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Effects of inner electrons on atomic strong-field-ionization dynamics
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The influence of inner electrons on the ionization dynamics in strong laser fields is investigated in a wavelength
regime where the inner electron dynamics is usually assumed to be negligible. The role of inner electrons is
of particular interest for the application of frozen-core approximations and pseudopotentials in time-dependent
density functional theory (TDDFT) and the single-active-electron (SAE) approximation in strong-field laser
physics. Results of TDDFT and SAE calculations are compared with exact ones obtained by the numerical ab
initio solution of the three-electron time-dependent Schrödinger equation for a lithium model atom. It is found
that dynamical antiscreening, i.e., a particular form of dynamical core polarization, may substantially alter the
ionization rate in the single-photon regime. Requirements for the validity of the approximations in the single and
multiphoton ionization domain are identified.
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I. INTRODUCTION

Density functional theory (DFT) simulations (see, e.g.,
[1–3]) have become popular tools for electronic structure
calculations. Compared to the exact solution of the many-body
Schrödinger equation, discrepancies in the electron density
obtained from DFT-based Kohn-Sham (KS) [4] schemes are,
by construction, caused by the unavoidable approximation
to the generally unknown exact exchange-correlation (XC)
potential. However, in practice it is common to apply addi-
tional approximations, most notably “pseudopotentials” or the
“frozen-core approximation” (see, e.g., [5,6]) in order to avoid
the numerical effort of treating tightly bound inner electrons.
The justification for this neglect is that core electrons do not
take directly part in, e.g., the formation of bonds.

DFT has been extended to systems in time-dependent
external potentials. In principle, time-dependent density func-
tional theory (TDDFT) (see, e.g., [7,8]) allows one to study
many-electron systems such as atoms, molecules, or clusters
in strong laser fields, even beyond linear response. It is known,
however, that switching from DFT to TDDFT makes the
unknown exact XC functional even more inaccessible because
of memory effects and the initial-state dependence it should
contain [8–12] but all practicable approximations to it do
not.

In this paper, we study inner-electron dynamics induced
by time-dependent external fields. In contrast to typical
applications of DFT concerning the ground state electronic
structure of the system at hand, even the lowest KS orbitals may
undergo a significant modification if the system is subjected to
a strong external laser field in TDDFT beyond linear response.
Evidently, it is invalid to freeze those KS orbitals which
directly contribute to, e.g., the outgoing electron density of
an atom being ionized. If, on the other hand, solely the KS
valence orbital dominates ionization, it is an eligible question
if the essential dynamics can be reproduced by a frozen-core,
pseudo-, or single-active-electron (SAE) potential. In fact, the
SAE approximation is ubiquitous in the strong-field-ionization
community (see, e.g., [13–16]). Only recently it has been
recognized that in multielectron molecules it is often not
permissible to consider only the highest occupied molecular
orbital in strong-field processes [17,18].

The question we address in this paper is whether core
electrons in atoms can be considered “frozen” or not in
the interaction with long wavelength radiation. Here, “long”
means that the photon energy �ω should be small compared to
the energy by which the core electrons are bound. Given the
energy level spacings of the Li atom, we thus need to consider
the multiphoton regime, and the single-photon regime up to
photon energies well below values where the core electrons
are accessed “directly” by the applied laser field.

We employ a model Li atom, for which we are able to
numerically solve the time-dependent Schrödinger equation
(TDSE) ab initio. Lithium is the simplest element with
core electrons in the ground state configuration and thus
serves as a perfect testing ground. However, strong-laser-
driven Li in full dimensionality is well beyond present-day
computational capabilities. Even with the spatial degrees of
freedom restricted to one dimension (i.e., the laser polarization
direction) per electron, the numerical demand is enormous
for strong laser fields. We have been able to speed up the
calculations by employing properties of the time-dependent,
spatial three-body wave function in the ionization regime
considered and by optimizing the TDSE solver for graphics
processing units.

The paper is organized as follows. In Sec. II the Li
model system is described. In Sec. III the methods and
approximations used in this work are introduced. Results are
presented in Sec. IV, and a conclusion and outlook are given
in Sec. V. Remarks on numerical details are included as an
Appendix. Atomic units (a.u.) are used throughout.

II. ONE-DIMENSIONAL LITHIUM MODEL

The Li atom is the simplest atom with “inner” and “outer”
electrons in the ground state configuration. The reduction to
one dimension per electron is required for the exact numerical
treatment, as the computational effort grows exponentially
with both particle number and dimension. One-dimensional
atom models have been successfully used in the case of helium
for more than 20 years [19] and more recently for Li as well
[20].
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Applying the dipole approximation, the Hamiltonian in
length gauge reads

H (t) =
∑

i

⎛
⎝T (i) + V (i) + H

(i)
L (t) + 1

2

∑
j �=i

W (ij )

⎞
⎠ (1)

with indices i,j ∈ {1,2,3}, the kinetic energy operator

T (i) = 1
2 (p(i))2, (2)

the core potential

V (i) = −Z[(x(i))2 + ε2]−1/2, Z = 3, (3)

the coupling to the laser field

H
(i)
L (t) = E(t)x(i), E(t) = −Ê sin ωt, (4)

and the electron-electron interaction operator W (ij ),

W (ij ) = [(x(i) − x(j ))2 + ε2]−1/2. (5)

The smoothing parameter ε = 0.5034 is tuned such that
the total energy of the “real,” three-dimensional Li atom is
reproduced.

III. METHODS AND APPROXIMATIONS

In this section, we introduce the three methods used (TDSE,
Floquet, and TDDFT) and the various approximations (frozen-
core, pseudopotentials, and SAE). Particular emphasis is put
on the structure of the three-electron wave function, which can
be decomposed into a sum of three terms, each factorizing in
a spin and a spatial part.

A. Time-dependent Schrödinger equation

The TDSE

i∂t |�(t)〉 = H (t)|�(t)〉 (6)

is the fundamental equation describing the nonrelativistic
time evolution of a many-particle quantum state |�(t)〉.
Due to the unavailability of an analytical solution for the
Hamiltonian (1) we solve the TDSE numerically. In that way
exact benchmark results are obtained to which results from
approximate approaches will be compared.

