. It
may seem that little can be inferred from dephasing in the
presence of coherent excitations with a random phase, but we
demonstrate that a constant magnitude is all that is required to
distinguish such noise sources.

We use resonant RF excitation of the COM mode to produce
coherent states of motion whose square magnitude, |αd |2, is
larger than the thermal magnitude given by n̄. To this end, we
apply an oscillating voltage with a frequency of ωz to the upper
end cap electrode of the Penning trap for a period of 20 μs as in
Ref. [38]. This homogeneous COM mode excitation is applied
following the initial Doppler cooling and state preparation
pulses but before the experimental pulse sequence of Fig. 4(b).
The amplitude of the applied voltage is 110 μV (1.2 mV m−1

at the ion position), corresponding to a coherent excitation
of |αd | ∼ 8 (∼30 nm amplitude). Histograms compiled from
1000 experimental runs without and with the resonant RF
excitation are shown in Figs. 5(a) and 5(b), respectively. The
absolute COM temperature is determined to be 0.7(1) mK
for the sequence without coherent excitation. This elevated
COM temperature is due to the connection of the direct digital
synthesizer used to apply resonant RF to the upper end cap.
Nevertheless, we achieve |αd |2/n̄ ∼ 3.5 for these experiments.
Figure 5(b) shows the effect of applying the coherent motional
excitation, namely that the spin distribution is split into
two peaks whose separation is determined by the combined
coherent and ODF displacements. If the relative phase of αd

and αSE were fixed for every experimental sequence, then
the mean of the histogram of Fig. 5(a) would simply be
shifted to a new position corresponding to a coherent Bloch
vector rotation, with the standard deviation still reflecting the
COM temperature of 0.7(1) mK. However, the randomness of
the relative phases of αd and αSE in combination with their
constant amplitudes leads to a characteristic splitting of the
spin distribution about the mean.

(b)

αSE αd

pz

z

0.7(1) mK 0.7(1) mK
|αd| = 8

(c) pz

z

(d)

αkαk
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(a)

FIG. 5. (Color online) (a) Histogram of 1000 experimental runs
(red bars) under similar conditions as that shown in Fig. 4(b)
with a measured n̄ = 18(3). These data were taken without an
initial coherent drive of the COM motion. Solid black histograms
are obtained from Monte Carlo simulations of 50 000 experiment
sequences with no adjustable parameters. (b) Measured and simulated
histograms resulting from insertion of a spin-independent coherent
excitation (|αd | = 8) before the spin dephasing measurement. The
effect of coherent excitation is visible despite the fact that the relative
phases of αd and the ODF αSE are uncontrolled from one experiment
to another. (c), (d) Example phase space trajectories of the COM mode
in a frame rotating at ωz for each Monte Carlo simulation step k, both
without and with the coherent RF drive. The initial displacement αk

for each simulation run is chosen randomly according to Boltzmann
statistics to reflect thermal fluctuations of COM motion.

As in Sec. IV A, we use a Monte Carlo algorithm to simulate
the experimental histograms of Fig. 5(a) and 5(b). We simulate
50 000 runs to minimize noise relative to the experimental data.
The simulation results given in Fig. 5(a) (black-line histogram)
use the same procedure as described in Sec. IV A. To include
the coherent excitation for Fig. 5(b), we simply redefine the
initial coherent state amplitude to be (|αk|eiφk + |αd |eiφ′

k ).
Only the variables with the k subscript change with each
simulation run, as |αd | = 8 is fixed for all pulse sequences. The
amplitudes |αk|2 once again follow a Boltzmann distribution,
but here we use T = 0.7 mK to reflect the elevated COM
temperature for this set of measurements. The phases φk and φ′

k

are uncorrelated and chosen randomly from the set [0,2π ) for
each simulation run. Example paths of COM motion through
phase space for each Monte Carlo simulation run are shown
schematically in Figs. 5(c) and 5(d) both without and with the
initial RF pulse, respectively. The effect of the spin-dependent
ODF is depicted as two oppositely oriented vectors leading to
a separation of the spin states by 2αSE ∼ 0.1, while all other
excitations are common to both spins.

