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We present the development of a real-space and projected congruent transformation method for treating electron
correlation in chemical systems. This method uses an explicitly correlated function for performing congruent
transformation on the electronic Hamiltonian. As a result of this transformation, the electronic Hamiltonian
is transformed into a sum of two-, three-, four-, five-, and six-particle operators. Efficient computational
implementation of these many-particle operators continues to be challenging for application of the congruent
transformation approach for many-electron systems. In this work, we present a projected congruent transformed
Hamiltonian (PCTH) approach to avoid computation of integrals involving operators that couple more than two
particles. The projected congruent transformation becomes identical to the real-space congruent transformation
in the limit of infinite basis size. However, for practical calculations, the projection is always performed on a
finite-dimensional space. We show that after representing the contributing expressions of the PCTH in terms
of diagrams, it is possible to identify a subset of diagrams that can be summed up to infinite order. This
technique, denoted as partial infinite-order summation (PIOS), partly alleviates the limitation from the finite-basis
representation of the PCTH method. The PCTH and PCTH-PIOS methods were applied to an isoelectronic
series of 10-electron systems (Ne,HF,H2O,NH3,CH4) and results were compared with configuration interaction
(CISD) calculations. The results indicate that the PCTH-PIOS method can treat electron-electron correlations
while avoiding explicit construction and diagonalization of the Hamiltonian matrix.
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I. INTRODUCTION

The form of the many-electron wave function at small
electron-electron separation plays an important role in the
accurate determination of the ground-state energy. The re-
lationship between the Coulomb singularity in the electronic
Hamiltonian and form of the many-electron wave function at
the electron-electron coalescence point is well known and is
given by the Kato cusp condition [1–4]. Explicitly correlated
methods improve the form of the many-electron wave function
near the electron-electron coalescence point by incorporating
explicit r12 dependence in the form of the wave function.
The inclusion of the r12 term was shown to be indispensable
for high-precision calculations of ground- and excited-state
energies in atoms and molecules and has been implemented
in various methods including quantum Monte Carlo (QMC)
[2–9], perturbation theory (R12-MP2) [10–13], coupled-
cluster (R12-CC) [14–21], configuration interaction, transcor-
related Hamiltonian [22–28], geminal augmented MCSCF
[29], the correlation operator approach [30], and in explicitly
correlated Gaussians [31–33]. One of the main challenges in
efficient implementation of explicitly correlated methods is
the analytical evaluation of integrals involving the r12 term.
The electronic Hamiltonian has only one- and two-particle
operators; however, because of the r12 term in the wave
function, integrals involving the Hamiltonian and explicitly
correlated wave functions often involve three-particle and
higher terms. The resolution of identity (RI) approach has been
successfully applied for efficient evaluation of many-particle
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integrals and has been widely adopted for implementing faster,
more efficient R12-MP2 [34–38] and R12-CC methods [39].

In this article, we introduce the projected version of the ex-
plicitly correlated congruent transformed Hamiltonian (CTH)
method [40]. In the CTH method, an explicitly correlated
function is used to perform congruent transformation [41,42]
on the electronic Hamiltonian. This approach is similar to
the transcorrelated Hamiltonian method where a similarity
transformation is performed on the Hamiltonian [22,23].
However, one of the advantages of the CTH method is that
the transformation preserves the Hermitian property of the
Hamiltonian. Consequently, the transformed Hamiltonian is
amenable to standard variational procedures for obtaining the
ground-state energy [40]. The transformed Hamiltonian in-
volves up to six-particle operators and efficient implementation
of these many-particle operators is crucial for application of the
CTH method. To address the limitations of the CTH method for
many-electron systems, we have developed the projected con-
gruent transformed Hamiltonian (PCTH) method. The PCTH
method is formulated by projecting the CT Hamiltonian on a
finite-dimensional space spanned by N -particle orthonormal
basis functions. The PCTH method is identical to the CTH
method in the limit of an infinite number of basis functions;
however, practical implementation of the PCTH is always
approximate because of the truncation of the basis. Here,
we present a diagrammatic summation approach to include
infinite-order contributions to the finite-basis implementation
of the PCTH method. We have used diagrammatic notation
that is commonly used in the perturbation theory and coupled-
cluster equations to represent the terms in the PCTH expansion
[43]. After that, we show that certain classes of diagrams can
be summed up to infinite order and the result can be expressed
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as an analytical expression of a renormalized two-particle
operator. Because the method in its current form is applicable
only to selected (as opposed to all) classes of diagrams,
it is denoted as a partial infinite-order summation (PIOS)
method. The details of the derivation of the PIOS method
are presented in the following section. The PIOS method was
used for calculating the ground-state energy of isoelectronic
10-electron systems (Ne,HF,H2O,NH3,CH4) and the results
are presented in Sec. III.

