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Parity-nonconservation effect in the dielectronic recombination of polarized
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We investigate the parity nonconservation (PNC) effect in the dielectronic recombination of a polarized electron
with a heavy He-like ion into doubly excited [(1s2p1/2)0nκ]1/2 and [(1s2s)0nκ]1/2 states of a Li-like ion. We
determine the nuclear charge number Z for which these opposite-parity levels are almost crossing and therefore
the PNC effect will be significantly enhanced. Calculations are performed for quantum numbers n � 4 and
κ = ±1.
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I. INTRODUCTION

Investigations of the parity-nonconservation (PNC) effects
in atoms play a very important role for tests of the electroweak
sector of the standard model (SM) in the low-energy regime
[1–3]. In particular, the atomic experiments, being very sensi-
tive to extensions of the standard model that predict an extra
Z boson, can set a stronger restriction on the mass of the extra
Z boson compared to the high-energy experiments [3]. The
unprecedented experimental precision for the PNC amplitude
was obtained in 133Cs measurements [4,5] and, together with
recent progress in QED and atomic structure calculations (see,
e.g., Refs. [6–8] and references therein), provided the most
accurate to date test of the SM with atomic systems. From the
theoretical side, further progress in studying the PNC effect
with neutral atoms is strongly limited by the uncertainties
of the electron-correlation contributions. In contrast to that,
in heavy, highly charged ions the correlation effects, being
suppressed by a factor 1/Z, can be calculated by perturba-
tion theory up to the required precision. This gives good
prospects for studying the PNC effects with highly charged
ions.

Parity-nonconservation experiments with few-electron ions
were first proposed by Gorshkov and Labzowsky in Ref. [9],
where the fact that opposite-parity 2 1S0 and 2 3P1 states are
almost crossing for He-like ions with Z ∼ 6 and Z ∼ 29 was
utilized. Since that work, a number of authors considered
He-like ions as very promising systems for investigating the
PNC effects [10–20]. This is due to the fact that the PNC effects
in He-like ions can be significantly enhanced due to the near
degeneracy of some opposite-parity states. In a large number
of proposals [10,13,15–20] the level crossing between the 2 3P0

and 2 1S0 states of He-like ions was exploited. One may expect
that the addition of a highly excited electron would not greatly
change the energy difference between the corresponding levels
in Li-like ions. Indeed, the opposite-parity [(1s2s)0nκ]1/2

and [(1s2p1/2)0nκ]1/2 states can be still made to almost
cross by choosing the principal quantum number n and the
Dirac angular quantum number κ = (−1)j+l+1/2(j + 1/2). In
this work we present such quasidegenerate levels of heavy

Li-like ions and propose a scheme for observing the PNC
effect in the dielectronic recombination (DR) of free electrons
with He-like ions into these doubly excited states of Li-like
ions.

In some previous proposals the dielectronic recombination
was considered as a convenient probe process, which can be
used to measure the parity violation effects. In Ref. [11],
Pindzola studied the PNC effect on the Auger-electron
emission from He-like uranium. The parity violation in the
dielectronic recombination of polarized electrons with H-
like ions at Z < 60 was discussed by Gribakin et al. in
Ref. [14]. In our previous work [19] we investigated the
PNC effect on the recombination of a polarized electron
with unpolarized H-like thorium (Z = 90) and gadolinium
(Z = 64) ions in the case of resonance with a doubly excited
state of the corresponding He-like ions. In the present work
we investigate the PNC effect in the process of the dielectronic
recombination of polarized electrons with heavy He-like ions
into the doubly excited [(1s2s)0nκ]1/2 and [(1s2p1/2)0nκ]1/2

states of Li-like ions. The energy of the incident electron is
considered to be tuned in resonance with one of these levels.
The case of a nonmonoenergetic incident electron beam is also
studied.

Throughout the paper relativistic units (� = c = 1) and the
Heaviside charge unit (α = e2/4π, e < 0) are used.