1. Three-electron state |�(t)〉
Let us expand the state |�(t)〉 in orthonormal single-particle

states

{|n〉}n∈N, |n〉 = |φn〉 ⊗ |χn〉, (7)

where |φn〉 and |χn〉 are spatial and spin components, respec-
tively. Suppressing the time argument, the expansion for three
particles reads

|�〉 =
∑

n

[(∑
k

akn|k〉(1)

)

⊗
(∑

l

bln|l〉(2)

)
⊗

(∑
m

cmn|m〉(3)

)]
(8)

= |ABC〉. (9)

For brevity, the ⊗ sign denoting the tensor product will be
omitted from now on. The shorthand notation (9) allows one
to concisely formulate the correct exchange antisymmetry in
the case of fermions:

|ABC〉 = −|ACB〉 = |CAB〉
= −|BAC〉 = |BCA〉 = −|CBA〉. (10)

The antisymmetry (10) can be enforced on a general three-
particle state |A′B ′C ′〉 by the antisymmetrization operator A,

|�〉 = |ABC〉 = N ′A|A′B ′C ′〉, (11)

where the normalization factor N ′ has to be chosen such that
〈�|�〉 = 1, and

A|A′B ′C ′〉 = 1

3!

(|A′B ′C ′〉 − |A′C ′B ′〉 + |C ′A′B ′〉
−|B ′A′C ′〉 + |B ′C ′A′〉 − |C ′B ′A′〉).

Introducing the abbreviation |xσ 〉 =
|x1〉|σ1〉|x2〉|σ2〉|x3〉|σ3〉, the expansion of |�〉 in position-spin
space reads

|�〉 =
∑

σ1σ2σ3

∫∫∫
dx1dx2dx3 |xσ 〉〈xσ |N ′A|A′B ′C ′〉. (12)

The configuration is chosen such that the total spin is S = 1/2
and MS = +1/2 at all times. This can be justified by the
fact that interaction Hamiltonians that could induce spin
flips are not considered in this paper. The primed state
|A′B ′C ′〉 can be chosen to have separable spin components,
e.g., the corresponding expansion coefficients a′

kn are only
nonvanishing for spin down while the other two coefficients
always result in spin up. As a consequence, the function

�(x1,x2,x3) =
∑

σ1σ2σ3

|σ 〉〈xσ |N ′A|A′B ′C ′〉 (13)

can be written as

�(x1,x2,x3) = N ′

3!
{|↓↑↑〉[φ(x1,x2,x3) − φ(x1,x3,x2)]

+ |↑↓↑〉[φ(x2,x3,x1) − φ(x2,x1,x3)]

+ |↑↑↓〉[φ(x3,x1,x2) − φ(x3,x2,x1)]}, (14)

with correlated spatial functions φ(x1,x2,x3) =∑
klmn a′

knb
′
lnc

′
mn〈x1|φk〉〈x2|φl〉〈x3|φm〉. Defining

φ23(x1,x2,x3) = N ′′[φ(x1,x2,x3) − φ(x1,x3,x2)], (15)

which is antisymmetric with respect to the exchange of its
second and third arguments, one obtains the compact form

�(x1,x2,x3) = N [|↓↑↑〉φ23(x1,x2,x3)

+ |↑↓↑〉φ23(x2,x3,x1)

+ |↑↑↓〉φ23(x3,x1,x2)], (16)

where N = N ′
N ′′3! . The full three-electron state |�〉 is—at all

times—completely determined by φ23,

|�〉 = N [1 + P (12)P (23) + P (23)P (12)]|↓↑↑〉|φ23〉. (17)
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Here, P (ij ) is the two-particle permutation operator which
exchanges the indices of particles i and j , and

|φ23〉 =
∫∫∫

dx1dx2dx3|x〉φ23(x1,x2,x3). (18)

We assume that |φ23〉 is normalized to unity, 〈φ23|φ23〉 = 1, so
that N = 1√

3
.

2. Spatial TDSE

Inserting a time-dependent state |�(t)〉 of the form (17) into
the TDSE (6) yields

[1 + P (12)P (23) + P (23)P (12)][i∂t − H (t)]|↓↑↑〉|φ23(t)〉 = 0

(19)

because both ∂t and H (t) commute with any two-particle
permutation operator P (ij ).

Assuming a spin-diagonal Hamiltonian, multiplication of
(19) from the left by, e.g., 〈↓↑↑|, yields a TDSE for the
evolution of |φ23(t)〉 in time,

i∂t |φ23(t)〉 = 〈↓↑↑| H (t) |↓↑↑〉 |φ23(t)〉. (20)

Although the Hamiltonian (1) does not act on spin components
at all, the TDSE (20) still holds for spin-diagonal Hamiltoni-
ans. This will be utilized in Sec. IV C. The TDSE (20) is the
one that is actually solved numerically in position space on
a discretized x1x2x3 grid. More details about the numerical
solution are described in the Appendix.

3. Observables for both spin projections

Although electrons are indistinguishable, the partial wave
function φ23 allows one to extract information about inner
and outer electrons separately. Given a one-particle operator
a(i) acting on the spatial component only, one can construct a
spin-spatial operator aσ of the form

aσ =
∑

i

|σ 〉(i) 〈σ |(i) a(i), (21)

where

|σ 〉(1) 〈σ |(1) =
∑
σ1σ2

|σ 〉 |σ1〉 |σ2〉 〈σ | 〈σ1| 〈σ2| ,

|σ 〉(2) 〈σ |(2) =
∑
σ1σ2

|σ1〉 |σ 〉 |σ2〉 〈σ1| 〈σ | 〈σ2| ,

|σ 〉(3) 〈σ |(3) =
∑
σ1σ2

|σ1〉 |σ2〉 |σ 〉 〈σ1| 〈σ2| 〈σ | .

The choice of either |σ 〉 = |↓〉 or |σ 〉 = |↑〉 then yields an
operator for calculating observables for the single spin-down
inner electron on the one hand and for the two spin-up electrons
on the other hand, respectively. The latter will be referred to
as inner-outer spin component [21].

4. Ionization

The ionization probability is chosen as the primary ob-
servable for our investigations because it is well defined and
comparable among all considered methods. In the TDSE
simulation, position space (x1,x2,x3) is divided into four
regions, differing by the number of electrons which are

x1

x2
x3

FIG. 1. (Color online) Schematic view of a cubic simulation box
around the nucleus in the center. Different colors indicate those
regions where zero (neutral Li), one (Li+), two (Li2+), or all
three electrons (Li3+) are located at positions far from the nucleus,
respectively.

located far away from the nucleus (see Fig. 1). The respective
ionization regions are (i) no ionization: single small cube
around the nucleus; (ii) single ionization: six channels pointing
to the surface centers of the simulation box; (iii) double
ionization: twelve cuboids, four lying in each of the three
central plains; and (iv) triple ionization: eight cubes in the
corners of the simulation box.

