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Effects of the continuous-spontaneous-localization model in the regime
of large localization length scale
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Working in the limit in which the localization length scale is large compared to other relevant length scales,
we examine three experimental situations with the continuous-spontaneous-localization (CSL) model, a well-
motivated alternative to standard quantum theory. These are the two-slit experiment, scattering from a potential
barrier, and release of two noninteracting particles simultaneously from a potential trap. In each case we calculate
the diagonal part of the time-evolved density matrix giving a probability density function over final measured
states. The case of the two-slit experiment is already well understood and we reproduce some known conditions
for observing loss of interference. The other examples have not previously been examined in the context of CSL.
For scattering from a potential barrier we find that the probability of reflection is unchanged by CSL; however,
the momentum state is spread in a characteristic way. For the case of two particles released simultaneously from a
trap we find that it is more likely that the particles diffuse in the same direction than would happen if the particles
behaved independently. We assess the possibility of observing these effects.
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I. INTRODUCTION

Spontaneous localization (SL) is an alternative to standard
quantum theory motivated by the measurement problem [1–3]
(for reviews, see [4,5]). In SL the quantum state has the
status of a real physical object. The state evolves according
to a stochastic generalization of the Schrödinger equation and
behaves in such a way that certain macrosuperposition states
are unstable. The theory itself determines precisely which
types of state are unstable and remarkably gives a universal
account of phenomena which so far agrees with our experience
ranging from the behavior of quantum particles to the classical
macroscopic world.

Spontaneous localization is particularly interesting because
it makes several predictions which are in conflict with standard
quantum theory. This means that there is the possibility to
experimentally test it. For example, SL predicts the collapse
of a superposition of quasilocalized wave packets for a particle
(or composite object) of sufficiently large mass. The way to
observe this process would be to look for a characteristic
loss of interference when the packets are brought together.
These kinds of experiments are being developed as part
of a general program to observe quantum interference for
objects of increasing mass. One promising experiment involves
diffraction of a beam of Au clusters by a laser grating [6];
another involves attempting to put a small mechanical device
in a superposition of different position states [7] (see also [8]).

In this article we focus on the continuous-spontaneous-
localization (CSL) model [1,2] and examine a selection of
experimental scenarios in the limit in which the localization
length scale is large compared to other length scales (such
as the spatial extent of the wave function). The reason for
taking this limit is primarily to make calculations easier to
perform. This enables us to obtain precise results within the
regime of validity. However, we note that at present there is no
upper bound on the CSL length scale imposed by experimental
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results [9]. Our considerations might therefore be seen as a way
to further constrain the parameter space of the CSL model.

In the CSL model the state process is expressed as a
stochastic differential equation for the state vector (see Sec. II).
Stochastic changes in the state are governed by a classical noise
process and for a given realization of this noise process the state
vector follows a unique trajectory. However, it is convenient
to consider a statistical ensemble of systems describing the
result of running the same experiment with the same initial
conditions many times. The dynamics then turn an initial pure
state into a mixture of states, each resulting from a different
realized noise. The appropriate way to describe this is in terms
of a density operator

ρ̂t = E[|ψt 〉〈ψt |], (1)

where E denotes classical expectation over states.
The density matrix can be written in terms of a density

matrix propagator which for a single-particle system is
expressed in coordinate space as

ρt (x,y) =
∫

dx ′dy ′J (x,y,t |x ′,y ′,t ′)ρt ′(x
′,y ′), (2)

where ρt (x,y) = 〈x|ρ̂t |y〉 and t > t ′. The advantage of work-
ing with the density matrix propagator is that we can separate
out the dynamical behavior from the initial condition. There
are well-established methods to determine the density matrix
propagator (see, e.g., Refs. [10,11]). Here we demonstrate
that in the case where the system is more localized than the
CSL length scale, the CSL master equation can be reduced
to a form where the propagator is a Gaussian function. This
implies that for situations in which the initial wave function is
of Gaussian form (or a superposition of Gaussians), the final
density matrix state can be straightforwardly determined by
performing Gaussian integrals over the variables x ′ and y ′.

After an introduction to the CSL model in Sec. II we
apply the density matrix propagator technique to the two-slit
experiment in Sec. III. We consider an initial wave function
composed of two separated Gaussian peaks corresponding to
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the particle passing through each of the two slits. We then
allow the wave packets to spread and overlap and determine
the probability distribution for the location of the particle.
We find that the expected interference pattern degrades as a
result of CSL as the mass of the particle increases, the slit
width increases, or the separation between slits increases.
We highlight the result that a cubic improvement on the
degradation effect can be made by increasing the slit separation
provided it is less than the CSL length scale.