II. BASIC FORMALISM

We consider the process of the dielectronic recombination
of an electron having an asymptotic four-momentum pi =
(εi,pi) and polarization μi with a heavy He-like ion, being
originally in the ground (1s)2 state. As a result of this
nonradiative capture, one of the nearly degenerate opposite-
parity d1 or d2 states of the Li-like ion is formed. To simplify the
derivation of formulas, we assume that these levels decay via
the emission of a photon to some final state f . We suppose that
the incoming electron energy εi is chosen to get to resonance
with one of the doubly excited d1 or d2 states. The differential
cross section of the process under consideration is defined as
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where Edk
, �dk

, and Mdk
are the energy, the total width, and the

momentum projection of the dk state (k = 1,2), respectively,
Ei = E(1s)2 + εi is the total energy of the initial state of the
system, and vi is the velocity of the incident electron. The
outgoing photon γf is characterized by the energy ω and
the polarization εf . In addition, τγf ,f ;dk

is the amplitude of
the radiative transition from the dk state to the f state via the
emission of a photon and I is the operator of the interelectronic
interaction as defined in Ref. [22].

As mentioned above, for heavy few-electron ions the
interelectronic-interaction effects are suppressed by a factor
1/Z, compared to the interaction of the electrons with the
Coulomb field of the nucleus. Therefore, we can generally
consider the wave functions of our system in the independent-
electron approximation. With this approximation, the initial-
state wave function is given by

�piμi ,JM (x1,x2,x3) = AN

∑
P

(−1)PP
∑
m1m2

CJM
j1m1,j2m2

×ψn1κ1m1 (x1)ψn2κ2m2 (x2)ψpiμi
(x3),

(2)

where ψnκm(x) is the one-electron bound-state Dirac wave
function, ψpiμi

(x) is the incident electron wave function,
CJM

j1m1,j2m2
is the Clebsch-Gordan coefficient, (−1)P is the

parity of the permutation, P is the permutation operator, and
AN is the normalization factor. From the theoretical viewpoint,
it is convenient to formulate the electron capture in the ion rest
frame. In this frame we can adopt that the quantization axis

(z axis) is directed along the incoming electron momentum pi .
In this case the full expansion of the incoming electron wave
function is given by (see, e.g., Refs. [23,24])

ψpiμi
(x) = 1√

4π

1√
piεi

∑
κ

il exp(i�κ )

×√
2l + 1C

jμi

l0,1/2μi
ψεiκμi

(x), (3)

where �κ is the Coulomb phase shift and ψεiκμi
(x) is the

partial electron wave with the Dirac quantum number κ =
(−1)j+l+1/2(j + 1/2), determined by the angular momentum
j and the parity l.

Neglecting the weak interaction, we can write the wave
functions of the intermediate d and final f states as

�J (J ′)M (x1,x2,x3)

= AN

∑
P

(−1)PP
∑
M ′m3
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CJM
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To account for the weak interaction, the intermediate d1 and
d2 states should be considered with a small admixture of the
closest-lying opposite-parity d2 and d1 states, respectively.
Then the wave functions of the corresponding doubly excited
states modify as ∣∣�d1

〉 → ∣∣�d1

〉 + iξ
∣∣�d2

〉
, (5)

∣∣�d2
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∣∣�d1

〉
, (6)

where the admixing parameter iξ =
〈�d2 |

∑3
i=1 HW (i)|�d1〉/(Ed1 − Ed2 ) is determined by

the nuclear spin-independent effective Hamiltonian of the
weak interaction

HW = −(GF /
√

8)QWρN (r)γ5. (7)

Here QW ≈ −N + Z(1 − 4 sin2 θW ) denotes the weak charge
of the nucleus, GF is the Fermi constant, γ5 is the Dirac matrix,
and ρN is the nuclear weak-charge density (normalized to
unity). After substitution of the modified wave functions into
Eq. (1) and summing over all decay channels, one finds
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In this expression the terms of order ξ 2 are neglected. The first
and second terms are parity conserving, while the third and
fourth terms correspond to the parity-violating contributions
to the cross section. The third term originates from the weak
interaction in the dielectronic recombination process. The

parity violation in the decay process is described by the
fourth term. In the case of clearly resolved levels (�d1 ,�d2 