II. THEORY AND COMPUTATIONAL DETAILS

A. Real-space formulation of congruent
transformed Hamiltonian

The first step in the construction of the CTH is to define an
explicitly correlated two-body operator as shown below:

G(1, . . . ,N) =
N∑

i<j

g(rij ) =
N∑

i<j

g(i,j ), (1)

where N is the number of electrons in the system. The
derivation presented here is independent of the choice of the
two-body explicitly correlated function g(1,2). The specific
form used in the present calculation will be discussed in
Sec. II D. The congruent transformed operators are defined
as

H̃ = G†HG, (2)

S̃ = G†1G, (3)

where the transformed Hamiltonian contains up to six-particle
operators [40,44]. For a given trial wave function �T, the CTH
energy is defined as

E[�T,G] = 〈�T|H̃ |�T〉
〈�T|S̃|�T〉 . (4)

The congruent transformation preserves the Hermitian prop-
erty of the electronic Hamiltonian and by construction the CTH
energy is an upper bound to the exact ground-state energy

Eexact � min
�T,G

E[�T,G] � min
�T

E[�T,G = 1]. (5)

As a consequence of the above relationship, the CTH energy
is amenable to standard variational procedure and can be
minimized with respect to both the trial wave function �T

and the explicitly correlated function G. In the limit of
G = 1, the CTH energy is equivalent to the expectation value
of the electronic Hamiltonian with respect to the trial wave
function �T. The congruent transformed Hamiltonian can
be expressed as the sum of two-, three-, four-, five-, and
six-particle operators as shown below:

H̃ =
⎡
⎣∑

i<j

g(i,j )

⎤
⎦

⎡
⎣∑

i

hi +
∑
i<j

r−1
ij

⎤
⎦

⎡
⎣∑

i<j

g(i,j )

⎤
⎦ (6)

= �2 + �3 + �4 + �5 + �6, (7)

where the m-particle operator �m(1, . . . ,N) for the N electron
system is defined as

�m = 1

m!

N∑
i1 �=i2···�=im

ωm(i1, . . . ,im), (8)

and the exact expression for ωm is given in Ref. [45]. It
is important to note that ωm is constructed such that it is
completely symmetric with respect to all the m electronic
coordinates as shown by the following equation:

Pkωm(1, . . . ,m) = ωm(1, . . . ,m). (9)

In the above equation, Pk is a permutation operator of the
symmetric Sm group with m symbols. The matrix element of
the CTH with Slater determinant �0 can be expressed as the
sum of the matrix elements of the individual �i operators:

〈�0|H̃ |�0〉 = 〈�0|�2|�0〉 + · · · + 〈�0|�6|�0〉. (10)

The individual component can be calculated from integrals
involving only the occupied molecular orbitals

〈�0|�m|�0〉

= 1

m!

Nocc∑
i1,...,in

〈i1 . . . im|ωm

m!∑
Pk∈Sm

(−1)pkPk|i1 . . . im〉, (11)

where Pk is the permutation operator of the symmetry group
Sm and pk is the parity associated with the permutation. We
introduce the following compact notation for the antisym-
metrized sum:

〈�0|�m|�0〉 = 1

m!

Nocc∑
i1,...,in

〈i1 . . . im|ωm|i1 . . . im〉A, (12)

where the subscript A denotes that the matrix element is an-
tisymmetrized. The matrix element of the overlap 〈�0|S̃|�0〉
can be obtained using a similar procedure. The operator S̃ is
written as

〈�0|S̃|�0〉 = 〈�0|�S
2 |�0〉 + · · · + 〈�0|�S

4 |�0〉. (13)

The superscript in the �S
m denotes that the operator is related

to the transformed overlap operator. The total energy can be
written as

ECTH = 〈�0|�2|�0〉 + · · · + 〈�0|�6|�0〉
〈�0|�S

2 |�0〉 + · · · + 〈�0|�S
4 |�0〉

. (14)

The main bottleneck in application of the above energy
expression is that the computational cost is dominated by
the �5 and �6 terms. Therefore, it is desirable to in-
troduce approximations to the above expression that will
reduce the computational effort of the CTH method. The
projected congruent transformed Hamiltonian (PCTH) is
one such approach and is described in the following
section.