The same techniques also allow us to consider interactions
with more complicated potentials by treating the potential
perturbatively. We demonstrate this in detail in Sec. IV, where
we consider a particle undergoing CSL dynamics as it is
scattered from a small potential barrier. We calculate the
effect of the potential up to second order. This turns out to
be the lowest order necessary in order to see reflection from
the barrier. Reflection from a barrier whose height is small
compared to the energy of the incoming particle is a quantum
mechanical effect which we might expect to be diminished by
CSL. However, we find that there is no appreciable reduction
in the probability for reflection when compared to a standard
quantum calculation. The significant difference is that the wave
packet undergoes a characteristic spreading in momentum
space. This is expected to be small given standard estimates for
the CSL parameters and the scattering does nothing to enhance
the order of magnitude of the momentum diffusion over that
which would occur for a free packet without the potential.

In Sec. V we apply the density matrix propagator technique
to a situation involving two particles. In CSL the localization
mechanism acts on the total particle number density state
rather than on each particle individually. This implies that
for a system of two noninteracting particles, the localization
mechanism will lead to correlations in the diffusion undergone
by each particle separately. In order to demonstrate this we
present the two-particle propagator and solve for a situation
in which the initial wave functions of the particles perfectly
overlap. We find that the final distribution of particle locations
shows that the particles are more likely to be found closer
together than would be expected if the particles behaved
independently. We examine the possibility of this being used
as a new experimental test of CSL and consider the expected
scales of magnitude required to see the effect. We end with
some discussion and a summary in Sec. VI.

II. CONTINUOUS SPONTANEOUS LOCALIZATION

Here we present the CSL model in terms of a diffusion
process for the quantum state and show how it can be
represented in terms of a deterministic master equation for the
stochastically averaged density matrix (1). The CSL model is a
nonrelativistic model involving quantum fields. We write down
the master equation for the case of a one-particle excitation
and present the density matrix propagator. Later in Sec. V we
do the same for a two-identical-particle state. For simplicity,
we work in one dimension. The results should be valid for
the three-dimensional theory since the different dimensions
decouple in the equations of motion.

We introduce two parameters λ and 1/
√

α. These are,
respectively, the rate and the length scale of localization. The
state evolution is then described by the quantum state diffusion

equation [1,2],

d|ψt 〉 =
{
− i

�
Ĥ − λ

2

∫
dx[N̂ (x) − 〈N̂ (x)〉]2

}
dt |ψt 〉

+
√

λ

∫
dx[N̂ (x) − 〈N̂ (x)〉]dBt (x)|ψt 〉, (3)

where the number density operator N̂ (x) is given by

N̂ (x) =
(

α

π

)1/4 ∫
dy exp

{
−α

2
(x − y)2

}
â†(y)â(y), (4)

the field annihilation and creation operators â(x) and â†(x)
satisfy

[â(x),â†(y)] = δ(x − y), (5)

and the field of Brownian motions satisfy

E[dBt (x)] = 0; dBs(x)dBt (y) = δst δ(x − y)dt. (6)

Equation (3) is to be thought of as a fundamental modification
of the Schrödinger equation in order to describe both unitary
and state reduction-type behavior. It has the remarkable prop-
erty that ||ψt 〉| is preserved by the dynamics. The parameter α

is taken to be a new fundamental constant of nature. Ghirardi,
Rimini, and Weber (GRW) give an estimate of 1/

√
α = 10−7 m

[3]. Arguments related to experimental bounds on the spon-
taneous emission of photons from germanium suggest that
λ ∝ m2 [12], where m is the particle mass. We therefore
assume that

λ =
(

m

m0

)2

λ0, (7)

where m0 is the nucleon mass and λ0 is the rate of localization
for a nucleon, another new fundamental constant of nature. By
assuming (7) we are acknowledging that the number density
operator in fact represents the mass density. The estimate of
GRW is λ0 = 10−16 s−1.

We note that the GRW estimates are not definitive. A study
of the range of parameter space compatible with experiments
can be found in Ref. [9]. In particular, 1/

√
α may be much

larger than 10−7 m. This is of relevance since we work in an
approximation where the particle is more localized (i.e., its
wave function is narrower) than the CSL length scale. We
therefore assume that 1/

√
α � 10−7 m, although our results

still apply when 1/
√

α = 10−7 m provided that the systems
we consider a correspondingly smaller.

It is expected that Eq. (3) is the nonrelativistic limit of
some fully Lorentz-invariant version of the model. Relativistic
models have been proposed in Refs. [13–15]. In each of these
models the localization process can roughly be understood as
occurring in the rest frame of the system. This is discussed
in more detail in Ref. [16]. The constant localization length
and rate should therefore be approximately understood with
reference to the rest frame of the system under consideration
although their definitions are more general in the full
relativistic models.