The laser parameters considered throughout this paper are
such that multiple ionization is negligible. Thus, the (single-)
ionization probability p(t) reduces to p(t) = 1 − N (t) where
N (t) is the norm inside the cube around the nucleus (repre-
senting neutral Li).

B. Floquet method

The whole purpose of applying the Floquet approach in this
work is the determination of resonances, taking the ac Stark
effect into account.

In general, the Floquet method (see, e.g., [22,23]) allows
one to study time-dependent problems without an explicit
time propagation. This is possible if the Hamiltonian H (t)
is periodic in time, i.e.,

H (t) = H0 + HL(t), HL(t + T ) = HL(t), (22)

because the so-called Floquet theorem then allows one
to obtain a time-independent eigenvalue equation for the
field-dressed states and the corresponding quasienergies.
Quasienergy spectra are useful for predicting resonance
enhancements in the ionization rate as a function of the laser
frequency with the ac Stark effect automatically included. The
Floquet method will thus be used to follow the quasienergies
ε(n)
m for varying photon energies ω and a fixed electric field

amplitude Ê . Here, the index m ∈ N refers to the (unperturbed)
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atomic energy level, and the index n ∈ Z to the “Floquet block”
(note that ε(n)

m + ω = ε(n+1)
m ).

C. Time-dependent density functional theory

DFT [1–3] and its time-dependent extension TDDFT [7,8]
are approaches to overcome the exponential scaling of the
numerical effort with the number of particles. They are based
on the fact that all information about the system is included
in the (time-dependent) single-particle density n(x), as proven
by the Hohenberg-Kohn theorem [24] and its time-dependent
analog, the Runge-Gross theorem [25]. (TD)DFT calculations
are performed in practice within a KS scheme, i.e., the single-
particle density is reproduced with the help of a fictitious, much
easier-to-solve noninteracting system evolving in an effective
KS potential.

In this work, the spin-polarized Li system is studied.
We therefore consider the spin densities nσ (x), σ ∈ {↓,↑}.
The exchange-only local-spin-density approximation (LDA)
is employed for the XC functional. The exchange functional
for the three-dimensional electron gas is considered because
the one-dimensional model introduced in Sec. II is meant to
mimic a three-dimensional three-electron atom in a linearly
polarized laser field rather than a true one-dimensional system.

The time-dependent KS equation reads (spatial arguments
suppressed)

i∂tϕi(t) = H
(σi )
KS (t)ϕi(t) (23)

with the KS Hamiltonian

H
(σi )
KS (t) = −1

2

∂2

∂x2
+ v(t) + v(H)[n(t)] + v(XC)[nσi

(t)] (24)

and nσ (t) = ∑
i ni(t) δσiσ , ni(t) = |ϕi(t)|2, n(t) = ∑

σ nσ (t).
The same external potential v(t) as in the many-body TDSE
(i.e., binding potential plus laser in our case) appears here, v(H)

is the Hartree potential, and v(XC) is the XC potential (to be
approximated).

A known problem of LDA is the wrong asymptotic behavior
of the KS potential v + v(H) + v(XC). Each KS orbital in an,
e.g., unperturbed, neutral atom should experience a potential
−1/r far away from the nucleus, representing one unscreened
nuclear charge. This correct behavior can be enforced by
the so-called Perdew-Zunger (PZ) self-interaction correction
(SIC) [26]. PZ SIC corrects the Hartree and XC potentials for
each orbital i by subtracting the potentials evaluated for the
“own” single-particle density ni . In the case of PZ-corrected
LDA, the final corrected XC potential is calculated as (time
and space arguments suppressed)

v
(LDA+PZ)
i = v(LDA)[nσi

] − v(H)[ni] − v(LDA)[ni]. (25)

It is easy to see that this leads to the correct SIC in the single-
electron limit. However, due to the nonlinearity of the KS
potential, i.e., v(XC)[n] − v(XC)[ni] �= v(XC)[n − ni], the self-
interaction is not completely removed by PZ SIC in general.
The PZ-corrected KS Hamiltonian is orbital dependent, i.e., it
is in general different for each orbital i (i.e., not only different
for orbitals with different σi , as in “conventional” spin-DFT).
An unpleasant consequence of this orbital dependence of the
KS Hamiltonian is the nonorthogonality of the PZ-SIC KS
orbitals (although in practice they are usually very close to

orthogonal). Positive consequences of the PZ SIC are that,
besides the correct asymptotic behavior of potentials and den-
sities, the values for the total energy, and ionization energies
(or electron affinities of negative ions) typically improve.

D. Frozen-core approximation

All-electron (TD)DFT calculations often become numeri-
cally too demanding. Hence, it is common to apply additional
approximations in order to reduce the numerical effort further.
One may employ the fact that chemical bonds and reactions
are governed by valence electrons so that the relaxation of
electronic core shells may be considered negligible. Conse-
quently, tightly localized KS orbitals may be self-consistently
determined for the initial state configuration but “frozen”
during the actual TDDFT time propagation. This approach
will be referred to as “frozen-core approximation” (FCA).
One of the issues in this work is the validity of the FCA for
atoms interacting with a strong laser field, i.e., in TDDFT
calculations beyond linear response.

E. Pseudopotentials

Consider a one-dimensional (e.g., radial) KS orbital, which
is orthogonal to n other mutually orthogonal orbitals. If these
other orbitals are constructed with the minimum number of
nodes the considered orbital must have at least n nodes. A
numerical grid thus requires a fine spatial resolution in order
to resolve all orbital nodes, including the behavior in-between
where the second derivative can reach high absolute values.

A popular tool which aims at circumventing the numerical
demand caused by orbitals with many, densely distributed
nodes are “pseudopotentials” (see, e.g., [5,6]). After applying
the FCA, an artificial potential is constructed such that those
orbitals which are not frozen yield the same single-particle
density outside a certain cutoff radius rc as in the full
calculation but have less nodes within [0,rc]. Moreover, the
pseudopotential is “designed” to reproduce the KS energies
of the unfrozen orbitals (and possibly also those of the
unpopulated, excited states). As in the motivation of the FCA,
the argument for using pseudopotentials in chemistry is that
only valence electron densities are important for the questions
of interest such as molecular binding properties and chemical
reactions. In other words, only the electron density far away
from the nuclei is important.

In the hierarchy of approximations, pseudopotentials reside
below the FCA. Hence we do not test particular pseudopoten-
tials in this work. If the FCA fails, pseudopotentials will fail
too (unless there is a lucky cancellation of errors caused by the
removal of the nodes for r < rc).