C. Heating rates

Motional heating in RF ion traps has gained increased
prominence in recent years due primarily to studies of so-called
“anomalous heating” from ion-surface proximity [39–44].
Recent work suggests surface contamination as the culprit
[45,46]. Additionally, micromotion in RF traps limits the
usable size of Coulomb crystals for quantum information
and quantum simulation experiments. Penning traps use static
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(a) (b)
250 ions

185 ions

240 ions

FIG. 6. (Color online) Measured COM heating rates (points with
error bars) and corresponding linear fits (solid lines) plotted with both
(a) linear and (b) logarithmic vertical scales. The highest heating rate
of dn̄

dt
= 1.4(2) × 104 s−1 is obtained with the trap end cap electrodes

grounded through the high-voltage power supplies used for initial
ion loading. The two lower heating rates are measured with the end
caps shorted directly to the trap vacuum ground at the high-voltage
vacuum feedthrough. The variation between the two lowest rates is
representative of the range of heating rates measured thus far under
the given conditions.

potentials for ion confinement and therefore do not induce mi-
cromotion, enabling the formation of large ion crystals [47,48].
Furthermore, the large physical size of typical Penning traps
means a likely insensitivity to anomalous heating processes.
Despite these encouraging features, no measurements have
yet been reported for ambient heating of a resolved motional
mode of an ion crystal in a Penning trap. A previous study
of global (not mode-resolved) ambient heating of large 3D
crystals in our Penning trap estimates that background gas
collisions are a primary contributor [49]. Heating rates of
∼65 mK/s were measured for background pressures of ∼
4 × 10−9 Pa (3 × 10−11 Torr), which translates to dn̄

dt
∼ 1.7 ×

103 s−1 at our trap frequency of 795 kHz.
We apply the thermometry techniques summarized in Fig. 4

to obtain an initial measurement of the ambient heating rate of
the axial COM mode of our 2D crystals. We include a variable
delay between initial Doppler cooling/state preparation and
application of the experimental pulse sequences. Any increase
in n̄ over this initial delay period is measured in the subsequent
decoherence or dephasing measurement. Figure 6 shows
measured absolute COM temperatures as a function of initial
delay (points with error bars) along with linear fits to each
data set (solid lines). The data of Figs. 6(a) and 6(b) are
identical, but plotted on linear and logarithmic vertical axes,
respectively, for clarity. The fitted slopes reflecting dn̄

dt
for each

curve are displayed in Fig. 6(b) and color coded to match the
corresponding data set.

We measure the largest heating rate of 1.4(2) × 104 s−1

(black points) when the trap end cap electrodes are held at
0 V using the high-voltage power supplies responsible for
initial ion loading and transport. Small voltage fluctuations
from these power supplies as well as electromagnetic
interference along the connecting cables are the likely cause
of this COM heating. Upon grounding the end caps directly
to the vacuum chamber at the high-voltage feedthrough, we
observe an order-of-magnitude drop in the heating rate to
between 4.7(8) × 102 s−1 (blue points) and 1.2(3) × 103 s−1

(red points). This approximate factor-of-two variation in
heating rates is representative of our day-to-day observations
with different ion samples, and we see no evidence of a

correlation between total ion number and heating rate with the
end cap electrodes grounded at the feedthrough. The mean of
the two lowest heating rates corresponds to ∼30 mK/s, which
is near previous collisional heating estimates [49]. Additional
filtering of the central ring and rotating-wall electrodes outside
the vacuum envelope yielded no measurable improvement in
COM heating [50].