B. Projected congruent transformed Hamiltonian

The correlation operator G can be expanded into a com-
plete set of Slater determinants. For the present derivation,
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we are only interested in application of the correlation
operator on the Hartree-Fock reference state �0 as shown
below:

G|�0〉 =
∞∑
k

〈�k|G|�0〉|�k〉. (15)

Because the correlation operator G is a two-particle operator,
the expansion in Eq. (15) can be substantially reduced by using
the Slater-Condon rule that G will only connect singly and
doubly excited determinants. Consequently, triples and higher
excited states are excluded from the expansion as shown in the
following equation:

G|�0〉 =
∞∑

k∈0,S,D

〈�k|G|�0〉|�k〉 (16)

= 〈�0|G|�0〉|�0〉 +
Nocc∑

i

∞∑
a>Nocc

〈
�a

i

∣∣G|�0〉
∣∣�a

i

〉 + 1

4

Nocc∑
ij

∞∑
ab>Nocc

〈
�ab

ij

∣∣G|�0〉
∣∣�ab

ij

〉
. (17)

In the above expression, we have used the following convention [43] for indexing the molecular orbitals. Occupied states are
labeled by i,j,k,l, . . . , and unoccupied states are labeled by a,b,c,d, . . . . States that can be both occupied and unoccupied
are labeled as p,q,r,s. For practical implementation, we are also interested in defining the finite-basis representation of the
correlation operator. This is denoted as G(M) and is defined as

G(M) = P (M)GP (M), (18)

where P (M) is the projector onto the M-dimensional subspace. The matrix element of G(M) between any two arbitrary Slater
determinants is given by the expression

〈
�abc...

ijk...

∣∣G(M)
∣∣�a′b′c′...

i ′j ′k′...
〉 =

{〈
�abc...

ijk...

∣∣G∣∣�a′b′c′...
i ′j ′k′...

〉
for max(ijk,abc,i ′j ′k′,a′b′c′ . . . ) � M,

0 for max(ijk,abc,i ′j ′k′,a′b′c′ . . . ) > M.
(19)

As seen from the above equation, G(M) coincides with the
correlation operator G only for finite basis. In the limit of a
complete basis, G(M) becomes identical to the G

G = lim
M→∞

G(M). (20)

Operation of G(M) on the reference state �0 is given by the
expression

G(M)|�0〉 = 〈�0|G|�0〉|�0〉 +
Nocc∑

i

M∑
a>Nocc

〈
�a

i

∣∣G|�0〉
∣∣�a

i

〉

+ 1

4

Nocc∑
ij

M∑
ab>Nocc

〈
�ab

ij

∣∣G|�0〉
∣∣�ab

ij

〉
, (21)

where explicit dependence on M is highlighted. To write
the above expression in a compact representation, we will
introduce the single- and double-excitation operators which
are defined in the following equations:

T0 = 〈�0|G|�0〉, (22)

T
(M)

1 =
Nocc∑

i

M∑
a>Nocc

〈
�a

i

∣∣G|�0〉X̂a
i , (23)

T
(M)

2 = 1

4

Nocc∑
ij

M∑
ab>Nocc

〈
�ab

ij

∣∣G|�0〉X̂ab
ij . (24)

These expressions can be simplified as

T0 = 1

2

∑
ij

〈ij |g|ij 〉A, (25)

T
(M)

1 =
Nocc∑
ij

M∑
a

〈ij |g|aj 〉AX̂a
i , (26)

T
(M)

2 = 1

4

Nocc∑
ij

M∑
ab

〈ij |g|ab〉AX̂ab
ij . (27)

Substituting T
(M)

1 and T
(M)

2 we get

〈�0|G(M)HG(M)|�0〉 = 〈�0|
(
T0 + T

(M)
1 + T

(M)
2

)†
× H

(
T0 + T

(M)
1 + T

(M)
2

)|�0〉.
(28)

The matrix elements involving T
(M)

0 as one of the components
can be obtained easily and are presented below:

〈�0|T †
0 HT0|�0〉 = 〈�0|G|�0〉〈�0|H |�0〉〈�0|G|�0〉 (29)

