
PHYSICAL REVIEW A 89, 033403 (2014)

Adiabaticity condition for non-Hermitian Hamiltonians
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I. INTRODUCTION

The adiabatic approximation and adiabatic following are
key concepts to study and manipulate quantum systems. For
a time-dependent Hamiltonian, the instantaneous eigenvalues
and their corresponding eigenstates change with time along
time-dependent trajectories. For very slow changes of the
control parameters the system will follow closely an eigenstate
trajectory up to a phase factor if it is initially in one of
the eigenstates. This is the essence of adiabaticity [1] and
the adiabatic approximation provides the form of the phase.1

Adiabaticity is useful for several reasons: The phase factors ac-
companying adiabatic changes [2] imply many consequences
in atomic, molecular, optical, and condensed matter physics;
in addition, setting initial and final Hamiltonians as boundary
conditions, the details of the parameter paths connecting
them are unimportant for the final populations as long as the
process is adiabatic. This feature explains the robustness of
adiabatic methods to prepare states, the robustness of adiabatic
devices such as the atom diode [3,4], or some applications
of adiabaticity in quantum information processing [5]. Thus,
knowing the conditions that determine the adiabaticity of a
given process is generically worthwhile.

For non-Hermitian (NH) systems the usual approximations
and criteria [6] are not necessarily valid, so arguments and
results that are applicable for Hermitian systems have to be
reconsidered and modified [7–23]. We shall review first very
briefly some contributions to the study of adiabaticity in NH
systems (the selection reflects our interest and is not compre-
hensive): Dissipative atomic systems motivated the extension
of the adiabatic phase and the adiabatic theorem for NH
systems [7–9]. A rough estimate of an adiabaticity condition
was set by Miniatura et al. by analogy with the Hermitian
counterpart [8] recognizing the need for further analysis.
Nenciu and Rasche [10] distinguished weak and strong
non-Hermiticity regimes depending on the ratio between the
absolute value of the imaginary parts of the eigenvalues to
the slowness parameter. In the weak non-Hermiticity regime
(small ratio) a generalization of the adiabatic theorem for
nondegenerate eigenvalues is possible. However, in the strong
non-Hermiticity regime (large ratio) he pointed out that the
usual argument to neglect transitions in the adiabatic limit

1A broader concept of adiabaticity applies also to time-independent
Hamiltonians with several degrees of freedom, for example, in the
Born-Oppenheimer approximation.

based on rapidly oscillating exponential phase factors does
not apply because the factors blow up exponentially due to
the complex energies. An exception is the evolution of the
least dissipative state for which all factors decay exponentially.
Later, Sun proposed [11], using perturbation theory and
integration by parts, an adiabaticity condition similar to the
Hermitian one with the real parts of the energies involved
in the transition and an exponential factor depending on the
imaginary parts. A more sophisticated approach was followed
in [13] to set an adiabaticity condition for systems with a
discrete and a continuum spectrum subjected to a periodic
excitation. These systems are in fact Hermitian, but complex
scaling mapped them formally into NH systems discretized by
Floquet resonances.

The biorthogonality of the NH Hamiltonian eigenbases
implies changes in the definitions of projectors and populations
affecting adiabaticity: In [21] different projectors that can be
defined in a NH system were exploited (the conventional one,
using one eigenstate only, and the one based on biorthog-
onal resolutions of unity) to compare and discuss different
decompositions of the adiabatic phase. Several authors paid
attention to the normalization ambiguities in the eigenvectors
of NH Hamiltonians [17–19]. This may have dramatic con-
sequences if the adiabaticity condition is defined using ratios
of generalized populations. For Hermitian Hamiltonians the
adiabaticity conditions imply the conservation of populations
for the (time-dependent) instantaneous orthonormal eigen-
states [6]. For NH systems, however, the population concept is
problematic because of the arbitrariness in the normalization
of right and left eigenvectors [17–19] and because of their
nonorthogonality and the ensuing nondiagonal contributions
to the total state norm. More specifically, Berry and Uzdin
stated that “there seems to be no natural normalization” [17]
and Leclerc et al. in [18] exemplified the difficulties to define
adiabaticity based on an arbitrary extension of the population
concept to NH systems and proposed a particular definition to
avoid them.

For completeness we point out other relevant works,
although less directly related to our concern here. In [15,23]
the complex time method with Stokes lines was developed to
determine transition probabilities in two-level systems includ-
ing the strong non-Hermiticity regime. In [16,19] methods
to design shortcuts to adiabaticity [24–26] were extended
to NH systems in the weak non-Hermiticty regime, whereas
Torosov et al. produced shortcuts to adiabaticity for Hermitian
systems using NH Hamiltonians [20]. Finally, several works
have been devoted to study the adiabatic flip of the state
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and related effects when encircling in parameter space an
exceptional point (degeneracy points of the NH Hamiltonian)
[8,12,14,17,22,27].

In this paper we provide first different generalizations of
the population concept for NH systems and examine their
properties. We identify among them the one that is best
suited to define an adiabaticity condition for NH systems.
A comparison is made with the proposal in [18], which is
complementary to ours. We then provide an approximate
expression for the adiabaticity condition that improves on
the proposal of [11]. Its limitations are also pointed out and
examples are presented.