Because the distance from the trapped-ion arrays to the
trap electrode surfaces (�2 cm) is large compared to the
diameter of the planar array (<0.5 mm), electric field noise
from trap electrode surfaces will be uniform across the array
and preferentially heat the COM mode. For an array with N

ions this results in a linear dependence of the COM heating rate
on ion number due to uniform electric field noise [4]. The lack
of an observed N dependence in the measured ambient-heating
rate indicates the source of the heating is likely not electric field
noise. However, any potential anomalous heating must be less
than the measured ∼103 s−1 ambient-heating rate. Dividing
this limit by the number of trapped ions (N ∼ 200) gives a
limit on the anomalous heating rate for a single trapped ion of
∼5 s−1 at a trap frequency of 795 kHz.

V. CONCLUSION

In summary, we have demonstrated a technique for an-
alyzing the motional state of a resolved ion crystal mode.
The methods presented here do not rely on stimulated
Raman transitions or Doppler linewidth analysis, and are in
principle applicable to any resolved motional mode at any
temperature provided the Lamb-Dicke confinement criterion
is satisfied for the given mode. The sensitivity of our spin
dephasing measurements allows for a regime of operation
with negligible spin-motion entanglement and spontaneous
emission decoherence. Monte Carlo simulations based on the
semiclassical description of Sec. III are in excellent agreement
with spin dephasing measurements. Furthermore, we observe
a clear distinction between coherent and thermal states of
motion, despite the randomness of the RF drive phase relative
to our optical dipole force.

The methods and analysis presented here enable very
sensitive detection of coherently driven motion of a trapped-
ion crystal, and may be used to phase-sensitively detect weak
forces [38,51]. Section III can be used to estimate and optimize
the force detection sensitivity for a given N and temperature
of the trapped-ion crystal. We estimate that the spin-motion
coupling technique discussed here could improve on the force
sensitivity obtained in Ref. [38] by more than an order of
magnitude.

We also present measurements of ambient heating of a re-
solved mode of motion in a Penning trap. Future crystal heating
measurements will include other resolved transverse motional
modes with the goal of more clearly distinguishing between
electric field fluctuations (mode-specific, N -dependent) and
background gas collisions (mode- and N -independent). Nev-
ertheless, we demonstrate that low heating rates are indeed
achievable in Penning ion traps.
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APPENDIX A: CALCULATING BLOCH VECTOR LENGTH
USING FOCK STATES

A thermal motional state is described by a density matrix
that is a statistical mixture of Fock states. This motivates
a calculation that assumes each experiment begins with the
system in the state, |↑〉|n〉, where |n〉 is the harmonic oscillator
Fock state of COM motion. The first π/2 pulse of the Ramsey
sequence yields the qubit rotation

|ψ1〉 = R̂

(
π

2
,0

)
|↑〉|n〉 = 1√

2
(|↑〉 + |↓〉) |n〉. (A1)

The spin-dependent ODF then produces displaced Fock states,
|α,n〉, as [52]

|ψ2〉 = D̂SD(α)|ψ1〉 = 1√
2

(|↑〉|α,n〉 + |↓〉| − α,n〉) . (A2)

Note that |ψ2〉 involves entanglement of spin and motional
degrees of freedom for nonzero α. We now apply the final π/2
pulse whose phase is identical to the first (�φ = 0) to obtain

|ψf 〉 = 1
2 |↑〉 (|α,n〉−|−α,n〉) + 1

2 |↓〉 (|α,n〉 + | − α,n〉) .

(A3)

The probability of measuring |↑〉 for state |ψf 〉 depends on the
overlap of |α,n〉 and |−α,n〉, and is given by

P
(n)
↑ = 1

2

[
1 − Ln(4|α|2)e−2|α|2], (A4)

where Ln is the Laguerre polynomial of order n. Our
fluorescence detection is insensitive to the ion motional state,
so we perform a Boltzmann-weighted thermal average over all
Fock states to obtain

P↑ ≡ 〈P (n)
↑ 〉th

= 1
2

(
1 − e−2|α|2〈Ln(4|α|2)〉th

)
= 1

2

(
1 − e−2|α|2(2n̄+1)

)
. (A5)

In the above equation, n̄ = (eβ − 1)−1 is the average COM
mode occupation number for a thermal state at temperature
T , and β = �ωz/kBT . In the absence of the spin-dependent
displacement, P↑ = 0 for this pulse sequence. However, as the
displacement amplitude increases, P↑ takes on positive values
that increase with mode occupation—eventually saturating at
P↑ = 0.5 corresponding to complete loss of spin coherence.
In Ref. [15], we describe using this decoherence signature to
perform mode spectroscopy and thermometry on a planar array
of ions.