The density operator is given by Eq. (1). It follows from (3)
that the density operator satisfies the master equation

∂ρ̂t

∂t
= − i

�
[Ĥ ,ρ̂t ] − λ

2

∫
dx[N̂ (x),[N̂ (x),ρ̂t ]]. (8)

This is of the Lindblad form [17] and so describes Markovian
nonunitary evolution of the density matrix.
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Now consider the case where the state is composed of one
particle. A single-particle state has the form

|ψ〉 =
∫

dx ψ(x)â†(x)|0〉, (9)

where |0〉 is the vacuum state. Here we can identify ψ(x)
as the wave function for the particle and improper position

eigenstates take the form |x〉 = â†(x)|0〉. The Hamiltonian is
given in position space as

H = − �
2

2m

∂2

∂x2
+ V (x). (10)

Then using (8) with (4) and (10), the master equation can be
written as

∂

∂t
ρt (x,y) = i�

2m

(
∂2

∂x2
− ∂2

∂y2

)
ρt (x,y) − i

�
[V (x) − V (y)]ρt (x,y) − λ

[
1 − exp

{
−α

4
(x − y)2

}]
ρt (x,y), (11)

where ρt (x,y) = 〈x|ρ̂t |y〉.
Next we assume that x − y is typically much smaller than 1/

√
α. By this we mean that ρt (x,y) has zero density for any

x − y � 1/
√

α (see also Ref. [16] for further discussion of this approximation). This means that we can simplify to

∂

∂t
ρt (x,y) = i�

2m

(
∂2

∂x2
− ∂2

∂y2

)
ρt (x,y) − i

�
[V (x) − V (y)]ρt (x,y) − D

�2
(x − y)2ρt (x,y), (12)

where

D = λα�
2

4
. (13)

Since we now find in our equation of motion that the parameters λ and α only appear in the combination λα, it means that we
can trade a higher localization rate for a larger length scale provided that λα remains constant. This is only valid within our
assumption that the system is sufficiently localized. More generally, α and λ will have independent effects.

The advantage of this simplified form for the master equation is that we can solve it exactly in the case where V = 0. We
find that a general initial ρ0 will evolve into a mixture of stable localized pure states [18]. The average position and momentum
of a given localized pure state then undergoes a classical diffusion process in phase space [19]. These features tend to cause
the density matrix to spread out in the x + y direction and concentrate in the x − y direction. Physically, this means that an
individual system becomes localized about a random and fluctuating position. The distribution of these positions, which would
be observed for an ensemble of systems, is continually spreading.

The solution to (12) can be written in terms of the density matrix propagator as in Eq. (2). The result for Eq. (12) is (see, e.g.,
Ref. [20])

J (x,y,t |x ′,y ′,t ′) = m

2π�(t − t ′)
exp

{
im

2�(t − t ′)
[(x − x ′)2 − (y−y ′)2]

}
exp

{
−D(t−t ′)

3�2
[(x−y)2 + (x−y)(x ′−y ′)+(x ′−y ′)2]

}
(14)

It is also useful to express the density matrix propagator in momentum space where

J (p,q,t |p′,q ′,t ′) = 1√
4πD(t − t ′)

δ(p − q − p′ + q ′) exp

{
− i(t − t ′)

4m�
(p2 − q2 + p′2 − q ′2)

}

× exp

{
− 1

4D(t − t ′)
(p − p′)2 − D(t − t ′)3

12m2�2
(p − q)2

}
. (15)

Notice that the propagators tend to δ functions as t → 0 and
that the free propagator is recovered upon setting D = 0. The
potential V can be introduced perturbatively in a standard way
which we outline for the specific case of scattering from a
potential barrier in Sec. IV.

III. TWO-SLIT EXPERIMENT

In the case where V = 0 the master equation is solved ex-
actly with result given by Eqs. (2) and (14). We consider a sim-
ple two-slit experiment and model only the dimension parallel
to a line intersecting the two slits perpendicularly. We approx-
imate the initial wave function by two Gaussian peaks, each
of width σ (the slit width) and separated by a distance 2μ (the

slit separation). Ideally, μ � σ , such that the two peaks do not
overlap. The initial density matrix at time 0 can then be written

ρ0(x,y) = ψ(x)ψ∗(y), (16)

with

ψ(x) = 1√
2

1

(2πσ 2)1/4

×
[

exp

{
− 1

4σ 2
(x − μ)2

}
+ exp

{
− 1

4σ 2
(x + μ)2

}]
.