F. Single-active-electron approximation

In the SAE picture it is assumed that the electron under
investigation can be described as a single particle moving in
an effective, external potential. It thus may be also viewed
as an FCA. DFT provides one option to approximate this
effective, external potential: one performs an all-electron
DFT calculation for the desired initial electron configuration
(usually the ground state) and subsequently “freezes” all
KS orbitals but the one for the SAE of interest for the
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real-time propagation [27]. In that way, a dependence on the
XC potential is introduced only indirectly through the initial
state. In the strong-field community, often simple analytical
expressions for screened Coulomb potentials with adjustable
screening parameters are used [28,29].

The question arises as to which state the SAE should
populate in the effective potential. Common choices are
(i) the ground state (corresponding to a pseudopotential
approach with one valence electron) or (ii) some excited
state (corresponding to pure FCA). The latter choice is more
relevant for applications to intense laser-atom interaction, as
the orbital symmetry of the initial state of the valence electron
is important and can be measured in ionization experiments
[30]. We will therefore concentrate on this case.

IV. RESULTS

The results in this work are organized as follows. In
Sec. IV A the lowest-lying stationary states of the model Li
atom introduced in Sec. II are determined. Exact results for
the ionization rate are considered in Sec. IV B in order to
identify different mechanisms behind the ionization process
for different regimes of laser parameters. In Sec. IV C, a
gedanken experiment is performed, revealing the mechanisms
by which seemingly passive “inner” electrons can influence
the ionization probability of the “outer” electron. In Sec. IV D
the exact results are compared with TDDFT in various
approximations.

A. Stationary states

The highly optimized TDSE solver for propagating the full
three-particle wave function (details in the Appendix) is used
in the imaginary-time mode for calculating the unperturbed
eigenstates of the model Li. The ground state energy is
E0 = −7.4782. As we are investigating single ionization in
the present work, it is useful to determine the single-ionization
continuum threshold. This can be done by comparing with
the ground state of Li+ or by following the Rydberg series of
singly excited states Em of the neutral Li towards E∞, both
leading to an ionization potential Eip = E∞ − E0 � 0.375.
Table I lists the energies for the lowest eight excited states.

As an example, Fig. 10 in the Appendix shows a cut at
x1 = 0 of |φ23(x1,x2,x3)|2 for the seventh excited state. The
single spin-down component is oriented spatially along x1 in

TABLE I. Energies Em of the energetically lowest eigenstates
m = 0,1,2, . . . ,8 of the Li model atom.

m Em

0 −7.4782
1 −7.2838
2 −7.2020
3 −7.1657
4 −7.1431
5 −7.1306
6 −7.1213
7 −7.1156
8 −7.1110

the partial wave function φ23. As the spin-down component
necessarily belongs to an inner electron, the extent of the
probability density |φ23|2 is small in the x1 direction. Hence
the cut at x1 = 0. We further observe the antisymmetry plane
x2 = x3 and the preference of spatial regions where no more
than one electron is located at a position comparatively far
from the nucleus.

B. Ionization in different laser regimes

The ionization rate �ω for a certain photon energy ω was
determined by fitting N (t) to pω(t) � 1 − exp(−�ωt) [see the
definition of p(t) in Sec. III A 4] during the flat-top part of a
trapezoidal laser pulse. Given a maximum simulation time τ �
t � 0, the electric field amplitude Ê during the flat-top part of
the pulse is chosen high enough to make the relevant ionization
time scales for a “numerically measurable” ionization yield
shorter than τ . Besides the inverse ionization rate �−1

ω , also
the inverse n-photon Rabi frequency �−1

R,n matters here. On

the other hand, the ponderomotive energy Up = Ê2

4ω2 should
be smaller than both the ionization potential Eip and the
photon energy ω. Otherwise, (strong field) effects such as ac
Stark shifts, above-threshold ionization, and stabilization [31]
could influence the ionization dynamics dramatically [32]. The
electric field amplitude was therefore set to Ê = 0.05.

It is obvious that FCAs fail for photon energies ω  Eip

high enough to produce core holes. Too low laser frequencies
are numerically too demanding. Hence, the frequencies con-
sidered in this work are restricted to ω ∈ [0.1,1.0]. Within this
regime we encounter single-photon ionization for ω � Eip and
multiphoton ionization for ω < Eip.

1. Ionization rates

Ionization rates �ω obtained by the exact solution of the
TDSE are shown in Fig. 2. As expected, one can qualitatively
distinguish between the single-photon and multiphoton ion-
ization regime.

Photon energy ω (a.u.)

R
at

e
Γ

ω
(a

.u
.)

0.2 0.4 0.6 0.8 1.0

10
−5

10
−3

E
(2)
ip Eip

ω
(2)
4 ω

(1)
3 ω

(1)
7

FIG. 2. Logarithmic plot of the ionization rate �ω of the Li model
atom vs the laser frequency ω for Ê = 0.05, as obtained from the ab
initio solution of the TDSE. Ionization thresholds for one and two
photons are given by the dotted, vertical lines. n-photon resonances
with the mth excited state are denoted by ω(n)

m (dashed, vertical
lines). The regime of multiphoton ionization ω < Eip is dominated by
resonances at ω(n)

m and E(2)
ip whereas the photoionization probability

decreases exponentially (i.e., linearly on the logarithmic scale) for
ω > Eip, starting at its maximum for ω � Eip.
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a. Single-photon ionization. If the photon energy increases
beyond ω = Eip, the ionization rate drops exponentially. Note
that this behavior can only partially be explained by the
decreasing number of photons per time and area for the fixed
laser intensity in the simulation. In a simple picture, the
ionization rate �ω should be the product of the photoionization
cross section σ = σ (ω) and the photon impact rate per
area �photon/A. Hence one would expect �ω = σ�photon/A =
σI/ω, where I denotes the (in our case constant) laser
intensity. Instead, the almost linearly decreasing slope in the
logarithmic plot of �ω in Fig. 2 shows that �ω is not ∼ω−1.
Hence there must be an exponential dependence in σ (ω).

b. Multiphoton ionization. Peaks in the ionization rate �ω

for ω < Eip can be categorized into two groups. If the energy
of n photons is just sufficient to free the outer electron, the
ionization probability is particularly high. Consequently, one
finds a peak just above the two-photon ionization threshold
E(2)

ip � Eip/2. However, the ac Stark shift increases for smaller
laser frequencies ω. Thus, it becomes more important to
consider field-dressed states in order to predict n-photon
ionization thresholds for n > 2.

