
PHYSICAL REVIEW A 89, 032712 (2014)

Relativistic convergent close-coupling calculation of inelastic scattering of electrons from cesium
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We present fully relativistic convergent close-coupling calculations of differential cross sections, spin-
asymmetries, and Stokes parameters for inelastic electron-cesium scattering at intermediate energies. Comparison
is made with the differential cross section and spin asymmetry measurements of Baum et al. [Phys. Rev. A 70,
012707 (2004)] and the Stokes parameter measurements of Slaughter et al. [Phys. Rev. A 75, 062717 (2007)].
Comparison is also made with previous semirelativistic and nonrelativistic theories. With a relatively high atomic
number for cesium (Z = 55) we find surprisingly excellent agreement between the relativistic, semirelativistic,
and nonrelativistic theories for most observables. The overall agreement with the measurements is very good,
with isolated discrepancies for some observables.
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I. INTRODUCTION

The extensive set of inelastic electron-Cs spin asymmetry
measurements by Baum et al. [1] were performed to serve as a
benchmark for scattering theories. Hitherto, only the semirela-
tivistic R-matrix and nonrelativistic convergent close-coupling
methods described in Ref. [1] have been applied to inelastic
electron-Cs scattering for comparison with the measurements.
With a significantly high atomic number (Z = 55) for Cs, there
is motivation for a fully relativistic approach. Of particular
interest are the results for the “relativistic” spin asymmetries
A1 and A2 which, according to the analysis of Andersen
and Bartschat [2], are identically zero in a nonrelativistic
calculation. A1 is obtained for unpolarized electrons scattered
from a spin-polarized target, and A2 is obtained for polarized
electrons scattered from unpolarized targets. The exchange
asymmetry Ann on the other hand is nonzero in nonrelativistic
calculations. This measures the relative difference between
differential cross sections for parallel and antiparallel orienta-
tion of projectile and target spin polarizations. In addition to
spin asymmetries, the measurement of Stokes parameters also
provide a sensitive test of scattering theories because they pro-
vide information on both the magnitude and phase of scattering
amplitudes [3,4].

The relativistic convergent close-coupling (RCCC) method
has been applied to both elastic and inelastic electron scattering
from a range of heavy quasi one- and two-electron atomic tar-
gets [5–9] and is particularly suited to calculating spin-related
observables such as spin asymmetries and Stokes parameters.
The method is based on employing the Dirac equation for both
the target and projectile and therefore spin is accounted for in
an entirely ab initio manner. Furthermore, the unitarity of the
close coupling formalism ensures that coupling between elas-
tic and inelastic channels is accurately accounted for within the
formalism.

The RCCC method has already been applied to elastic e-Cs
scattering [10,11]. The same model is applied here to calculate
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inelastic (6s) 2S1/2 → (6p) 2P1/2 and (6s) 2S1/2 → (6p) 2P3/2

scattering observables.

II. METHOD

Comprehensive details of the RCCC method for both quasi
one- and two-electron targets are given in Ref. [12] and
the details of the method for electron scattering on a Cs
target are described in Ref. [11]. Briefly, the cesium atom
is modeled as one active valence electron above an inert Xe
Dirac-Fock core. The Xe Dirac–Fock core orbitals are obtained
using the GRASP package [13]. For the valence electron, a
set of one-electron orbitals is obtained by diagonalization of
the Cs quasi one-electron Dirac–Coulomb Hamiltonian in a
relativistic (Sturmian) L-spinor basis [14] with an exponential
falloff λ = 3.0. A phenomenological one-electron polarization
potential was used to improve the accuracy of the calculated
cesium wave functions [15,16]; this allows us to take into
account more accurately the effect of closed inert shells on the
active electron. The polarized-orbital method of McEachran
et al. [17] was used to produce the polarization potential
from the core orbitals. Our Cs target model consists of 75
states for the active electron: 6s–16s, 6pj –16pj , 5dj –15dj ,
and 4fj –13fj (j = l ± 1/2), comprising 27 bound states
and 48 continuum states. The energy levels of the first 10
states used in the calculations are listed in Table I, and
the oscillator strengths for the (6s) 2S1/2 → (6p) 2P1/2 and
(6s) 2S1/2 → (6p) 2P3/2 resonance transitions are listed in
Table II. Our target structure is sufficiently accurate for the
purpose of facilitating a scattering calculation that includes
a large number of continuum states. More accurate target-
structure calculations are available for Cs [18]; however, these
do not model the continuum sufficiently accurately for a
comprehensive calculation of electron scattering. The capacity
of the RCCC method to model the continuum accurately for a
large scale scattering calculation is offset by a reduction in the
accuracy of the target structure.