(17)

Note that this choice of initial condition neglects any
wave-function collapse between the source of the particle
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beam and arrival at the two-slit screen. This can be justified
by assuming that the beam is sourced by a slit much
narrower than σ , which spreads the wave function much
more rapidly so that the particle passes through the preceding
section of the interferometer in a comparatively negligible
time.

We suppose that the particle reaches a measuring screen
beyond the two slits after traveling for a time t (in a spatial
dimension that we do not consider here). The probability
density for finding the particle at position x at this time is
given by ρt (x,x). After setting x = y the result of the integrals
in Eq. (2) is

ρt (x,x) = 1

2

1

(2πKσ 2)1/2

[
exp

{
− 1

2Kσ 2
(x − μ)2

}
+ exp

{
− 1

2Kσ 2
(x + μ)2

}

+ 2 cos

{
�tμ

2mKσ 4
x

}
exp

{
− 1

4Kσ 2

[
(x − μ)2 + (x + μ)2 + 4Dt3μ2

3m2σ 2

]}]
, (18)

where

K = 2Dt3

3m2σ 2
+ �

2t2

4m2σ 4
+ 1. (19)

The parameter K gives a measure of the spread of each
of the two peaks. The two time-dependent contributions are
due, respectively, to SL and standard quantum dispersion. It
is reasonable to assume that the dominant contribution is that
due to standard quantum dispersion. We can then estimate the
time scale on which the two peaks reach a state of significant
overlap. This occurs when

√
Kσ 2 ∼ μ, which results in

t ∼ mσμ

�
. (20)

If the interference term is suppressed before this time, then the
interference peaks do not get the chance to develop. From the
last term in Eq. (18) we see that this happens when

D � Dcrit = �
3

mσμ3
. (21)

In Fig. 1 we display the probability distribution (18) for
some different values of D. We choose units such that � = m =
σ = 1. If we choose μ = 5, then t = 10 in these units is of

units of

un
it

s 
of

FIG. 1. Two-slit probability distribution function for different
values of the CSL parameter, D = λα�

2/4. The position x is given
as number of slit widths σ (the slit separation is 10σ in this example);
ρ has units σ−1; and D has units �

3/mσ 4.

the order of the time taken for the packets to overlap. We have
plotted the probability distribution for three values of D at this
time. The interference peaks disappear somewhere between
D = 0.001 and D = 0.01. This agrees with the estimate from
Eq. (21) of Dcrit = 0.008.

Since from (7) and (13) it is expected that the parameter D

increases with mass as m2, there are three things that can be
done to improve the chances of observing interference loss:
(i) increase the mass m; (ii) increase the distance between
slits μ; and (iii) increase the slit width σ . The first two ways
offer the greatest improvement since they each have a cubic
effect. The other way to eliminate interference effects, making
σ larger, has the effect of causing the wave-function peaks to
spread at a slower rate and therefore effectively buys more time
for the system to undergo SL. We note that for μ > 1/

√
α the

form of (21) would be significantly different (e.g., see Eq. (4)
in [6] or Sec. VII B in [21] for comparison).

Note that if D ∼ Dcrit then the assumption that the density
matrix spreading is dominated by standard quantum dispersion
on the time scale mσμ/� is confirmed provided that μ � σ .
For μ ∼ σ the diffusive spreading due to SL is of the same
order as the standard quantum dispersion for this value of D

on this time scale; however, the argument leading to Eq. (21)
will still hold.

The two-slit experiment is the standard example of how SL
differs in its predictions from standard quantum theory. It is
also one of the best opportunities to actually test SL. The fact
that the interference degradation effect is improved as the mass
cubed or the slit separation cubed means that these parameters
provide effective levers for entering the SL regime.

A planned experiment aims to use 108-amu Au clusters
and a laser grating of wavelength 157 nm (μ = σ = 78.5 nm)
[6]. These values correspond to Dcrit/�

2 ∼ 10−2 m−2 s−1 ×
(m/m0)2. This is equivalent to the order of magnitude of
the GRW estimates of the SL parameters (λ0 = 10−16 s−1

and 1/
√

α = 10−7 m), in agreement with the estimations of
Ref. [6].

IV. SCATTERING FROM A POTENTIAL BARRIER

Here we apply the density matrix propagator technique
perturbatively in order to analyze the problem of a particle
scattering from a small potential barrier of height V . For
V much less than the energy of the incoming particle we
would classically expect the particle to pass right over the
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barrier. However, quantum mechanics predicts a small amount
of reflection. We would like to consider the effect of SL on this
process. Since quantum mechanical reflection can be regarded
as an interference effect in momentum space we might well
expect that SL has the effect of diminishing the amount of
reflection. However, the answer turns out to be more subtle.
(See also Ref. [22], where the related problem of scattering in
the presence of a thermal environment is considered.)