We may also calculate the expectation value for the N -spin
composite Bloch vector, 〈Ŝz〉 = 〈∑N

i=1
σ̂ z

i

2 〉 = N
2 〈σ̂ z〉 using the

final state of Eq. (A3). We obtain

〈Ŝz〉 = −N

2
Ln(4|α|2)e−2|α|2 , (A6)

〈〈Ŝz〉〉th = −N

2
e−2|α|2(2n̄+1). (A7)

We note that the calculation in this appendix, which uses
the Fock state basis, motivates a picture of spin decoherence
produced by entanglement of the spin and motional degrees of
freedom. However, in the manuscript we show that for coherent
input states of motion, spin decoherence can be explained by
dephasing without resorting to quantum entanglement of spin
and motion.

APPENDIX B: CALCULATING DEPHASING
USING FOCK STATES

If the phase of the final microwave π/2 pulse is shifted by
π/2 [e.g., R̂(π

2 , π
2 ), �φ = π/2], then the composite Bloch

vector will remain in the equatorial plane of the Bloch
sphere and 〈Ŝz〉 = 〈Ŝz〉th = 0. Fock states therefore produce
no coherent spin rotation due to the spin-dependent ODF.

To calculate dephasing, we must compute pairwise spin
correlations of the form 〈σ̂ z

1 σ̂ z
2 〉 as shown in Eq. (26). As

in Appendix A, we will consider the initial state of COM
motion to be a Fock state, |n〉. In contrast with the Bloch
vector length calculation that requires only a single spin, we
here consider a two-spin system whose full initial state is
|↑↑〉|n〉. We construct the necessary two-spin rotation matri-
ces, R̂(2)(π

2 ,0) and R̂(2)(π
2 , π

2 ), using Kronecker products as
follows:

R̂(2)

(
π

2
,0

)
≡ R̂

(
π

2
,0

)
⊗ R̂

(
π

2
,0

)

= 1

2

⎛
⎜⎝

1 −1 −1 1
1 1 −1 −1
1 −1 1 −1
1 1 1 1

⎞
⎟⎠ , (B1)

R̂(2)

(
π

2
,
π

2

)
≡ R̂

(
π

2
,
π

2

)
⊗ R̂

(
π

2
,
π

2

)

= 1

2

⎛
⎜⎝

1 i i −1
i 1 −1 i

i −1 1 i

−1 i i 1

⎞
⎟⎠ . (B2)

We can now define the final state, |ψf 〉, after the pulse sequence
of Fig. 3 (�φ = π

2 ) as

|ψf 〉 = R̂(2)

(
π

2
,
π

2

)
D̂SD(α)R̂(2)

(
π

2
,0

)
|↑↑〉|n〉, (B3)

where D̂SD = exp([αâ† − α∗â]
∑2

i=1 σ̂ z
i ) and α is the spin-

dependent displacement amplitude. The expectation value
〈σ̂ z

1 σ̂ z
2 〉 = 〈ψf |σ̂ z

1 σ̂ z
2 |ψf 〉 and corresponding thermal average

are 〈
σ̂ z

1 σ̂ z
2

〉 = 1
2

[
1 − Ln(16|α|2)e−8|α|2], (B4)

〈〈
σ̂ z

1 σ̂ z
2

〉〉
th

= 1
2

[
1 − e−8|α|2(2n̄+1)]. (B5)

As is the case with the Bloch vector length calculation, Eq. (B5)
agrees with our earlier result using coherent states [Eq. (30)]
in the limit n̄ ∼ β−1.
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