|Ed1 − Ed2 |), one can consider only the resonant term in
Eq. (1). For example, if the energy of the incident electron
is tuned to the d1 state, the total cross section takes the
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In the case when the energy spread of the electron beam
exceeds the energy spacing between the quasidegenerate
states, one should integrate Eq. (8) over the incident electron
energies. It can be performed analytically since the velocity vi

and the DR amplitudes weakly change within the interval of
the beam energy distribution. Thus, for the close-lying states,
one obtains
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where σμi
is the integrated cross section. When the energy

distribution in the beam exceeds the energy widths but is much
less than the energy distance between the quasidegenerate
levels, one should integrate Eq. (9). For instance, for a
nonmonoenergetic beam tuned to the d1 state we obtain
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III. RESULTS AND DISCUSSION

As mentioned above, the enhancement of the PNC effect
takes place for close-lying opposite-parity levels. In our
previous work [25] we found that for Li-like ions the near
degeneracy takes place for several doubly excited opposite-
parity [(1s2s)0nκ]1/2 and [(1s2p1/2)0nκ]1/2 states with 4 �
n � 7, κ = ±1, Z ∼ 60, and Z ∼ 92. The energy difference
has been evaluated as follows:

�E = E[(1s2p1/2)0nκ]1/2 − E[(1s2s)0nκ]1/2 = �E(He) + �E(ext),

(12)

where �E(He) = E(1s2p1/2)0 − E(1s2s)0 is the energy difference
of the corresponding levels in the He-like ion and �E(ext) =
E

(nκ)
(1s2p1/2)0

− E
(nκ)
(1s2s)0

is the difference of the one-photon ex-
change contributions, describing the interaction between the
external nκ electron and the inner-shell electrons. The highly
accurate values of �E(He), including all second-order two-
electron QED contributions, were taken from Ref. [26]. We
also have taken into account the mixing of the close-lying
(1s2sns)1/2 and (1s2p1/2np1/2)1/2 levels, as well as the
(1s2p1/2ns)1/2 and (1s2snp1/2)1/2 levels (see Ref. [25] for
details).

In the present work we consider the PNC effect in
the process of the dielectronic recombination into d1 =
[(1s2p1/2)0nκ]1/2 and d2 = [(1s2s)0nκ]1/2 states of Li-like
ions. First, let us denote the cross sections for positive
and negative helicities (spin projection onto the electron
momentum direction) of the incident electron by σ+ and σ−,
respectively. We also introduce designations for the cross
section without the PNC effect σ0 = (σ+ + σ−)/2 and the
PNC contribution σPNC = (σ+ − σ−)/2. Deviation of σPNC

from zero indicates the parity-violation effect. Finally, one
should determine the requirements on the luminosity L,
provided the PNC effect is measured to a relative accuracy η

[14,15],

L > L0 = σ+ + σ− + 2σb

(σ+ − σ−)2η2T
. (13)

Here σb is the background magnitude and T is the acquisition
time. In our calculations we neglect the background signal, set
T = 2 weeks, and η = 0.01. In the case of the nonmonoen-
ergetic incident electron beam the integrated cross sections
σ 0 = (σ+ + σ−)/2 and σ PNC = (σ+ − σ−)/2 should be used
instead of σ0 and σPNC. Here we denote the integrated cross
sections for positive and negative helicities of the incident
electron by σ+ and σ−, respectively.

In order to investigate whether or not the levels mixed
by the weak interaction are distinguished we introduce the
coefficient R = |Ed1 − Ed2 |/(�d1 + �d2 ). Evaluating the cross
section according to Eqs. (8) and (9), it was found that the
results became similar at R � 5. Thus, levels with R � 5 are
regarded as distinguishable.

In Tables I and II we present numerical results for the most
promising case of the resonant DR into the [(1s2p1/2)0nκ]1/2

state at n, κ , and Z, which provide the minimum values of

TABLE I. Cross section of the dielectronic recombination of a polarized electron with a He-like ion in the case of resolved levels (R � 5).
The electron energy is tuned in resonance with the [(1s2p1/2)0nκ]1/2 state. The parameters n, κ , and Z correspond to the minimal values
of luminosity L0, �E = E[(1s2p1/2)0nκ]1/2 − E[(1s2s)0nκ]1/2 is the energy difference, R is the coefficient indicating whether or not the states are
resolved, σ0 is the cross section without the PNC effect, σPNC is the parity-violating contribution, and �σ0 indicates the increase of the process
cross section related to the usage of Eq. (8) instead of Eq. (9).