We solve Eq. (12) by treating the potential term as a
small perturbation. Working in momentum space where the

propagator is given by Eq. (15), the zeroth-order contribution
to the density matrix is

ρ
(0)
t (p,q) =

∫
dp0dq0J (p,q,t |p0,q0,0)ρ0(p0,q0). (22)

The probability distribution in momentum space at time t is
found by setting p = q. We choose an initial density matrix of
the form

ρ0(p0,q0) =
√

2

π

σ

�
exp

{
−σ 2

�2
[(p0 − p̄)2 + (q0 − p̄)2] − i

�
x̄(p0 − q0)

}
(23)

�
√

2π�

σ
δ(p0 − p̄)δ(q0 − p̄), (24)

with p̄σ/� � 1, corresponding to a near-perfect plane wave with momentum p̄. When using the approximation (24) we must
use t = 2mx̄/p̄ with x̄ = √

(π/2)σ to determine the approximate time taken for the wave packet to cross the potential barrier.
With this initial state the zeroth-order contribution to the probability density function is

ρ
(0)
t (p,p) = 1√

4πDt
exp

{
− 1

4Dt
(p − p̄)2

}
. (25)

This describes the diffusive spreading of the pure mode initial state due to SL. The potential does not appear at this level of
approximation and there is no reflection. The momentum spread at zeroth order is therefore


p ∼
√

Dt. (26)

This is the dominant effect for the transmitted packet.
The first-order perturbative correction is given by

ρ
(1)
t (p,q) = − 1√

2π�

∫ t

0
dt ′

∫ [
2∏

i=0

dpidqi

]
J (p,q,t |p2,q2,t

′)

× i

�
[V (p2 − p1)δ(q2 − q1) − V (q2 − q1)δ(p2 − p1)]J (p1,q1,t

′|p0,q0,0)ρ0(p0,q0), (27)

where the potential in momentum space is given by

V (p) = 1√
2π�

∫
dx exp

{
− i

�
px

}
V (x). (28)

The contributions from the two potential terms cancel out when p = q so at first order there is no contribution to the probability
density function ρt (p,p).

The second-order term is

ρ
(2)
t (p,q) = 1

2π�

∫ t

0
dt ′

∫ t ′

0
dt ′′

∫ [
4∏

i=0

dpidqi

]
J (p,q,t |p4,q4,t

′)

× i

�
[V (p4 − p3)δ(q4 − q3) − V (q4 − q3)δ(p4 − p3)]J (p3,q3,t

′|p2,q2,t
′′)

× i

�
[V (p2 − p1)δ(q2 − q1) − V (q2 − q1)δ(p2 − p1)]J (p1,q2,t

′′|p0,q0,0)ρ0(p0,q0). (29)

In order to do the calculation we use a Gaussian potential
barrier of width a, where

V (x) = V0
1√

2πa2
exp

{
− 1

2a2
x2

}
. (30)

The Gaussian momentum integrals in (29) can be evaluated
and the result after a long calculation is

ρ
(2)
t (p,p) = At (p,p) + [At (p,p)]∗ + Bt (p,p) + [Bt (p,p)]∗,

(31)
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where

At (p,p)

= − mV 2
0

2π�3p̄

1

t

∫ t

0
dt ′

∫ t ′

0
dt ′′

1√
KA

× exp

{
− a2

KA�2
(p − p̄)2 + i(t ′ − t ′′)

2KAm�
(p − p̄)2

}

× exp

{
−D(t ′ − t ′′)2(t ′ + 2t ′′)

3KAm2�2
p2 − D(t ′ − t ′′)3

3KAm2�2
p̄p

}

× exp

{
−D(t ′ − t ′′)2(3t − 2t ′ − t ′′)

3KAm2�2
p̄2

}
, (32)

and

Bt (p,p)

= mV 2
0

2π�3p̄

1

t

∫ t

0
dt ′

∫ t ′

0
dt ′′

1√
KB

× exp

{
− a2

KB�2
(p−p̄)2 + i(t ′−t ′′)

2KBm�
(p2 − p̄2)

}

× exp

{
−D(t ′ − t ′′)2(t ′ + 2t ′′)

3KBm2�2
p2 − D(t ′ − t ′′)3

3KBm2�2
p̄p

}

× exp

{
−D(t ′ − t ′′)2(3t − 2t ′ − t ′′)

3KBm2�2
p̄2

}
, (33)

with

KA = 4Da2

�2
t − 2iD

m�
(t ′ − t ′′)t

+ D2

3m2�2
(t ′ − t ′′)2[4(t ′ + 2t ′′)t − 3(t ′ + t ′′)2], (34)

and

KB = 1 + KA + 2iD

m�
(t ′ − t ′′)(t ′ + t ′′). (35)

We can calculate the equivalent result in standard quantum
mechanics. Working to the same order in perturbation the-
ory, standard quantum mechanics predicts that the reflected
component from the potential (30) is

∣∣ψ ref
∞ (p)

∣∣2 = V 2
0 m2

�2p2
exp

{
−4a2

�2
p2

}
|ψ−∞(−p)|2. (36)

This is valid for V0  p2/2m. For an initial pure state of
momentum p̄ the reflected state has momentum −p̄.