Let us also briefly review the relations that characterize a
non-Hermitian system described by a time-dependent Hamil-
tonian H (t) with N nondegenerate right eigenstates {|n(t)〉},
n = 1,2, . . . ,N [28],

H (t)|n(t)〉 = En(t)|n(t)〉 (1)

and biorthogonal partners {|̂n(t)〉}, which are left eigenstates.
Equivalently,

H †(t)|̂n(t)〉 = E∗
n(t)|̂n(t)〉, (2)

where the asterisk means complex conjugate and the dagger
denotes the adjoint operator. They are normalized to satisfy
the biorthogonality relation

〈̂n(t)|m(t)〉 = δnm (3)

and the closure relations∑
n

|̂n(t)〉〈n(t)| =
∑

n

|n(t)〉〈̂n(t)| = 1. (4)

The states

|φn(t)〉 = fn(t)|n(t)〉, (5)

|φ̂n(t)〉 = 1

f ∗
n (t)

|̂n(t)〉, (6)

where fn(t) ∈ C is an arbitrary function [18], constitute also
a complete biorthogonal set of eigenstates of H (t). Thus, the
freedom to define the eigenvectors of NH Hamiltonians goes
beyond the imaginary phase factor ambiguity of Hermitian
ones and their ordinary norm

√〈n(t)|n(t)〉 can be arbitrary.
Some restrictions on the fn(t) apply if the basis is parallel
transported, i.e., when 〈̂n(t)|ṅ(t)〉 = 0, where the dot means
time derivative. From Eq. (5), taking into account Eq. (3), we
find that

〈φ̂n(t)|φ̇n(t)〉 = ḟn(t)/fn(t) + 〈̂n(t)|ṅ(t)〉. (7)

Thus, if the reference basis {|n(t)〉} is parallel transported and
the new basis should be parallel transported too, fn(t) must be
constant. In other words, there is only one parallel transported
basis for each set of initial values fn(0), where we set t = 0 as
the initial time of the processes. This will be useful later on.

We may expand a state |�(t)〉 that satisfies the Schrödinger
equation

i�|�̇(t)〉 = H (t)|�(t)〉 (8)

as

|�(t)〉 =
∑

n

cn(t)|n(t)〉. (9)

From Eq. (4), cn(t) = 〈̂n(t)|�(t)〉, but the |cn|2 are not
necessarily bounded by one and their sum does not have to
be one either. We may now explore the use of a convenient
basis, in particular regarding the definition of adiabaticity.

A state with initial condition |�(0)〉 = |n(0)〉 behaves adi-
abatically if its dynamics is well approximated by eiβn(t)|n(t)〉.
Substituting this form as an ansatz into the Schrödinger
equation (8) gives

βn(t) = −1

�

∫ t

0
En(t ′)dt ′ + i

∫ t

0
〈̂n(t ′)|ṅ(t ′)〉dt ′. (10)

For a general state, fully adiabatic dynamics (for all modes)
would correspond to an evolution of the form

|�(t)〉 =
∑

n

gn(0)|ψn(t)〉, (11)

where

gn(t) := 〈ψ̂n(t)|�(t)〉, (12)

|ψn(t)〉 := eiβn(t)|n(t)〉, |ψ̂n(t)〉 := eiβ∗
n (t) |̂n(t)〉. (13)

However, the set of states {|ψn(t)〉} and the corresponding
biorthogonal partners may be used to expand an arbitrary state,
irrespective of its adiabaticity, as

|�(t)〉 =
∑

n

gn(t)|ψn(t)〉 =
∑

n

gn(t)eiβn(t)|n(t)〉. (14)

Remark 1. While our definition of adiabatic dynamics and
the phases in Eq. (10) are quite natural, as they follow from
the wave-function ansatz and the Schrödinger equation, an
alternative definition and phase based instead on a fidelity
criterion also have been proposed [29,30]. The results are not
always equivalent [29]. We restrict the present work to the
definition given above.

Remark 2. Equation (11) privileges the time zero. There
are often physical reasons to do so, in particular when the
eigenvectors of H (0) at the preparation time t = 0 form
an orthonormal basis. A more general view is to associate
adiabaticity of a mode n with the approximate invariance of
|gn(t)|2 in Eq. (14) during some time interval that may or may
not include the initial time.

II. GENERALIZED POPULATIONS FOR THE
EIGENSTATES OF A NON-HERMITIAN HAMILTONIAN

The population of an instantaneous eigenvector |n(t)〉 of a
Hermitian Hamiltonian H (t), Pn(t) = |〈n(t)|�(t)〉|2, may be
formally generalized in many different ways for a NH system.
Here are some possibilities (we shall frequently omit the time
argument t to avoid an overburdened notation):

P1,n = |〈̂n|�〉|2= |cn|2,

P2,n = |〈� |̂n〉〈n|�〉|∑
n |〈� |̂n〉〈n|�〉| ,

P3,n = 〈� |̂n〉〈n|n〉〈̂n|�〉,
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TABLE I. Properties of different generalized populations [see
Eq. (15)].

j
∑

nPj,n =1 Pj,n � 1 f independent Adiabatic invariant

1 no no no no (in general)
2 yes yes yes no
3 no no yes no
4 no yes yes no
5 no no no yes

P4,n = 〈� |̂n〉〈̂n|�〉
〈̂n|̂n〉〈�|�〉 ,

P5,n = |〈ψ̂n|�〉|2= |gn|2. (15)

Here P1,n could have in fact different values depending on
the criterion for the normalization and phase chosen for the
basis functions. A particular choice was proposed in [18],
as explained later, and P5,n may be considered a different
particular case. Discussions of Pj,n, for j = 2,3,4,5, as
generalized populations are lacking, although the amplitudes
gn(t) have been used by several authors to formulate adiabatic
approximations for NH systems [11,15,17]. Also the multi-
plicity relates to the different projectors discussed in [21].