Z nκ �E (eV) R εi (keV) L0 (cm−2 s−1) σ0 (b) �σ0 (%) σPNC (b)

88 7s 3.17(29) 19.3 84.76 1.1 × 1030 3.8 × 102 0.1 1.2 × 10−3

90 5s 4.13(47) 7.7 86.91 1.4 × 1030 2.8 × 102 0.9 9.1 × 10−4

6s 2.51(47) 7.9 88.36 5.3 × 1029 2.7 × 102 0.9 1.5 × 10−3

7s 1.75(47) 8.5 89.22 2.6 × 1029 2.6 × 102 0.8 2.0 × 10−3

92 5s 2.97(28) 5.0 91.43 5.1 × 1029 2.5 × 102 2.1 1.4 × 10−3

7s −1.60(28) 7.2 93.86 1.5 × 1029 2.2 × 102 1.1 −2.4 × 10−3
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TABLE II. Cross section of the dielectronic recombination of a polarized electron with He-like ion in the case of unresolved levels (R < 5).
The electron energy is tuned in resonance with the [(1s2p1/2)0nκ]1/2 state. The parameters n, κ , and Z correspond to the minimal value
of luminosity L0, �E = E[(1s2p1/2)0nκ]1/2 − E[(1s2s)0nκ]1/2 is the energy difference, R is the coefficient indicating whether or not the states are
resolved, σ and σ are the cross sections corresponding to the monoenergetic and nonmonoenergetic energy distribution of the incident electron
beam, respectively, σ0 is the cross section without the PNC effect, and σPNC is the parity violating contribution.

Z nκ �E (eV) R εi (keV) L0 (cm−2 s−1) σ0 (b) σPNC (b) σ 0 (b eV) σ PNC (b eV)

62 7s −0.103(64) 2.0 39.56 3.6 × 1029 1.4 × 103 −4.0 × 10−3 4.8 × 102 5.5 × 10−5

88 7p1/2 −2.46(29) 4.4 84.76 1.7 × 1030 2.8 × 101 −2.6 × 10−4 9.6 × 102 −7.0 × 10−6

90 6p1/2 −1.26(47) 1.1 88.37 1.0 × 1030 9.6 × 101 −6.2 × 10−4 1.6 × 103 −2.6 × 10−5

92 6s −1.07(28) 3.0 92.96 7.3 × 1028 2.5 × 102 −3.8 × 10−3 6.8 × 102 1.7 × 10−5

6p1/2 2.38(27) 2.0 92.96 1.3 × 1030 4.3 × 101 3.6 × 10−4 1.6 × 103 −1.8 × 10−5

7p1/2 2.38(28) 3.2 93.86 8.1 × 1029 2.8 × 101 3.8 × 10−4 1.0 × 103 −4.0 × 10−6

the luminosity L0. Table I corresponds to the case of resolved
opposite-parity states, whereas the case of unresolved states is
presented in Table II.

It is clearly seen from Table I that the R coefficient can be
applied in order to distinguish cases of resolved and unresolved
states. Indeed, at the border value (R = 5), σ0 increases only
by about 2% for the calculations utilizing Eq. (8) instead of
Eq. (9). For the other parameters n, κ , and Z listed in Table I
the growth of the cross section amounts to 1% or less.

According to Tables I and II the PNC effect seems to
be most promising for the dielectronic recombination of a
polarized electron with He-like uranium (Z = 92). When the
energy of the incident electron is tuned in resonance with the
[(1s2p1/2)06s]1/2 state, the ratio σPNC/σ0 equals −1.5 × 10−5.
After integration over εi it turns into σ PNC/σ 0 = 2.5 × 10−8.
Let us compare the obtained results with similar calculations
presented in Ref. [14]. In that work, the authors considered the
process of the dielectronic recombination into the (2s)2 and
(2s2p1/2)0 states for Z = 48, where the enhancement of the
parity-violating effect takes place due to the quasidegeneracy
of these levels. The PNC asymmetry of the process considered
in Ref. [14] amounted to 5 × 10−9, while for the process
considered in the present work it reaches 1.5 × 10−5. The
increase of the effect by more than three orders of magnitude
is caused by the fact that the admixing parameter ξ for Z = 48,
obtained in Ref. [14], equals 6.0 × 10−9, whereas for Li-like
uranium we get ξ = 4.0 × 10−6.