In the CSL calculation the reflected contribution is seen to
result from B and B∗ and agrees with Eq. (36) as D → 0.
The time integrals in Eqs. (32) and (33) can be performed
numerically and an example of ρt is shown in Fig. 2. For
the plots we choose units such that � = m = p̄ = 1 and set
other parameters to be t = 100, D = 0.0001, and a = 0.1. The
initial state corresponds to a δ function peak at p = 1. After the
scattering has taken place there are two peaks corresponding
to transmission and reflection. The graph shows the zeroth-
order contribution (pure transmission) and the second-order
contribution (scaled by the dimensionless quantity p̄4/m2V 2

0
in order to compare the contributions at the same scale). There
is a close but not exact agreement between the zeroth-order

units of

un
it

s 
of

FIG. 2. Probability distribution function in momentum for scat-
tering from a Gaussian potential barrier at zeroth order (dashed
line) and second order (solid line) in V (scaled by dividing by the
dimensionless perturbation parameter ε2 = m2V 2

0 /p̄4). Parameters
used in this example are D = 10−4 p̄4/m�, t = 100 m�/p̄2, and
a = 0.1 �/p̄. The momentum p is given in units of the incoming
momentum p̄; ρ(p,p) has units p̄−1.

transmitted peak and the negative of the transmitted peak at
second order. We find that the total contribution at second order
integrates over momentum to 0 as expected.

Let us now examine the reflected peak. From Eqs. (33),
(34), and (35) we can read off the time scales

tE = m�

p̄2
, (37)

t1 = m�

Dt
, (38)

t2 = m�

p̄
√

Dt
, (39)

where t is the total time taken for the packet to cross the barrier
and for now we ignore a. The time scale tE is the energy time. It
can be understood as the time for the packet to traverse its own
wavelength. This time is of most relevance to the formation
of the reflected packet and if the effects of CSL are to prevent
the formation of reflection they must act faster that tE [22].
However, if we impose the condition

p̄ � 
p, (40)

essentially saying that momentum diffusion of the free packet
over time t does not effect its integrity as the wave packet, then
we find that

t1 � t2 � tE. (41)

The unitary part of the propagator contributes to the time
integral in (33) on a time scale tE , whereas the CSL terms only
contribute at times ∼t2 � tE . This shows that in the regime
of momentum fluctuations small enough that the results make
physical sense, CSL has a negligible effect on the reflection
probability. The time scale t2 can be understood as a cut off
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on the time integration in (33). This implies that there is a
corresponding momentum spread in the reflected peak of order√

Dt , the same as we found for the transmitted peak. This
agrees with what we observe in Fig. 2.

Finally, let us consider the a-dependent term in (34). This
becomes significant when

�
2

a2
� Dt ∼ 
p. (42)

If this is the case then the first exponential term in Eq. (33)
along with the condition (40) imply that the reflected compo-
nent is already heavily suppressed by the barrier being smooth
rather than sharp.

In conclusion, the dominant effect of CSL during the pro-
cess of quantum mechanical refection is momentum diffusion.
The magnitude of the momentum diffusion is the same order
as that undergone by a free wave packet traveling for the same
amount of time t and satisfying CSL dynamics.

V. TWO NONINTERACTING IDENTICAL PARTICLES

So far we have looked at systems composed of only one
particle. Now we consider two particles. For simplicity we
assume that there is no conventional interaction between the
two particles and examine only the behavior resulting from
SL. We take the particles to be identical spinless bosons, each
initially in the same Gaussian state centered about x = 0 with
zero expected momentum.

The two-particle state is represented by

|ψ〉 =
∫

dx1dx2 ψ(x1,x2)
1√
2
â†(x1)â†(x2)|0〉, (43)

where 1 and 2 label the two particles. Since the two particles
are identical their joint wave function ψ(x1,x2) is symmetric
under interchange of coordinates. Improper position states are
given by |x1,x2〉 = â†(x1)â†(x2)|0〉/√2, and the coordinate
space representation of the density matrix is 〈x1,x2|ρ̂|y1,y2〉.