The properties of the generalized populations in (15) are
summarized in Table I. They all tend to Pn in the Hermitian
limit, when |̂n〉 = |n〉 become orthonormal vectors. This list
is not exhaustive. For example, the roles of |n〉 and |̂n〉 may
be reversed. We could even consider complex (instead of real)
forms. Moreover, some of them add up to one but, since the
state norm may change in time for a NH system, it is natural
to multiply the generalized populations by the square of the
ordinary norm of the state ||�||2 = 〈�|�〉 so that they sum
up to ||�||2. The Pj,n do not necessarily obey the simple
properties of proper populations, such as

∑
n Pj,n = 1 and

0 � Pj,n � 1. Some are f dependent (they change with the
change of basis |n〉 → |φn〉 and |̂n〉 → |φ̂n〉) [see Eqs. (5)
and (6)] and others are not. The usefulness of these formal
definitions will be determined by their physical content and
the intended application. In particular, since our main concern
here is the characterization of adiabaticity, the property we
should pay attention to is adiabatic invariance. An adiabatic
invariant quantity remains constant when the state evolves
according to Eq. (11).

The only definition in the group above that is adiabatically
invariant independently of the reference basis {|n(t)〉} chosen is
P5,n = |gn|2, so we shall examine its properties more carefully.
The adiabatic invariance of |gn|2 is guaranteed by construction,
but the values of the gn for an adiabatic evolution, however,
will depend on the basis or, in other words, be f dependent, in
a mild way. To see why, instead of Eq. (14) we can write the
state of the system using a new basis as

|�(t)〉 =
∑

n

g̃n(t)exp

(
− i

�

∫ t

0
En(t ′)dt ′

−
∫ t

0
〈φ̂n(t ′)|φ̇n(t ′)〉dt ′

)
|φn(t)〉, (16)

where g̃n(t) = 〈φ̂n(t)|�(t)〉. From Eq. (7), taking into account
Eqs. (5) and (6), it follows that

exp

(
−

∫ t

0
〈φ̂n(t ′)|φ̇n(t ′)〉dt ′

)

= exp

(
−

∫ t

0
〈̂n(t ′)|ṅ(t ′)〉dt ′

)
fn(0)

/
fn(t)

since

exp

(
−

∫ t

0
ḟn(t ′)/fn(t ′)dt ′

)
= exp{ln[fn(0)] − ln[fn(t)]}.

Thus, comparing Eqs. (16) and (14), we find that g̃n(t) =
gn(t)/fn(0), i.e., the only difference between the values of these
amplitudes for different bases, independently of adiabaticity,
is a constant factor fn(0) that depends on the initial normal-
ization. This residual ambiguity may in fact be suppressed in
many processes of physical interest, for which the natural basis
at t = 0 is orthogonal. This does not necessarily imply that
H (0) is Hermitian. For example, in the Landau-Zener or coher-
ent population return processes that we shall discuss in Secs. IV
and V for a two-level system, spontaneous decay is always
present, even at t = 0, so H (t) is never Hermitian. However,
before switching the laser on, the bare basis formed by atomic
ground and excited states is orthogonal, 〈n(0)|n′(0)〉 = 0 if
n 	= n′. In principle, it would still be possible to distinguish
|n(0)〉 and |̂n(0)〉 = |n(0)〉/〈n(0)|n(0)〉 from Eq. (3), but the
simplest and most useful convention is to set 〈n(0)|n(0)〉 = 1
so that |̂n(0)〉 = |n(0)〉 and {|n(0)〉} becomes an ordinary
orthonormalized basis at the initial instant of time. Then
the P5,n(0) =|gn(0)|2 become ordinary populations Pn(0).
Hereafter we shall limit the discussion to this type of system
and convention, in which a natural normalization [17] does
exist. From Eqs. (5) and (6), the only allowed fn(0) to satisfy
the orthonormalization condition 〈n(0)|n′(0)〉 = δn,n′ are of
modulus one, so |̃gn(t)|2 = |gn(t)|2, even if the system does
not follow adiabatic dynamics. For nonadiabatic dynamics,
the |gn(t)|2 are not bounded by one and their sum over n

may be anything. However, if
∑

n |gn(0)|2 = 1, the sum will
still be one as long as the evolution remains adiabatic for
all states,

∑
n |gn(t)|2 = 1. This means that 1 becomes the

relevant scale to identify adiabaticity or its absence in each of
the |gn(t)|2 terms. For a state that begins like |�(0)〉 = |m(0)〉,
with |gm(0)|2 = 1, adiabatic dynamics implies |gm(t)|2 ≈ 1,
whereas for n 	= m, with |gn(0)|2 = 0, adiabaticity implies
|gn(t)|2 � 1.

We may consider instead of Eqs. (14) and (16) the
expansions

|�(t)〉 =
∑

n

dn(t) exp

(
−

∫ t

0
〈̂n(t ′)|ṅ(t ′)〉dt ′

)
|n(t)〉, (17)

|�(t)〉 =
∑

n

d̃n(t) exp

(
−

∫ t

0
〈φ̂n(t ′)|φ̇n(t ′)〉dt ′

)
|φn(t)〉

(18)

(see [18]) without an explicit dynamical factor. [If the basis
is parallel transported dn(t) = cn(t).] The coefficients dn(t)
are also weakly dependent on a basis change, i.e., they obey
d̃n(t) = dn(t)/fn(0). However, for NH systems they may suffer
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strong exponential variations even for adiabatic dynamics, as

dn(t) = gn(t) exp

(−i

�

∫ t

0
En(t ′)dt ′

)
, (19)

and the En are generally complex. As a consequence, the
ratios |dn(t)|2/|dn′(t)|2, for n 	= n′, change dramatically due
to different exponential dynamical factors even when the
two implied states behave adiabatically. In any case the dn

coefficients may be physically very relevant. If a parallel-
transported basis {|n(t)〉} becomes orthonormalized again at
the final process time tf , the |dn(tf )|2 would directly give
actual populations, unlike the |gn(tf )|2, generally affected by
suppressing or enhancing dynamical exponentials. This is
important because nonadiabatic excitations revealed in the
{|ψn〉} basis by a large |gn(tf )|2 value might actually be
irrelevant in practice if the corresponding |dn(tf )|2 turns out
to be negligible. In general it is advisable to analyze a given
process simultaneously in different bases.