For the scattering calculation, the generated target states
are used to expand the total wave function of the electron-Cs
scattering system and formulate a set of relativistic Lippmann–
Schwinger equations for the T -matrix elements. In this latter
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step, the relativistic Lippmann–Schwinger equations for the T -matrix elements have the following partial wave form:

T �J
f i (kf κf ,kiκi) = V �J

f i (kf κf ,kiκi) +
∑

n

∑
κ

∑∫
dk

V �J
f n (kf κf ,kκ)T �J

ni (kκ,kiκi)

E − εN
n − εk′ + i0

. (1)

The notation in Eq. (1), the matrix elements, and the method of solution using a hybrid OpenMP-MPI parallelization suitable for
high performance supercomputing architectures are given in Ref. [12]. The T -matrix elements obtained from solution of Eq. (1)
are used to determine the scattering amplitudes
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where mj = mi + μi − mf and Mf = mj − μf . The phase ηκ = σκ + δκ consists of the Dirac–Coulomb phase shift σκ and the
distorted-wave phase shift δκ . The Dirac–Coulomb phase σκ is zero for the case of scattering from a neutral target such as Cs.

The scattering amplitudes in turn are used to calculate observables of interest. The spin-asymmetry parameters Ai can be
expressed in terms of differential cross sections in the following way [20]:
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where the magnetic sublevel differential cross section is defined as

q (miμi) = (2π )4 kf

ki

εf εi

c4

∑
μf mf

∣∣Fμf μi

mf mi
(θ )

∣∣2
, (6)

with

qu(θ ) = dσ

d�
= 1

4

[
q

(
1

2
, − 1

2

)
+ q

(
−1

2
,
1

2

)
+ q

(
1

2
,
1

2

)
+ q

(
−1

2
, − 1

2

)]
. (7)

The calculation of the Stokes parameters P1, P2, P3, and P +
from the scattering amplitudes is done with the aid of the
density matrix formalism [21,22]. The appendix in Ref. [6]
contains an explicit derivation.

The spin asymmetries A1 and A2 for optically allowed
transitions can exhibit anomalous oscillatory behavior if insuf-

TABLE I. Energy levels of the first 10 Cs states calculated by
diagonalizing the target in the RCCC method. Experiment levels
listed by NIST [19] are also shown.

Configuration RCCC (eV) Experiment (eV)

(6s) 2S1/2 0.000 0.000
(6p) 2P1/2 1.384 1.386
(6p) 2P3/2 1.449 1.455
(5d) 2D3/2 1.628 1.798
(5d) 2D5/2 1.633 1.810
(7s) 2S1/2 2.299 2.298
(7p) 2P1/2 2.679 2.699
(7p) 2P3/2 2.719 2.721
(6d) 2D3/2 2.758 2.800
(6d) 2D5/2 2.761 2.805
Ionization limit 3.893 3.894

ficient partial waves are used in the calculation. Therefore 30
partial waves were run at each energy and then extrapolation to
180 partial waves was performed with a geometric progression
method applied to the T -matrix elements.

III. RESULTS

The experiment of Baum et al. [1] covered a considerable
range of electron-Cs impact energies between 5 and 25 eV.
The measurements were carried out with two different settings
for the energy resolution of the scattered electrons; namely,
�EFWHM = 0.3 eV for resolving the 6p- from the 5d-state
excitation and with �EFWHM = 0.7 eV for giving a combined
signal of the unresolved 6p and 5d excitation. The electron-
impact energies at 7, 8, 9, 10, and 12 eV could resolve the

TABLE II. Oscillator strengths of the Cs ground state compared
to experimental values listed by NIST [19].

Oscillator strength
Transition RCCC Expt.

(6s) 2S1/2 → (6p) 2P1/2 0.398 0.344
(6s) 2S1/2 → (6p) 2P3/2 0.819 0.714
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6p- from the 5d-state excitation and therefore we present
spin symmetries for the 6p- and 5d-state excitations at
these energies. The detector could not resolve the individual
6p1/2,6p3/2 fine structure levels nor the individual 5d3/2,5d5/2

fine structure levels. Therefore it is necessary to take a
combination of the cross sections and spin asymmetries as

follows:

qp
u = q

p1/2
u + q

p3/2
u , (8)
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, (9)
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FIG. 1. (Color online) (6s) 2S1/2 → (6p) 2P1/2,3/2. Measurements are due to Baum et al. [1]. Other theories shown are a semirelativistic
Breit–Pauli R-matrix method and the nonrelativistic convergent close-coupling method, also described in Ref. [1]. The differential cross
sections are given in atomic units (a.u.) and the spin asymmetries are dimensionless.
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Figure 1 illustrates the the electron-impact excitation
(6s) 2S1/2 → (6p) 2P1/2,3/2 differential cross sections and spin
asymmetries obtained with Eqs. (8) and (9), respectively,
for electron energies 7, 8, 9, 10, and 12 eV. Compari-
son is made with a semirelativistic R matrix with pseu-
dostates method (RMPS) and the nonrelativistic convergent
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FIG. 2. (Color online) (6s) 2S1/2 → (5d) 2D3/2,5/2. Measurements are due to Baum et al. [1]. Other theories shown are a semirelativistic
Breit–Pauli R-matrix method and the nonrelativistic convergent close-coupling method, also described in Ref. [1]. The differential cross
sections are given in atomic units (a.u.) and the spin asymmetries are dimensionless.
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close-coupling (CCC) method [1], together with the measure-
ments of Baum et al. [1]. Figure 2 illustrates the corresponding
information for the (6s) 2S1/2 → (5d) 2D3/2,5/2 transitions,
employing Eqs. (10) and (11).

In general there is good agreement between the RCCC
and RMPS theories across all observables in both figures.
The nonrelativistic CCC method gives identically zero for
A1 and A2 and therefore the CCC results are not shown for
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FIG. 3. (Color online) 7 eV Stokes (6s) 2S1/2 → (6p) 2P3/2. Measurements are due to Slaughter et al. [23]. Note that the measurements
pertain to superelastic scattering on the (6p) 2P3/2 state where the incident energy of 5.5 eV is equivalent to 7.0 eV for the corresponding
inelastic (6s) 2S1/2 → (6p) 2P3/2 transition. Other theories shown are a semirelativistic Breit–Pauli R-matrix method and the nonrelativistic
convergent close-coupling method, also described in Ref. [23]. The Stokes parameters are dimensionless.
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these observables. For the nonzero CCC observables, there is
excellent agreement with the RCCC theory. In Figs. 1 and 2
the RCCC and CCC results for the differential cross section
and Ann are very close to each other and the lines in the figures

are practically on top of each other across a wide range of
angles for these observables.

While the theories are consistent with each other, the
agreement between the theories and the measurements is
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FIG. 4. (Color online) 15 eV Stokes (6s) 2S1/2 → (6p) 2P3/2. Measurements are due to Slaugher et al. [23]. Note that the measurements
pertain to superelastic scattering on the (6p) 2P3/2 state where the incident energy of 13.5 eV is equivalent to 15.0 eV for the corresponding
inelastic (6s) 2S1/2 → (6p) 2P3/2 transition. Other theories shown are a semirelativistic Breit–Pauli R-matrix method and the nonrelativistic
convergent close-coupling method, also described in Ref. [23]. The Stokes parameters are dimensionless.
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varied. Along the bottom two rows in each figure, the
agreement between theory and experiment for Ann and A2 is
in general very good. For the spin asymmetry A1, on the other
hand, the agreement only holds in Fig. 2 at 7, 8, 9, and 10 eV.
Similarly for the differential cross sections: while the theories
are in agreement with each other, there are discrepancies
between theory and experiment in Fig. 1 at 7, 9, and 10 eV,
and in Fig. 2 at 7, 8, 9, and 10 eV. Given the agreement
between rather diverse theories, and the internal checking
of convergence, we are unable to explain the origin of the
identified discrepancies. An independent experiment to repeat
the measurements could provide a further consistency check.

In Figs. 3 and 4 we present Stokes parameters at 7 and 15 eV,
respectively, for comparison with the superelastic measure-
ments of Slaughter et al. [23] for the (6s) 2S1/2 → (6p) 2P3/2

transition. The RCCC fine-structure-resolved results for P1

and P2 had to be divided by 0.6 [24] in order to be able
to compare with the presented results in Slaughter et al.
[23] for an S → P transition. The 7 eV Stokes parameters
illustrated in Fig. 3 indicate that there is excellent agreement
between the three theories and also with the measurements.
In Fig. 4 there is excellent agreement between the RCCC and
CCC results and the measurements. The RMPS results are in
also in agreement, except some of the RMPS minima are too
deep.

IV. CONCLUSION

We have presented a range of RCCC results in order to
provide comparison with the inelastic electron-Cs scattering
experiments of Baum et al. [1] and Slaughter et al. [23].
We also compared the fully relativistic RCCC results with
the previous semirelativistic RMPS and nonrelativistic CCC
calculations. In general, there is excellent agreement among
the three theories. Agreement between the RCCC results and
the measurements is excellent for the Stokes parameters,
and spin asymmetries Ann and A2. For the spin asymmetry
A1, and the differential cross sections, some discrepancies
exist at certain energies between the RCCC results and the
measurements. It is interesting to highlight that Cs, with Z =
55, is modeled very well with the nonrelativistic CCC method
for inelastic electron scattering differential cross sections, Ann

and Stokes parameters; only spin asymmetries A1 and A2 are
identically zero in the nonrelativistic formalism.
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