Another mechanism that leads to peaks in the multiphoton
regime is excited-state-assisted ionization where (a) the energy
of n photons matches the energy gap Em − E0 between the
ground state and the mth excited state, (b) the n-photon
transition between the ground state and the mth excited state
is allowed, and (c) the binding energy E∞ − Em of the
mth excited state is smaller than the photon energy so that
the absorption of one additional photon leads to ionization.
This scenario may be viewed as n-photon Rabi oscillations,
accompanied by ionization. Laser-dressed states have to be
considered in order to precisely predict the peak positions
ω(n)

m , especially for small laser frequencies.

2. Time-dependent ionization probability

Ionization just above any n-photon ionization threshold
should depend solely on a single time scale given by the rate
�ω. Instead, in the case of excited-state-assisted ionization the
ionization probability vs time should be modulated on the time
scale of (multiphoton) Rabi floppings. This is indeed the case,
as shown in Fig. 3 where the inverse ionization probability
1 − pω(t) is plotted vs t for four values of the photon energy ω.

3. Position of resonance peaks

In order to quantitatively predict the position of the peaks
in the ionization rate �ω it is required to consider the ac Stark
effect. The laser parameters used in this work are such that
the coupling of the ground state to states with excited inner
electrons is negligible. Hence, one can obtain Floquet spectra
by considering states below the first ionization threshold only.
The results of the Floquet solver are shown in Fig. 4.

a. Avoided crossings of the shifted ground state. Avoided
crossings of the field-dressed ground state are of particular
interest here because the system should be described by this
state after an appropriate ramping of the laser field in the TDSE
solution [33].

Following the perturbed ground state m = 0, n = 0 from
the high-frequency limit to lower frequencies, one finds
avoided crossings with the odd excited states m ∈ {9,7,5,3,1}
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FIG. 3. (Color online) Comparison of time-dependent ionization
probabilities pω(t) for photon energies ω ∈ {0.175,0.21,0.3,0.6} and
a fixed electric field amplitude Ê = 0.05, ramped over five cycles. In
the case of resonances, i.e., excited-state-assisted ionization, the slope
changes periodically with the Rabi frequency. In one- and two-photon
ionization without excited-state assistance, the only relevant time
scale is given by �−1

ω , leading to a straight slope in the logarithmic
plot (disregarding the transient behavior at small times t caused by
laser ramping).

of the next lower Floquet block, as expected from the dipole
selection rule. The minimum level distances in these one-
photon avoided crossings are given by the Rabi frequency �R,1,
which decreases for increasing m so that those for m = 9 and
m = 7 are too close to be resolved. This is expected because
�R,1 is proportional to the dipole transition amplitude, which
decreases with increasing m.

Following in Fig. 4 m = 0, n = 0 below the two-photon
ionization threshold E(2)

ip � 0.2, two-photon avoided crossings
of the ground state with even states m = 8 (unresolved), m = 6
(unresolved), m = 4 (hardly resolved), and m = 2 (clearly
resolved) show up. In the case of n-photon crossings for n � 3,
the identification of states becomes cumbersome, as Floquet
blocks approach each other and the ac Stark shift increases.

b. Prediction of peaks in the ionization rate. In Fig. 4,
photon energies with a high ionization rate are marked
by dashed (excited-state-assisted ionization) and dotted (n-
photon ionization thresholds) vertical lines. For each of these
photon energies, the responsible mechanism can be identified
by inspecting the behavior of the state m = 0, n = 0. The
other way around it is not that straightforward. There are
avoided crossings at photon energies ω

(1)
1 and ω

(1)
5 which do

not give a significant peak in the ionization rate �ω. However,
for most of the avoided crossings one can quantitatively predict
a peak position in the ionization rate, which is supporting the
mechanisms introduced in Sec. IV B.

C. Coupling of inner electrons

In this section, a gedanken experiment is performed.
Halfway between freezing the inner electrons and taking
their dynamics fully into account lies a treatment where
only their interaction with the laser is neglected while the
electron-electron interaction Wij is included in the simulation.
However, switching off the interaction with the laser for both
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FIG. 4. (Color online) Quasienergies ε(n)
m (ω) of Floquet states vs photon energy ω for Ê = 0.05. Indices denote the state m and the Floquet

block n. Those Floquet states with a sizable projection on the atomic ground state m = 0 are marked by symbols (shaped and colored differently
for each Floquet block). Photon energies ω leading to a peak in the ionization rate �ω are indicated by gray vertical lines, as in Fig. 2. The
energies Em with m = 0,1,2 on the right-hand side denote unperturbed atomic energy levels.

inner electrons is not possible in the exact TDSE calculation
because this would break the exchange symmetry discussed
in Sec. III A. An interaction that does not break the exchange
symmetry is a “spin-selective laser” coupling

∑
i H

(i)
L (t) with

[see Eq. (21)]

H
(i)
L (t) = |↑〉(i) 〈↑|(i) E(t) x(i). (26)

When solving the TDSE (20) for φ23, this hypothetical laser
acts on all electrons except the single inner spin-down electron.
In that way we can investigate the role of the (seemingly
passive) inner spin-down electron during the ionization process
by discriminating its reaction only to the spin-up electrons’
laser-induced dynamics from its full interaction with both the
laser and the other electrons.

1. Ionization rates

Ionization rates for the spin-selective case are compared
with the previous full-laser results in Fig. 5. In the multiphoton
ionization regime ω < Eip both curves are in good agreement.
Positions, heights, and widths of the peaks in both cases

match quantitatively. However, in the single-photon ionization
regime ω � Eip significant differences in the ionization rate
are observed. Most notably, the ionization rate for the spin-
selective laser is too high and shows a wrong asymptotic
behavior with increasing frequency. Hence, the interaction of
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FIG. 5. (Color online) Ionization rate �ω vs ω in the case of
an artificial, spin-selective laser (dashed) compared to the previous
results where all electrons “see” the laser (solid).
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inner electrons with the laser field affects the ionization rate
even though all inner electrons stay bound.

2. Dipole expectation values in the laser-driven case

The excursions of loosely outer and tightly inner bound
electrons driven by an oscillating electric field E(t) =
−Ê sin(ωt) are expected to be opposite in phase if the laser pe-
riod falls in between their respective time scales. In a harmonic
binding potential, for example, the phase depends on the sign of
ω2

0 − ω2 with ω0 the eigenfrequency of the harmonic potential.
In the case of a high-frequency driver ω0

ω
< 1 the electron is dis-

placed opposite to the driving force −E(t). On the other hand, a
bound electron with a faster time scale than the driver, ω0

ω
> 1,

is displaced in the direction of the driving force. In terms of in-
ner and outer electrons this means that the position expectation
value of an outer electron is more likely to oscillate in phase
with the electric field, whereas inner electrons tend to have
the opposite phase. Note that “in phase with the electric field”
means “opposed to the force” due to the negative charge of the
electron. Time-dependent position expectation values for both
spin components of the Li model interacting with a ramped
sinusoidal laser field are shown in Fig. 6. Results were obtained
for the case of an “ordinary” laser on the one hand and for the
case of the artificial spin-selective laser on the other hand.