III. APPROXIMATE ADIABATICITY CONDITION
FOR NON-HERMITIAN HAMILTONIANS

In the previous section we discussed a general exact
criterion of adiabaticity that requires calculating the |gn|2, and
thus the exact dynamics, to be applied. Here we shall work
out a simpler approximate criterion. As in [16,19], assuming
that the general state of the system is given by Eq. (14),
parallel transported eigenstates so that 〈̂n|ṅ〉 = 0, and inserting
Eq. (14) into the Schrödinger equation (8), we get

ġn(t) = −
∑
k 	=n

eiWnk (t)〈̂n(t)|k̇(t)〉gk(t), (20)

where Wnk(t)= ∫ t

0 ωnk(t ′)dt ′ and ωnk(t) := [En(t) − Ek(t)]/�.
(Note that all exponentials decay if n corresponds to the least
dissipative state at all times [10].) Integrating this formally
gives

gn(t) − gn(0) = −
∑
k 	=n

∫ t

0
eiWnk (t ′)〈̂n(t ′)|k̇(t ′)〉gk(t ′)dt ′.

We now apply perturbation theory. Assuming that the system
is initially in |m(0)〉 and approximating the coefficients gk(t)
inside the integral as gk(t) = δkm, one finds to first order, for
n 	= m,

gn(t) = −
∫ t

0
〈̂n(t ′)|ṁ(t ′)〉eiWnm(t ′)dt ′, (21)

which should satisfy |gn(t)| � 1 for an adiabatic evolution.
Rewriting Eq. (21) as gn(t) = − ∫ t

0 undvn, with

un = 〈̂n(t ′)|ṁ(t ′)〉
iωnm(t ′)

,

(22)
dvn = iωnm(t ′)eiWnm(t ′)dt ′,

and integrating by parts, we find

gn(t) = −〈̂n(t ′)|ṁ(t ′)〉
iωnm(t ′)

eiWnm(t ′)
∣∣∣∣
t

0

+
∫ t

0
vndun. (23)

Neglecting the integral term in Eq. (23), which, as shown in
Appendix A, involves higher inverse powers of ωnm and the
(generally small) contribution at t = 0, we get from |gn(t)| �
1 the approximate adiabaticity condition

|(uv)n(t)| = |〈̂n(t)|ṁ(t)〉|
|ωnm(t)| e−Im[Wnm(t)] � 1 (24)

for n 	= m. For n = m a second-order integral may be written,
but it does not lead to a simple expression by integration by
parts. The fact that the condition (24) is limited to n 	= m is
quite harmless for Hermitian systems because of the conser-
vation of total probability and the orthogonality of states. In a
NH system it is a more serious limitation, as we cannot deduce
from it the adiabaticity or otherwise of the initially occupied
state. The criterion (24) is a natural generalization of the usual
Hermitian criterion and it outperforms other approximations
based on partitions of Eq. (21) alternative to Eq. (22), such
as [11]

u′
n = 〈̂n(t ′)|ṁ(t ′)〉e−Im[Wnm(t ′)]

i Re[ωnm(t ′)]
,

dv′
n = i Re[ωnm(t ′)]ei Re[Wnm(t ′)]dt ′. (25)

Similarly we could try

u′′
n = 〈̂n(t ′)|ṁ(t ′)〉ei Re[Wnm(t ′)]

−Im[ωnm(t ′)]
,

dv′′
n = −Im[ωnm(t ′)]e−Im[Wnm(t ′)]dt ′. (26)

These partitions lead to conditions similar to Eq. (24), but with
|Re(ωnm)| [11], for Eq. (25), and |Im(ωnm)|, for Eq. (26), in the
denominator. In processes such as a Landau-Zener transition
for a two-level atom discussed later, the real or the imaginary
parts of the energies may become equal for some t , but |ωnm|
is always different from zero as long as fully degenerate points
(with equal eigenvalues) are not crossed.

IV. MODELS: LANDAU-ZENER
AND COHERENT POPULATION RETURN
PROCESSES FOR A TWO-LEVEL ATOM

We shall exemplify the previous analysis with two types
of adiabatic processes of physical interest for a decaying two-
level atom: a Landau-Zener (LZ) protocol with constant laser
intensity, which in the appropriate parameter range produces
population inversion, and coherent population return (CPR)
with constant laser detuning and Gaussian Rabi frequency, a
useful process to suppress power broadening [31]. We assume
for simplicity that a Hamiltonian description, rather than a
master equation, is enough for the trapped atom [16,32,33].
This happens, for example, when the decayed atom escapes
from the trap by recoil. We shall also assume a semiclassical
treatment of the interaction between the electric field and the
atom, as well as a constant decay rate �, the inverse lifetime,
from the excited state to the ground state.

Applying the electric dipole approximation, a laser-adapted
interaction picture, and the rotating-wave approximation, the
Hamiltonian, disregarding atomic motion, is [34]

Ha0(t) = �

2

(−	(t) 
R(
)
tR(t) 	(t) − i�

)
(27)
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in the bare basis |g.s.〉 = (1
0

)
and |e.s.〉 = (0

1

)
of the atom. The

norm of the general state |�(t)〉 decreases due to spontaneous
decay. The detuning is defined as 	(t) = ω0 − ω(t), where
ω(t)/2π is the instantaneous field frequency and ω0/2π

the transition frequency. The (real) Rabi frequency 
R(t)
in general also depends on time. The eigenvalues of this
Hamiltonian are

E±(t) = �

4

{
−i� ±

√
−[� + 2i	(t)]2 + 4
2

R(t)