Following the same method outlined in Sec. II we arrive at
the two-particle master equation,

∂

∂t
ρt = i�

2m

(
∂2

∂x2
1

− ∂2

∂y2
1

)
ρt + i�

2m

(
∂2

∂x2
2

− ∂2

∂y2
2

)
ρt

− D

�2
[(x1 − y1)2 + (x1 − y2)2 + (x2 − y1)2

+ (x2 − y2)2 − (x1 − x2)2 − (y1 − y2)2]ρt ,

(44)

where we have used that xi − yi for i = 1,2, and x1 − x2 are
typically much smaller than 1/

√
α. Again, by this we mean that

ρt has zero density for xi − yi or x1 − x2 greater than 1/
√

α;
in other words, the particles are each sufficiently localized and
close together.

The propagator for Eq. (44) is readily shown to be given by

J (x1,y1,x2,y2,t |x ′
1,y

′
1,x

′
2,y

′
2,t

′) = J (x1,y1,t |x ′
1,y

′
1,t

′)J (x2,y2,t |x ′
2,y

′
2,t

′)

× exp

{
−D(t − t ′)

3�2
[(x1 − y2)2 + (x1 − y2)(x ′

1 − y ′
2) + (x ′

1 − y ′
2)2]

}

× exp

{
−D(t − t ′)

3�2
[(x2 − y1)2 + (x2 − y1)(x ′

2 − y ′
1) + (x ′

2 − y ′
1)2]

}

× exp

{
+D(t − t ′)

3�2
[(x1 − x2)2 + (x1 − x2)(x ′

1 − x ′
2) + (x ′

1 − x ′
2)2]

}

× exp

{
+D(t − t ′)

3�2
[(y1 − y2)2 + (y1 − y2)(y ′

1 − y ′
2) + (y ′

1 − y ′
2)2]

}
, (45)

where the result is expressed in terms of the one-particle
propagator given in (14). This result follows from the one-
particle result by inspection although it could, in principle, be
derived using path-integral methods (see, e.g., Refs. [10,11]
for use of path-integral methods for evaluation of the density
matrix propagator).

The initial wave function is taken to be

ψ(x1,x2) = 1√
2πσ 2

exp

{
− 1

4σ 2
x2

1

}
exp

{
− 1

4σ 2
x2

2

}
, (46)

from which the initial density matrix follows

ρ0(x1,y1,x2,y2) = ψ(x1,x2)ψ∗(y1,y2). (47)

We suppose that this state results from trapping the two
particles in the same harmonic trap. Once the trapping potential
is turned off the particles are left to undergo the free particle
dynamics described by the CSL model. The joint probability

distribution for subsequently measuring the two particles in
positions x1 and x2 is given by

Pt (x1,x2) = ρt (x1,x1,x2,x2)

=
∫

dx ′
1dy ′

1dx ′
2dy ′

2J (x1,x1,x2,x2,t |x ′
1,y

′
1,x

′
2,y

′
2,0)

× ρ0(x ′
1,y

′
1,x

′
2,y

′
2). (48)

All the Gaussian integrals are straightforward to perform.
The result is simplest when expressed in term of the
variables

X = x1 + x2

2
and ξ = x1 − x2. (49)
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In terms of these variables the probability distribution function factorizes and we find

Pt (X,ξ ) = 1

2πσ 2L1/2
exp

{
− 1

σ 2L

(
�

2t2

4m2σ 4
+ 1

)
X2

}
exp

{
− 1

σ 2L

(
4Dt3

3m2σ 2
+ �

2t2

4m2σ 4
+ 1

)(
ξ

2

)2}
, (50)

where

L = D�
2t5

3m4σ 6
+ �

4t4

16m4σ 8
+ 4Dt3

3m2σ 2
+ �

2t2

2m2σ 4
+ 1. (51)

The interesting feature of (50) is that the spread of the
distribution of X is different from the spread of the distribution
of ξ/2. If the particles were undergoing SL independently, each
evolving according to Eq. (12) we would find that X and ξ/2
have the same distribution at all times. In fact, they would
each have a Gaussian distribution with variance σ 2K/2 [see
Eq. (19)]. This is also the case for standard quantum mechanics
where D = 0.

The standard deviations of X and ξ/2 are

σX = σ

√
L

2

(
�2t2

4m2σ 4
+ 1

)−1

, (52)

σξ/2 = σ

√
L

2

(
4Dt3

3m2σ 2
+ �2t2

4m2σ 4
+ 1

)−1

. (53)

The behavior of these standard deviations with time is shown
in Fig. 3. Units are chosen such that � = m = σ = 1 and the
parameter D is set to 0.1. The initial standard deviation is
1/

√
2 in these units. This grows more rapidly with time for

X than for ξ/2. We can read off the long-time behavior of
the standard deviation from (51), (52), and (53). We find that
σξ/2 ∝ t and σX ∝ t3/2.