The amplitude of the single spin-down inner electron is
one order of magnitude smaller than the amplitude of the
inner-outer spin component. It is thus a good approximation
to assign the position expectation value of the inner-outer
spin component to the outer electron. As predicted by the
harmonic oscillator the loosely bound outer electron oscillates
in phase with the electric field, whereas the inner spin-down
electron oscillates with the opposite phase.

The comparison of position expectation values for ordinary
and spin-selective lasers shows that switching off the laser
for the single spin-down inner electron does not affect the
oscillation amplitude of the outer electron (see both bold
curves on top of each other in Fig. 6). In contrast, the amplitude
for the single spin-down inner electron itself decreases by a

FIG. 6. (Color online) Time-dependent position expectation
value of the spin-down component x↓(t) (inner electron; thin)
compared with the position expectation value of the other spin
component x↑(t) (inner and outer electrons; bold). The sinusoidal
electric field E(t) with frequency ω = 0.5 (thin dashed-dotted,
purple) is ramped over five periods and interacts either with all
electrons (usual case; solid) or with all electrons except the single
spin-down inner electron (artificial spin-selective case; dashed).

factor of 2 if the ordinary laser (thin solid black) is replaced
by the spin-selective (thin dashed red) laser.

In the case of the spin-selective laser, the single spin-down
inner electron oscillates with the laser frequency ω although
it is not directly interacting with the laser. It only couples
indirectly to the laser field via the electron-electron interaction
W (ij ). Both spin-up electrons are directly coupled to the laser
field and repel the spin-down electron. The latter is therefore
slightly displaced in the direction of the electric field by
the other inner electron and in the opposite direction by the
outer electron. The net result for the quantum mechanical
expectation value is an excursion in the opposite direction
(thin dashed red), but less so as if it were “seeing” the laser as
well (thin solid black).

As proven by the significantly differing single-photon ion-
ization rates in the gedanken experiment, the coupling between
inner and outer electrons strongly affects the ionization process
despite a seemingly harmless approximation: Only the laser
interaction of one of the inner electrons is neglected. One can
think of the decrease in the ionization rate in the full simulation
as dynamical antiscreening of the nuclear charge. This is a
particular form of dynamical core polarization, which could
be modeled by adding a polarization potential to the SAE
Hamiltonian (see, e.g., [34,35]).

One might wonder why the ionization rate is so different
for the two laser types in Fig. 5 while the position expectation
values for the inner-outer spin component in Fig. 6 are virtually
equal. The explanation is that the position expectation values
are dominated by the bound part of the wave function while
the ionization rate is determined by the (small) escaping (and
numerically absorbed) part.

3. Polarization by a constant electric field

In the limit ω0
ω

 1 a dipole expectation value xσ (E0) =
〈�(E0)|xσ |�(E0)〉 with the sign opposite to E0 is expected for
both spin components if the electrons were noninteracting.
However, the electron-electron interaction W (ij ) modifies this.

The numerical results in Fig. 7 support the picture of inner
electrons reacting to the displacement of the outer electron.
The expectation value of the single spin-down inner electron
x↓(E0) has the same sign as the electric field E0.

FIG. 7. Dipole expectation values for both spin components of
the Li model in the presence of a constant electric field with field
strength E0 (“seen” by all electrons). The inner-outer spin component
is displaced in the direction opposite to the electric field, as expected
for negatively charged particles. The displacement of the opposite-
spin component (corresponding to the spin-down inner electron here)
is in the same direction as the electric field, as a response to the outer
electron.
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D. Ionization rates obtained with different SAE and TDDFT
approximations with and without SIC

After having obtained insight into the role of inner electrons
in ionization and polarization from ab initio solutions of the
TDSE, results from full TDDFT and frozen-core calculations
are presented and interpreted in this section. The SAE
approximation, as explained in Sec. III F, is also counted as
an FCA in which only the KS valence orbital is propagated in
the frozen ground state KS potential (plus the potential due to
the laser). The SAE results do not suffer from self-interaction
introduced during the propagation of orbitals in time. However,
a self-interaction error may originate from the ground state KS
potential.

For two approximations we considered, the results have
been so unreasonable that they are not even shown here but
are just mentioned. First, the pure LDA TDDFT approach
completely fails in generating a reasonable behavior of
ionization probability vs time in the multiphoton regime
ω < Eip so that a rate pω(t) � 1 − exp(−�ωt) could not be
extracted. Second, the TDDFT approach using PZ SIC leads
to resonances of inner electrons at high frequencies ω > 0.8,
leading to a nonmonotonous behavior of the ionization rate
not seen in the exact result.

1. SAE results

Ionization rates from SAE calculations in which frozen
KS potentials were used are shown in Fig. 8(a). In the low-
frequency regime ω < 0.2 both SAE ionization rates change
rapidly with the frequency, as the exact result does due to
the many avoided crossings discussed in Sec. IV B 3. To the
right of the two-photon ionization peak a sharp minimum at
ωmin ∈ [0.2,0.26] shows up in all results. In the remaining
multiphoton ionization part up to ω = Eip � 0.4 one or two
peaks are visible, corresponding to one-photon excited-state-
assisted ionization.

The LDA SAE approach yields too few peaks and an in-
correct curvature around ω � 0.25. Furthermore, the excited-
state-assisted ionization peak around ω � 0.31 is blueshifted,
while the ionization threshold is redshifted. This can be
partially explained by the wrong asymptotic behavior of the
KS potential originating from self-interaction in pure LDA.
The SAE approximation in the PZ-corrected case leads to
the correct number of peaks. If each of the n-photon peaks is
shifted to the right by �ω � 0.04

n
one finds a striking agreement

with the exact TDSE result with respect to peak positions,
widths, and heights. This improvement over pure LDA is due to
the asymptotically correct KS potentials in the case of PZ SIC.
In fact, three-dimensional DFT calculations applying the PZ
SIC are often useful to quantitatively reproduce experimental
values for ionization thresholds and excitation energies. Hence,
the required shift �ω may be due to the one-dimensionality of
the Li model system considered in this work.