}
(28)

and the right eigenstates, which play the role of {|n(t)〉} here,
are

|+(t)〉 = sin
(α

2

)
|g.s.〉 + cos

(α

2

)
|e.s.〉,

(29)
|−(t)〉 = cos

(α

2

)
|g.s.〉 − sin

(α

2

)
|e.s.〉,

where the mixing angle α = α(t) is complex and defined by

tan[α(t)] = 
R(t)

	(t) − i�/2
(30)

as α = arctan(x) = i[ln(1 − ix) − ln(1 + ix)]/2, with

x(t) = 
R(t)

	(t) − i�/2
. (31)

The adjoint of Ha0(t) is

H
†
a0(t) = �

2

(−	(t) 
R(t)

R(t) 	(t) + i�

)
, (32)

with eigenvalues E∗
±(t) and right eigenstates

|+̂(t)〉 = sin

(
α∗

2

)
|g.s.〉 + cos

(
α∗

2

)
|e.s.〉,

|−̂(t)〉 = cos

(
α∗

2

)
|g.s.〉 − sin

(
α∗

2

)
|e.s.〉. (33)

The coefficients are complex conjugate of those in Eq. (29)
because Ha0(t) is equal to its transpose [28]. For later use we
calculate the matrix elements

〈±̂(t)|∂t |±(t)〉 = 0, (34)

〈∓̂(t)|∂t |±(t)〉 = ± α̇

2
, (35)

where

α̇(t) = 
̇R(t)[	(t) − i�/2] − 
R(t)	̇(t)

[	(t) − i�/2]2 + 
2
R(t)

. (36)

Equation (34) shows that the states |+(t)〉 and |−(t)〉 are paral-
lel transported. To impose the continuity of the eigenvalues and
eigenvectors throughout the process and the correct matching
of their ± labels we have to choose the branches of the square
root in Eq. (28) and of the arctan (x). For each protocol 	(t)
and 
R(t) are specified and we have to analyze the behavior
of the radicand in Eq. (28),

z(t) = −[� + 2i	(t)]2 + 4
2
R(t). (37)

Here z(t) is in polar form z = Reiγ , with modulus R =
|
√

Re(z)2 + Im(z)2| and argument γ , where Re(z) = 4	2(t) +
4
2

R(t) − �2 and Im(z) = −4	(t)�.
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FIG. 1. (Color online) Landau-Zener processes: branch cuts and
representative trajectories in the complex z and x planes [see Eqs. (37)
and (31)]. For (a) and (c) � < 2
0 (� = 2π × 0.159 kHz, 
0 =
2π × 0.159 kHz, b = 2 × 106 s−2, and tf = 3 ms); for (b) and (d)
� > 2
0 (� = 2π × 1.910 kHz, 
0 = 2π × 0.796 kHz, b = 50 ×
106 s−2, and tf = 1 ms). The branch cut in (a), just below the negative
real axis, is chosen so that −π < γ � π and in (b), just below the
positive real axis, is chosen so that 0 � γ < 2π .

The first process we consider is the Landau-Zener protocol,
with linear detuning and constant Rabi frequency

	LZ(t) = b(t − tf /2), (38)


R,LZ(t) = 
0, (39)

where tf is the final time of the process, b > 0 is the constant
chirp, and 
0 is the constant Rabi frequency. Two regimes
can be distinguished for this protocol depending on whether
� < 2
0 or � > 2
0 (a degeneracy exists at t = tf /2 if � =
2
0).

(i) When � < 2
0, then Re(z) > 0. A representative
trajectory of z in the complex z plane is shown in Fig. 1(a).
We choose the branch cut of the square root just below
the negative real axis so that −π < γ � π . The imaginary
parts of both energies cross each other at t = tf /2, where
Im[E+(tf /2)] = Im[E−(tf /2)] = −i��/4 and the real parts
have an avoided crossing at this instant of time [see Figs. 2(a)
and 2(b)]. With this branch election Im[E+(t)] > Im[E−(t)]
when t < tf /2 and Im[E−(t)] > Im[E+(t)] when t > tf /2,
which implies that the least dissipative state changes from
|+(t)〉 when t < tf /2 to |−(t)〉 when t > tf /2. The initial
detuning is negative [see Eq. (38)] and the trajectory of x in
the complex plane is depicted in Fig. 1(c), so we choose for
continuity the arctan (x) branch cut in that figure. Note the
inversions |+(0)〉 ≈ |g.s.〉 → |+(tf )〉 ≈ |e.s.〉 and |−(0)〉 ≈
−|e.s.〉 → |−(tf )〉 ≈ |g.s.〉 as α(0) ≈ π → α(tf ) ≈ 0. This
model describes rapid adiabatic passage by a LZ protocol in
the presence of decay.

(ii) When � > 2
0, z crosses the negative real axis as
shown in Fig. 1 (b) and we choose the branch cut for
the square root just below the positive real axis so that
0 � γ < 2π . Now the real parts of E±(t) cross at t = tf /2,
where Re[E+(tf /2)] = Re[E−(tf /2)] = 0 and Im[E+(t)] >

Im[E−(t)] [see Figs. 2(c) and 2(d)]. Thus, |+(t)〉 is the least
dissipative state for the whole process. The form of the x

trajectory is depicted in Fig. 1(d). We choose the branch cuts
as depicted in the figure to ensure continuity and add π to
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FIG. 2. (Color online) Real and imaginary parts of the energies
for a Landau-Zener and CPR processes: (a) and (b) LZ, � < 2
0;
(c) and (d) LZ, � > 2
0; (e) and (f) CPR. The red solid line denotes
E+ and the blue dashed line E−. The parameters are the same as in
Fig. 1 for LZ and � = 2π × 3.183 kHz, 
max = 2π × 1.592 kHz,
a = 4 × 108 s−2, 	0 = 2π × 0.159 kHz, and tf = 1 ms for CPR.

define α so as to match the ± labeling of eigenvectors and
eigenvalues. Here α evolves from α(0) ≈ π to α(tf ) ≈ π and
the eigenvectors are not inverted: |+(0)〉 ≈ |+(tf )〉 ≈ |g.s.〉
and |−(0)〉 ≈ |−(tf )〉 ≈ −|e.s.〉.