In Fig. 1, σPNC is displayed as a function of the energy of the
incident electron in the case of unresolved levels. As one can
see from this figure, the PNC cross section is mainly formed
by the parity-violation effect in the dielectronic recombination
process [third term in Eq. (8)]. Nevertheless, the contribution
from the subsequent radiative decay [fourth term in Eq. (8)]
slightly enhances σPNC for the energy of the incident electron
tuned in resonance with d2 state. Conversely, for the energy
tuned in resonance with the d1 state a small decrease of the PNC
contribution is observed. One can observe the energy of the
incident electron at which σPNC turns to zero. It approximately
corresponds to the energy just in between the quasidegenerate
d1 and d2 states.

The experiment suggested in our paper involves a stored
heavy ion beam intersecting with a beam of polarized electrons
in an electron target or cooler. The polarized electrons can be
produced with a semiconductor photocathode with circularly

polarized laser light [27]. They are electrostatically accelerated
to the energies of tens of keV that are required for the
experiment. The cooler with a photocathode was constructed,
for instance, for the TSR storage ring at the MPI-K Heidelberg.
Such coolers can in principle be made to produce polarized
electrons and they are now under consideration for the FAIR
facility and for the CRYRING at GSI, Darmstadt.

The high electron energy definition in the rest frame of
the ion is required to achieve the DR resonance. The electron
beam energy spread depends on the collision energy ε and
the transverse kT⊥ and the longitudinal kT|| temperatures
of the electron beam: �ε = √

(ln 2kT⊥)2 + 16 ln 2εkT|| [28].
The laser-produced beams of electrons are intrinsically cold
and can be further cooled using an adiabatic beam expansion
technique. Beams with a transverse temperature of 3.6 meV
and a longitudinal temperature of 38 μeV were produced in
electron cooler devices [29]. Accordingly, the energy spread of
a few eV at 90 keV can be experimentally achieved at present.
This means that the DR resonance structure will be integrated
out. To take full advantage of the enhancement of PNC in
dielectronic recombination the electron energy spread must be
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Ei − E[(1s2p1/2)0
7s]

1/2
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FIG. 1. The PNC cross sections of the dielectronic recombina-
tion into the [(1s2p1/2)07s]1/2 and [(1s2s)07s]1/2 states of Li-like
samarium (Z = 62). The difference Ei − E[(1s2p1/2)07s]1/2 determines
uniquely the energy of the incident electron. The solid line corre-
sponds to σPNC, the dashed line is the parity-violating contribution
from the dielectronic recombination, and the dotted line is the PNC
contribution from the decay process multiplied by a factor of 10.
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made smaller than 0.1 eV at 90 keV, which is nowadays not
possible. Therefore, further developments will be required to
produce an electron beam that is cold enough. In addition, the
ion beam momentum spread should be reduced below 10−6.
This, however, was demonstrated at the storage ring ESR,
albeit with a significant reduction of the beam intensity [30].

IV. CONCLUSION

In the present work we have considered the PNC effect on
the cross section of the dielectronic recombination into the
[(1s2p1/2)0nκ]1/2 and [(1s2s)0nκ]1/2 states of heavy Li-like
ions. The calculations have been performed for the parameters
n, κ , and Z, which provide the enhancement of the parity-
violation effect due to quasidegeneracy of the corresponding
levels. It has been found that at energies of incident electron
tuned in resonance with the [(1s2p1/2)0nκ]1/2 state the PNC
effect becomes most pronounced. The estimation of the PNC
asymmetry for the most promising case of [(1s2p1/2)06s]1/2

and [(1s2s)06s]1/2 states for Z = 92 has given −1.5 × 10−5,

which is by several orders of magnitude bigger than the result
obtained for a similar process in Ref. [14].
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