In the single-photon ionization regime ω > Eip a mono-
tonic decrease of the ionization rate, starting from its maximum
value for ω � Eip, is observed. However, a convex curvature as
for the spin-selective laser gedanken experiment arises. Hence,
all approaches neglecting inner electron dynamics completely
(pure LDA SAE and PZ-corrected SAE) or partially (spin-
selective laser gedanken experiment) yield a convex curvature

in the logarithmic plot, presumably because the antiscreening
effect is neglected.

2. Full TDDFT results

Ionization rates from the full TDDFT calculations are
shown in Fig. 8(b). As mentioned above, plain LDA TDDFT
does not allow one to extract a rate in the multiphoton
ionization regime at all. Compared to the SAE results,
the PZ TDDFT rate in the multiphoton ionization regime
appears to be calculated with less spectral resolution. This
is expected because “unfrozen” KS potentials do not support
stationary energy levels that could aid ionization via resonant
excitations.

In the single-photon regime the full TDSE and the LDA
TDDFT calculations yield an exponential decrease of the
ionization rate for increasing photon energies. The correspond-
ing slopes approximately equal each other. However, the rate
predicted by LDA TDDFT is too high. A possible explanation
for the overestimated rate is the following: the downshift of
the KS energy during ionization in LDA without SIC (see
Sec. IV E below) leads to an increased ionization probability
in the single-photon regime (because the ionization probability
drops with increasing excess energy ω − Eip). Hence, one may
view the LDA rate as rather being blueshifted than upshifted.

Surprisingly, the PZ-corrected TDDFT calculations yield
the worst rate, which is too small at the threshold, decreases
too rapidly with increasing ω, and has a concave curvature.
The reason for this wrong behavior is discussed in Sec. IV F
below.

Concluding this section, we can state that none of the
considered approximations is able to yield correct ionization
rates over the frequency interval [0.1,1.0], the best performing
being the LDA PZ-SIC SAE approximation in the multiphoton
and the pure LDA TDDFT in the single-photon ionization
regime.

E. Importance of SIC for resonances in the multiphoton regime

The PZ SIC leads to “better” KS energies of the populated
levels in the sense of being closer to the respective ionization
energies. The energies of the unpopulated levels in the ground
state KS potential also benefit from the SIC, leading to “better”
excitation energies. Both are important ingredients for a correct
ionization rate in the multiphoton regime. Moreover, in a time-
dependent calculation SIC also helps taking into account the
discontinuity of the KS potential at integer orbital occupation
numbers (this is the so-called “derivative discontinuity” in the
XC energy, cf. [36]). The ionization potential must not depend
on the ionization probability p(t). Hence, the KS energy
of the orbital from which predominantly ionization occurs
should be independent of p(t) ∈ [0,1). Only when p(t) = 1
is reached, the KS potential, and thus the orbital energy,
should change discontinuously. The single-particle density in
the vicinity of the nucleus decreases as p(t) increases. As a
result, the repulsive Hartree potential is weakened so that all
orbital energies would shift to lower values if the XC potential
did not counteract. In fact, pure LDA does not counteract
properly so that the KS level energies vary continuously with
p(t). PZ SIC implements the derivative discontinuity, at least
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FIG. 8. (Color online) Ionization rate �ω obtained by SAE approaches (a) and by full TDDFT calculations (b). For reference, in both panels
the result from the exact TDSE (labeled “exact,” drawn solid with bullets) and the “spin-selective” TDSE calculation (dotted with bullets) in
the single-photon regime ω > 0.4 where it is different from the full calculation (see Fig. 5) are included. The SAE results in (a) are labeled
“LDA SAE” (i.e., SAE with frozen LDA ground state KS potential; dashed) and “PZ SAE” (i.e., SAE with frozen LDA PZ-SIC ground
state KS potential; solid). The full TDDFT results in (b) are labeled “LDA TDDFT” (dashed) and “PZ TDDFT” (i.e., LDA with PZ SIC;
solid). LDA TDDFT results are omitted in the multiphoton regime ω < 0.4, and PZ TDDFT in the high-frequency regime ω > 0.8, because a
single-ionization rate cannot be determined in these cases.

approximately. This is illustrated in Fig. 9 for a valence KS
orbital occupation nval ∈ [0,1] for pure LDA and PZ SIC
applied to LDA. By considering fractional occupations in
the stationary ground state calculations we are mimicking
adiabatically evolving ionization, i.e., 1 − nval = p with p the
instantaneous ionization probability.

For the neutral atom ground state nval = 1 the PZ SIC lowers
the valence orbital energy compared to the uncorrected LDA
case,

−0.355 = ε
(PZ)
val (1) < ε

(LDA)
val (1) = −0.329. (27)

In the Li+ limit nval = 0 both approaches almost agree,

−0.671 = ε
(PZ)
val (0) � ε

(LDA)
val (0) = −0.672. (28)

In pure LDA the orbital energy shifts almost linearly during
ionization down to small values of nval. With PZ SIC the orbital
energy is shifted much less during ionization as long as nval >

0.2. In the region nval ∈ [0,0.2] the PZ-SIC orbital energy
describes a “smoothed jump” down to the Li+ value. Hence, we
find that the PZ SIC smoothes the step-function-like behavior
the unknown, exact SIC would yield. The improvement over
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FIG. 9. (Color online) Orbital energy of the “valence” KS orbital
εval (solid) and the total energy difference �Etot (dashed) vs the
fractional valence occupation number nval = 1 − p, where p is the
ionization probability, for pure LDA and for LDA with PZ SIC.

pure LDA regarding the constancy of the orbital energy of the
“ionizing KS level” is essential.

F. Problem of LDA PZ SIC in single-photon ionization

With all the benefits from PZ SIC concerning KS level
energies and the asymptotic behavior of the KS potential, it is
an obvious question why PZ-corrected LDA fails so badly in
the single-photon ionization regime. The gedanken experiment
in Sec. IV C indicates that dynamical coupling effects between
electrons such as antiscreening become increasingly important
as the photon energy ω rises. In TDDFT, the coupling between
KS orbitals is mediated by the Hartree part and the XC part
of the KS potential. With PZ SIC the orbital-dependent KS
potential reads

vi(x) = v(x) + v(LDA)[nσi
](x) + v(H)[n](x)

− v(LDA)[ni](x) − v(H)[ni](x). (29)

The Hartree potential is a linear functional of the total electron
density so that

vi(x) = v(x) + v(LDA)[nσi
](x)

− v(LDA)[ni](x) + v(H)[n − ni](x). (30)

The effective Hartree term v(H)[n − ni](x) for the valence
KS orbital after SIC is solely determined by the core KS
orbital density. As a result, antiscreening is stronger than
without SIC of the Hartree potential. The SIC of the LDA
part acts in the opposite direction. However, the SIC to the
LDA XC potential is not exact, so that a net overestimated
antiscreening may remain, leading to a lower ionization rate at
higher photon energies. Moreover, the dependence of the PZ
TDDFT ionization rate as a function of the laser frequency is
wrong in Fig. 8(b), pointing to a deficiency in the dynamics
of the XC potential (note that the PZ SAE rate bends in the
opposite direction).