The second type of process we consider is CPR [31] with
constant detuning 	0 > 0 and a Rabi frequency given by a
Gaussian function

	CPR(t) = 	0, (40)


R,CPR(t) = 
maxe
[−a(t−tf /2)2], (41)

where 
max and a are constants. For this process z has a
constant imaginary part Im(z) = −4�	0. Thus, z(t) never
crosses the real axis and we may choose the branch cut
along (just below) the negative part of this axis, as shown
in Fig. 3(a). Then, |−〉 is the least dissipative state throughout.
The trajectory of x moves back and forth in the first
quadrant, so the branch cuts are chosen as depicted in
Fig. 3(b), without adding π to define α. Now α(0) ≈ α(tf ) ≈
0, |+(0)〉 ≈ |+(tf )〉 ≈ |e.s.〉, and |−(0)〉 ≈ |−(tf )〉 ≈ |g.s.〉.
The eigenenergies behave as in Figs. 2(e) and 2(f).

V. NUMERICAL EXAMPLES

In this section we shall provide, based on the two-level
model, some examples to illustrate different features of
adiabaticity for NH systems, defined in terms of the amplitudes
gn(t). We shall mostly pay attention to properties that differ
from the ones of Hermitian systems.

Figure 4 compares, for a CPR process, the rather different
behavior of |g±| [Figs. 4(a) and 4(c)] and |d±| [Figs. 4(b) and
4(d)]. Here, from Eq. (34), d±(t) = c±(t). In Figs. 4(a) and 4(b)
the initial state is the ground state, which evolves adiabatically
as the least dissipative state. Figure 4(a) for |g±| shows an
interesting feature of NH systems, namely, that one state may
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Im
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0.1 0 0.1
2

1

0

1

2
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Im
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FIG. 3. (Color online) The CPR process: branch cuts and rep-
resentative trajectories in the complex (a) z and (b) x planes [see
Eqs. (37) and (31)], with the parameters the same as in Fig. 2.

remain adiabatic, whereas the other one does not. This is not
reflected as clearly in Fig. 4(b) for |d±|. Figures 4(c) and 4(d)
correspond to the atom starting in the most dissipative state.
Figure 4(c) for |g±| shows that for the time considered both
states remain perfectly adiabatic. However, the |d+| coefficient
decays strongly because of spontaneous decay [see Fig. 4(d)],
so a ratio |d−|/|d+| is not a faithful indicator of adiabaticity.
Nevertheless, as pointed out earlier, these coefficients are
actually quite relevant, in particular at tf , because here the
states |±(tf )〉 become orthonormalized and coincide with the
bare basis of excited and ground atomic states.

On a different thread, note that in the examples of
Figs. 4(a) and 4(c), |(uv)±| [see Eqs. (22)–(24)], are very
good approximations to |g±| for the initially unoccupied states
[the subscript in |(uv)±| specifies which amplitude |g±| is
approximated].
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FIG. 4. (Color online) Plot of |g±|, |d±|, and |(uv)±| for a CPR
process: (a) and (b) |�(0)〉 = |g.s.〉 = |−(0)〉 (least dissipative) and
(c) and (d) |�(0)〉 = |e.s.〉 = |+(0)〉 (most dissipative). The red solid
line is for |g+| and |d+| and the blue dashed line for |g−| and |d−|.
The black dots are the approximation |(uv)±| for the state that is
not populated initially. The parameters are � = 2π × 3.183 kHz,

max = 2π × 3.183 kHz, a = 4 × 108 s−2, 	0 = 2π × 31.831 kHz,
and tf = 1 ms.
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FIG. 5. (Color online) Plot of |g+| (red solid line) and |g−| (blue
dashed line) for a CPR process when (a) |�(0)〉 = |g.s.〉 = |−(0)〉
and (b) |�(0)〉 = |e.s.〉 = |+(0)〉 for the parameters � = 2π × 3.183
kHz, 
max = 2π × 3.183 kHz, a = 4 × 108 s−2, 	0 = 2π × 31.831
kHz, and tf = 5 ms.

Figure 5 is about a CPR process with a final time five
times larger than in the previous figure. Contrary to Hermitian
systems, longer process times may actually spoil adiabaticity
for NH systems. Figure 5(b) shows [compare to Fig. 4(c)] that
when the system starts in the most dissipative state |+〉, it does
not remain adiabatic if the time is large enough. Contrast this
also to Fig. 5(a), where the system starts and stays adiabatic
in the least dissipative state |−〉 while |+〉 is excited.

The approximations |(uv)±| in Eq. (24) are depicted in
Fig. 6 on a logarithmic scale for Landau-Zener processes
with decay for � < 2
0 [Figs. 6(a) and 6(c)] and � > 2
0

[Figs. 6(b) and 6(d)]. In general, the criterion |(uv)±| � 1
avoids the gross pitfalls of simpler choices at crossings of
the real and imaginary parts of the energies [see Eqs. (25)
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FIG. 6. (Color online) Plot of |(uv)±| and |g±| for two Landau-
Zener processes. The red solid line denotes |g+|; the blue dashed
line, |g−|; and the black line with dots (for the state that is initially
unoccupied), |(uv)±|. The initial states are, in (a) and (b), |�(0)〉 =
|e.s.〉 = −|−(0)〉 and, in (c) and (d), |�(0)〉 = |g.s.〉 = |+(0)〉.The
parameters are for (a) and (c) � < 2
0 with � = 2π × 0.159 kHz,