If the interactions between particles can be kept to a
minimum (or quantified precisely), we can imagine that this
effect could be measured by releasing the particles from the

units of

FIG. 3. Standard deviation in X = (x1 + x2)/2 and ξ/2 =
(x1 − x2)/2 with time for two particles released from a harmonic
trap. The diffusion parameter D = 0.1 in units �

3/mσ 4; time is given
in units mσ 2/�.

ground state in a harmonic trap, then allowing the particles to
move freely in one dimension before measuring their positions
on a device or screen below the trap. This should be performed
repeatedly in order to build up a joint probability distribution
function for the locations of the two particles and compared
with (50).

Figure 4 shows the point at which σX is 10% greater than
σξ/2 in order to give an idea of the scales of time, trap size, and
particle mass necessary to observe this effect. We have defined
the mass m in units of nucleon masses n, i.e., m = nm0, and
we assume that the combination λα takes the GRW value of
10−2 m−2 s−1. For example, consider two particles, each of
108 nucleon masses, in a trap of width 10−8 m. We find from
Fig. 4 that if the particles are released and left for 10 s before
having their positions measured, the standard deviation in X

is of order 10% larger than the standard deviation in ξ/2 using
the GRW parameters. Note that for a given value of σ there
is a lower bound in time at which the effect is seen at 10%,
irrespective of the mass of the particles. The final observed
values of σX and σξ/2 will be of order or greater than σ .

The particles do not need to be identical. Provided that the
operator N̂ (x) in Eq. (3) is replaced by the total matter density
operator

M̂(x) =
∑

k

mk

m0
N̂k(x), (54)

FIG. 4. Scales of time, trap size, and particle mass necessary for
observation. For a range of different trap sizes σ , we show the mass
of each of the two particles in nucleon masses, n, versus the time in
seconds following their release from the traps after which σX is 10%
greater than σξ/2.
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where k denotes different particle species, the result is the
same. [Equation (50) will only apply when the two particles
have the same mass m.] Also, we get the same result for
the behavior of σX and σξ/2 if the two particles are in two
different traps provided that (a) they are separated by a distance
less than 1/

√
α and (b) the individual distributions of each

particle do not end up overlapping (since this results in a more
complicated result involving interference). From a practical
point of view this could provide a way to eliminate particle
interactions.

The physical reason for this effect is that the diffusions
undergone by each particle are correlated by the way the
localization mechanism works on the total number density
state rather than individually on each particle. This prevents
the particles from spreading too far apart even though the
system as a whole will diffuse.

We also note that tracing out one of the two particles in
(50) results in the remaining particle behaving precisely as
described by the one-particle propagator (14).

VI. DISCUSSION

We have demonstrated the use of the density matrix
propagator as a way of solving the CSL model in a range
of experimental situations in the case where the localiza-
tion length scale can be regarded as large. The technique
involves constructing solutions by evolving an initial den-
sity matrix according to Eq. (2) and its generalizations
to include more particles. Interactions, such as those with
a classical potential, can be added perturbatively in a
standard way.

The first situation that we considered was the two-slit
experiment. We demonstrated that the interference pattern
predicted by standard quantum theory becomes gradually less
visible as we either increase the mass of the particle, increase

the slit separation, or increase the slit widths. In particular,
increasing the mass has the joint effect of increasing the rate
of localization through Eq. (7), and increasing the time taken
for the two wave packets to reach a state of overlap (20), thus
allowing more time for SL to take effect.

The second example made use of perturbation theory to
examine the process of scattering of a particle from a classical
potential barrier. The potential height was assumed to be small
and treated perturbatively to second order. The result was that
there was no significant change in the probability of reflection.
The dominant effect of SL was to cause momentum diffusion.
The amount of diffusion for the reflected peak was of the same
order of magnitude as that of the transmitted peak which is
dominated by a zeroth-order contribution.

The final example was to consider the CSL evolution of
two noninteracting particles. To make the example concrete,
we chose the two particles to be initially located in the same
trap with the same initial wave function. Once the trap is
switched off, the two particles evolve freely. However, their
behavior is coupled by the CSL dynamics and this has the effect
of making it more likely that the particles will subsequently
be measured closer together than would be expected if
the particles dispersed independently. We quantified this in
the form of a joint probability distribution for the positions of
the two particles.

In general, we have demonstrated the use of the density
matrix propagator as a powerful tool for solving the CSL
model. The results derived are, in principle, experimentally
observable and offer tests of CSL against standard quantum
theory.
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