The fact that pure LDA leads at least to the correct
slope of the ionization rate in the single-photon ionization
regime is thus likely due to a lucky cancellation of errors,
i.e., the suppressed antiscreening is compensated by the error
in the LDA XC potential at all frequencies ω ∈ [0.5,1].

V. CONCLUSION AND OUTLOOK

In this work, we benchmarked various density-functional-
based approximate approaches to laser ionization with a
numerically exactly solvable three-electron model atom.

In the apparently simple photoeffect regime where only one
photon is required for ionization, a surprisingly pronounced
dependence of the ionization dynamics on the correct treatment
of the inner electrons is found. These inner electrons are
usually assumed to be passive, justifying frozen-core, single-
active-electron, and pseudopotential approaches. However,
because of the opposite time scales of inner and outer
electrons with respect to the laser period antiscreening of
the nuclear charge by the inner electrons occurs, which is
ignored in such approaches (but could be modeled by a
dynamical polarization potential). For instance, frozen-core
orbitals lead to ionization rates too high, with an erroneously
curved slope of the ionization rate as a function of the laser
frequency. Unfortunately, the more advanced Perdew-Zunger
self-interaction-corrected local density approximation fails
as well at high frequencies because of an overemphasized
antiscreening.

In order to correctly describe ionization in the multiphoton
domain, energy levels as well as dipole transition probabilities
must be reproduced by the simulation method, which is
very demanding for pseudopotential and single-active-electron
approaches. Moreover, the energy levels should not change
as excited states get populated because this would move the
system out of resonance. On the other hand, it is known that
once the population is inverted, the density is the ground state
density of a “new,” discontinuously changing Kohn-Sham
potential [12,37]. Only proper self-interaction-free Kohn-
Sham potentials may capture such multiphoton ionization
effects involving resonances. We found that the Perdew-
Zunger self-interaction-corrected local density approximation
performs well for the lithium model atom in this respect, at
least qualitatively.

In future work, it is worth comparing our exact numerical
model Li results with Kohn-Sham results using more advanced
exchange-correlation functionals than we did in the current
work [38]. There might well be exchange-correlation poten-
tials “out there” that perform well in both the multiphoton and
single-photon ionization regimes.
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APPENDIX: NUMERICAL SOLUTION
OF THE THREE-PARTICLE TDSE

In this Appendix, numerical details concerning the so-
lution of the TDSE (20) are given. The full solution of
the three-particle TDSE for processes involving ionization is
numerically demanding even if the spatial degrees of freedom
are reduced to one per particle. For that reason a Cartesian
TDSE solver in three dimensions (i.e., one per particle) was
implemented on a graphics processing unit (GPU) using the
NVIDIA CUDA [39] platform. The solver is highly optimized
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for the purpose of this paper. A speedup of three orders of
magnitude over a single-core CPU implementation covering
the full three-dimensional Cartesian grid is achieved on a desk-
top computer featuring a NVIDIA GeForce GTX 580 GPU.
The speedup originates equally from an efficient implemen-
tation utilizing the high single-precision performance of the
GPU and the adjustment of the simulation grid. “Mixed
precision” techniques allow one to obtain results in double
precision although most of the numerical effort consists of
single-precision floating point operations.

The kinetic energy operator is discretized using the implicit
Numerov expression, which is accurate up to fourth order in
the spatial grid spacing �x. For the propagation in time we
employ the unitary Crank-Nicolson method consisting of an
(explicit) forward and an (implicit) backward step, accurate
up to second order in the time step �t . The explicitly time-
dependent Hamiltonian H (t) is evaluated at midpoints τ =
t + �t

2 .
The linear equations to propagate the discretized wave

function in time for one time step can easily be arranged to
require the solution of no more than a single implicit equation
with a 3 × 3 × 3 stencil. For a sufficiently small time step
�t the corresponding coefficient matrix is diagonal dominant.
Hence, the Jacobi method can be used to determine its solution.
Faster convergence of long-wavelength errors is achieved by
applying a multigrid scheme. Finally, a high throughput of
floating point operations is obtained by using mixed precision
techniques and different data caching stages combined with
massive parallelization.

The numerical grid was optimized, exploiting what is
known about the probability density dynamics during long-
wavelength, single ionization. Recall that the laser is tuned
such that solely the outer electron is removed from the
atom. As a consequence, the single spin-down inner electron
is tightly bound to the core at all times. This means that
|φ23(t ; x1,x2,x3)|2 will only yield nonvanishing probabilities
for small |x1|. Hence, one may choose a small box size
in the x1 direction. In contrast to that, the inner-outer
spin component in the x2 and x3 directions may be spa-
tially extended. However, if both |x2| and |x3| are large,
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FIG. 10. (Color online) Spin-resolved probability density
|φ(7)

23 (x1,x2,x3)|2 of the seventh excited state cut at x1 = 0. The
adapted grid omits those regions with a white background.

|φ23(t ; x1,x2,x3)|2 must be negligible for the allowed laser
parameters, i.e., those that do not lead to double (or triple)
ionization. Consequently, the grid regions where |x2| and
|x3| are large are omitted. Finally, by making use of the
antisymmetry φ23(t ; x1,x2,x3) = −φ23(t ; x1,x3,x2) only the
region x2 � x3 needs to be considered numerically.

Denoting the width of an ionization channel in grid points
by Nsmall and its total length by Nlarge, the total number of
grid points compared to an Nsmall × Nlarge × Nlarge cuboid is
reduced by a factor of 2Nlarge/Nsmall. The results presented in
this work have been checked to be converged for Nsmall = 64
and Nlarge = 1024 (for �x = 0.2 and �t = �x/8), which
corresponds to a speedup of 32 caused by the grid adjustment
alone. As an example, the probability density |φ(7)

23 (x1 =
0,x2,x3)|2 of the seventh excited state on the optimized grid is
shown in Fig. 10.
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