0 = 2π × 79.578 kHz, b = 4 × 1010 s−2, and tf = 3 ms and for
(b) and (d) � > 2
0 with � = 2π × 799.775 kHz, 
0 = 2π ×
79.578 kHz, b = 9 × 1012 s−2, and tf = 0.07 ms.
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FIG. 7. (Color online) Plot of |g+| (red solid line), |g−| (blue
dashed line), and |(uv)±| (black dots with or without a black line) for
a CPR process when (a) |�(0)〉 = |g.s.〉 = |−(0)〉 (least dissipative)
and (b) |�(0)〉 = |e.s.〉 = |+(0)〉 (most dissipative) for the parameters
� = 2π × 3.183 kHz, 
max = 2π × 0.159 kHz, a = 4 × 108 s−2,
	0 = 2π × 2 Hz, and tf = 1 ms.

and (26)] as long as a fully degenerate point (when both real
and imaginary parts are equal) is not crossed.

In general though, −(uv)±(t) do not reproduce g±(t)
accurately, even when the condition of first-order perturbation
theory gm(t) ≈ 1 holds. A clear example taken from CPR is
depicted in Fig. 7(a), where the remainder integral

∫ t

0 v+du+
[see Eq. (23)] is not small, so −(uv)+(t) is quite different
from g+(t) even though g−(t) ≈ 1 during the process. Contrast
the failure of −(uv)+ in Fig. 7(a) with the accurate fitting
in Fig. 4(a). Integration by parts provides a formal series in
powers of ωnm(t), as shown in Appendix A, where the only
critical points are the end points, but other points may play an
important role. The approximation gn(t) ≈ −(uv)n(t), from
the first term in Eq. (23), can also be found by assuming
un(t ′ < t) ≈ un(t) in gn(t) = − ∫ t

0 undvn (we assume also
that the contribution at t = 0 is negligible). This substitution,
though, is not always permissible. Take, for example, t = tf
in Figs. 4 and 7. Figure 8 demonstrates that the oscillation
or otherwise of eiW+− makes the u+ contribution around tf /2
either irrelevant (in Fig. 4) or quite significant (in Fig. 7). In
the later case, the approximation based only on the critical
point at tf cannot be accurate. An alternative view making use
of the complex-time plane to perform the integrals is provided
in Appendix B. In general, accurate approximations of the
g±(t) requires contour deformations in the complex time plane
[23,35] to identify and take into account contributions from all
relevant eigenvalue degeneracies and other critical points. In
addition, crossings of Stokes lines [36] determine changes in
the asymptotic behavior of the amplitudes [17]. While this type
of analysis is possible for simple specific models and protocols
[17,23,36], it may easily become intractable for moderately
complex systems (such as a generic three-level system [23])
due to the proliferation of singularities [23]. An open question
then is to bridge the gap between a simple condition such as
(24) and more accurate conditions in generic cases.
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S. IBÁÑEZ AND J. G. MUGA PHYSICAL REVIEW A 89, 033403 (2014)

(a)

0 0.5 1
4 10 3

0

4 10 3

t ms

Im
u

(c)

0 0.5 14 109

0

4 109

t ms

Im
iΩ

ei
W

s
1

(d)

0 0.5 1
0

3 106

t ms

Im
iΩ

ei
W

s
1

(e)

0.4 0.5 0.68 107

0

8 107

t ms

Im
iΩ

ei
W

s
1

(f)

0.4 0.5 0.6
0

3 104

t ms

Im
iΩ

ei
W

s
1

(b)

0 0.5 10.1

0

0.1

t ms

Im
u

FIG. 8. Comparison of imaginary parts of integrand terms of g+
[see Eqs. (21) and (22)] for the CPR process of Fig. 4(a), in (a), (c),
and (e), and of Fig. 7(a), in (b), (d), and (f): (a) and (b) Im(u+), (c)
and (d) Im(iω+−eiW+− ), and (e) and (f) zoom of (c) and (d) around
the central time. The corresponding figures for the real parts are
qualitatively similar.

VI. DISCUSSION

Adiabaticity is a key concept in quantum physics and its
generalization to systems described by non-Hermitian dynam-
ics requires the analysis of several possible formal extensions
of the populations conserved for adiabatic dynamics in Hermi-
tian systems. We have singled out among them the one that best
identifies adiabatic following because it remains adiabatically
invariant. Examples to illustrate its behavior have been drawn
from CPR and LZ processes. A simple approximate expression
has been also worked out by perturbation theory and partial
integration, as well as higher orders in inverse powers of the
transition frequency, for studying the adiabaticity of states
different from the one initially occupied. It appears as a natural
generalization of the usual condition for Hermitian systems.
Its Hermitian counterpart is not infallible [37–40], so an
accurate performance cannot be expected in general, as shown
in the examples. This suggests many directions for future
work: A systematic analysis and prediction of its possible
failures is needed. In addition to the reasons found in its
Hermitian counterpart, other elements have to be considered,
such as the occurrence of NH degeneracies [17,27]. The
simple approach to NH adiabaticity followed here, in exact or
approximate forms, should also be contrasted with alternative
views both conceptually and for specific applications. For
example, in CPR, adiabaticity has been discussed in terms
of the eigenstates of the Hermitian Hamiltonian without decay
[with � = 0 in Eq. (27)] instead of the full Hamiltonian [31].

Further applications or extensions of this work may be in
fields such as dissipative master equations [41,42], superadi-
abatic treatments [15,43,44], time-dependent dissipation rates
[23], or non-Hermitian quantum adiabatic computation [45].
The formalism and concepts are also applicable beyond quan-
tum physics, for example, to treat coupled waveguides [20].
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APPENDIX A: SECOND- AND THIRD-ORDER
APPROXIMATIONS OF THE gn(t)

Integrating the second term in Eq. (23) again by parts, as∫ t

0 vndun = ∫ t

0 u1,ndv1,n, where

u1,n = 〈 ˙̂n(t ′)|ṁ(t ′)〉 + 〈̂n(t ′)|m̈(t ′)〉
[iωnm(t ′)]2

− 〈̂n(t ′)|ṁ(t ′)〉iω̇nm(t ′)
[iωnm(t ′)]3

,

dv1,n = iωnm(t ′)eiWnm(t ′)dt ′,

we get

gn(t) =
{
−〈̂n(t ′)|ṁ(t ′)〉

iωnm(t ′)

+ 〈 ˙̂n(t ′)|ṁ(t ′)〉 + 〈̂n(t ′)|m̈(t ′)〉
[iωnm(t ′)]2

− 〈̂n(t ′)|ṁ(t ′)〉iω̇nm(t ′)
[iωnm(t ′)]3

}
eiWnm(t ′)

∣∣∣∣
t

0

−
∫ t

0
v1,ndu1,n.

We may integrate by parts the remainder integrals that appear
at each step. First we rewrite

∫ t

0 v1,ndu1,n = ∫ t

0 u2,ndv2,n, with

u2,n = 〈 ¨̂n(t ′)|ṁ(t ′)〉 + 2〈 ˙̂n(t ′)|m̈(t ′)〉 + 〈̂n(t ′)|...m(t ′)〉
[iωnm(t ′)]3

− [〈 ˙̂n(t ′)|ṁ(t ′)〉 + 〈̂n(t ′)|m̈(t ′)〉]3iω̇nm(t ′)
[iωnm(t ′)]4

− 〈̂n(t ′)|ṁ(t ′)〉iω̈nm(t ′)
[iωnm(t ′)]4

− 〈̂n(t ′)|ṁ(t ′)〉3ω̇2
nm(t ′)

[iωnm(t ′)]5
,

dv2,n = iωnm(t ′)eiWnm(t ′)dt ′.

Thus,

gn(t) =
{
−〈̂n(t ′)|ṁ(t ′)〉

iωnm(t ′)
+ 〈 ˙̂n(t ′)|ṁ(t ′)〉 + 〈̂n(t ′)|m̈(t ′)〉

[iωnm(t ′)]2

− 〈̂n(t ′)|ṁ(t ′)〉iω̇nm(t ′) − 〈 ¨̂n(t ′)|ṁ(t ′)〉
[iωnm(t ′)]3

− 2〈 ˙̂n(t ′)|m̈(t ′)〉 + 〈̂n(t ′)|...m(t ′)〉
[iωnm(t ′)]3

+ [〈 ˙̂n(t ′)|ṁ(t ′)〉 + 〈̂n(t ′)|m̈(t ′)〉]3iω̇nm(t ′)
[iωnm(t ′)]4

+ 〈̂n(t ′)|ṁ(t ′)〉iω̈nm(t ′)
[iωnm(t ′)]4

+ 〈̂n(t ′)|ṁ(t ′)〉3ω̇2
nm(t ′)

[iωnm(t ′)]5

}
eiWnm(t ′)

∣∣∣∣
t

0

+
∫ t

0
v2,ndu2,n.
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Further integration by parts of the reminders generates a
series with increasing powers of ωnm(t) in the denominators.
Similarly, the change s = t/tf and writing derivatives and
integrals with respect to s provides a series in inverse powers
of tf .

APPENDIX B: COMPLEX TIME ANALYSIS

Figures 4(a) and 7(a) for CPR demonstrate that the
approximation g+(t) ≈ −(uv)+(t) for the initially unoccupied
state using integration by parts may be valid or it may fail. The
approximation relies on the contribution to the integral near the
boundary time tf , so it fails when other critical points become
important, as in Fig. 7(a). Consider the integral in Eq. (21)
rewritten as − ∫

h(t ′)e�(t ′)dt ′, with h(t ′) = 〈+̂(t ′)|∂t |−(t ′)〉
and �(t ′) = iW+−(t ′). Figures 9(a) and 9(b) show the degen-
eracy points E+(t) = E−(t) in the complex-time plane. They
are branch cuts of the exponent � [see Figs. 9(c) and 9(d)]
and in addition poles of the function h. The original integral
goes along the real axis. The two cases studied correspond
to two very different configurations of the function � in
the complex-time plane, as shown in Figs. 9(e)–9(h). When
the approximation works (see Fig. 4 and the left column in
Fig. 9), Re(�) decreases towards the upper half plane so that
a steepest-descent path from tf , almost perpendicular to the
real axis [see Fig. 9(e)], provides the dominant contribution
to the integral. A path towards t = 0 can be drawn through
the valley without giving any significant contribution to the
integral [see Fig. 9(g)]. When the approximation fails [see
Figs. 7, 9(b), 9(d), 9(f), and 9(h)], a steepest-descent path goes
from tf to t = 0 along the real axis [see Fig. 9(f)]. Upper
and lower degenerate points are now at very similar heights
[see Fig. 9(h)]. Here Re(�) decreases monotonically along
the real line towards t = 0, but now the close singularities
of the function h imply a strong disturbance and contribution
around tf /2.
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FIG. 9. (Color online) Complex time analysis of the integral for
g+ [see Eq. (21)] for the CPR process of Fig. 4(a), in (a), (c),
(e), and (g), and of Fig. 7(a), in (b), (d), (f), and (h): (a) and (b)
degeneracy points (E+ = E−), (c) and (d) branch cuts of the exponent
� following the criterion in Fig. 3(a), (e) and (f) Im(�), and (g) and (h)
Re(�). The contour maps show a rectangle around tf /2 not including
the singularities.
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[15] G. Dridi, S. Guérin, H. R. Jauslin, D. Viennot, and G. Jolicard,
Phys. Rev. A 82, 022109 (2010).
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