=
⎛
⎝1

2

∑
ij

〈ij |g|ij 〉A

⎞
⎠

2

×
⎛
⎝∑

i

〈i|h1|i〉 + 1

2

∑
ij

〈ij |r−1
12 |ij 〉A

⎞
⎠ ,

(30)
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+

g

h1

g

i a

k

j

j

c

g

r−1
ee

g

i

j

j

d kc

a

g

r−1
ee

g

a

j

j

c lk

i

〈0|T †
1 HT2|0〉 (D1) 〈0|T †

1 HT2|0〉 (D2) 〈0|T †
1 HT2|0〉 (D3)

+

g

g

h1
i

a

c

j

j

k

k

+

g

g

h1
a

i

k

j

j

l

l

g

a i
r−1

ee

c k
g

j

j

l

l

〈0|T †
1 HT1|0〉 (D4) 〈0|T †

1 HT1|0〉 (D5) 〈0|T †
1 HT1|0〉 (D6)

g

g

r−1
ee

i j

a b

c d

g

g

r−1
ee

a b

i j

k l

g

g

r−1
ee

i b

a j

c k

〈0|T †
2 HT2|0〉 (D7) 〈0|T †

2 HT2|0〉 (D8) 〈0|T †
2 HT2|0〉 (D9)

+

g

g

h1
i a j

b

c

+

g

g

h1
i a b

j

k

〈0|T †
2 HT2|0〉 (D10) 〈0|T †

2 HT2|0〉 (D11)

FIG. 1. Diagrams for the diagrammatic representation of a congruent transformed Hamiltonian.

〈�0|T †
0 HT

(M)
1 |�0〉 = 〈�0|G|�0〉〈�0|HT

(M)
1 |�0〉

= 0 (Brillouin’s theorem), (31)

〈�0|T †
0 HT

(M)
2 |�0〉

= 1

8

⎛
⎝∑

ij

〈ij |g|ij 〉A

⎞
⎠

⎛
⎝∑

ij

M∑
ab

〈ij |g|ab〉A〈ij |r−1
12 |ab〉A

⎞
⎠.

(32)

The analytical expressions of matrix elements
〈�0|T (M)†

1 HT
(M)

1 |�0〉, 〈�0|T (M)†
1 HT

(M)
2 |�0〉, and

〈�0|T (M)†
2 HT

(M)
2 |�0〉 that involve both the excitation

operators require more involved algebraic manipulation.
Efficient computer implementation of these expressions
are generally achieved using the α-β string representation
of the Slater determinant [46]. The analytical expression
of the matrix elements can be obtained by using the
generalized Wick’s theorem [43] and enumerating all possible
contractions. However, for the present derivation, we use
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the diagrammatic representation to write the resulting
expressions. The representative diagrams for the matrix
elements are shown in Fig. 1 and are summarized in the
following equations:

〈�0|T (M)†
1 HT

(M)
2 |�0〉 = D1 + D2 + D3 + · · · (33)

〈�0|T (M)†
1 HT

(M)
1 |�0〉 = D4 + D5 + D6 + · · · (34)

〈�0|T (M)†
2 HT

(M)
2 |�0〉 = D7 + D8 + D9 + D10 + D11 · · · .

(35)

The finite-basis representation of the CTH energy is given as

E
(M)
PCTH = 〈�0|G(M)†HG(M)|�0〉

〈�0|G(M)†G(M)|�0〉 . (36)

The finite-basis energy is related to the CTH energy by the
limiting condition

ECTH = limM→∞〈�0|G(M)†HG(M)|�0〉
limM→∞〈�0|G(M)†G(M)|�0〉 . (37)

C. Infinite-order summation of diagrams

In this section, we will develop the partial infinite-order
summation approach. The central ideal of this method is to
select a subset of diagrams from the 〈�0|G(M)HG(M)|�0〉 ex-
pansion and perform the M → ∞ limit analytically for those
diagrams. Because we are interested in infinite-order summa-
tion of selected diagrams (as opposed to all the diagrams) we
denote this technique as the partial infinite-order summation
(PIOS) method. For a compact representation, we label the set
of diagrams that will be used for the PIOS method by SPIOS.

One of the important issues associated with the PIOS
method is the selection diagrams in the set SPIOS. The success
of the PIOS method relies on the existence of the analytical
solution of the M → ∞ limit, therefore only sets of diagrams
whose infinite-order summation can be expressed analytically
should be considered forSPIOS. Moreover, even if the analytical
expression for the M → ∞ limit exists, the implementation
and evaluation of the expression may be computationally
demanding. Because of these reasons, the set of diagrams that
can be selected in SPIOS is limited.

For the present work, we focused on diagrams related to
the gr−1

ee g expression. The set SPIOS consisted of all closed
diagrams that connected matrix elements 〈ij |g| ∗ ∗〉A and 〈∗ ∗
|g|ij 〉A with 〈∗ ∗ |r−1

ee | ∗ ∗〉A, where the asterisks denote place
holders for particle and hole lines. Figures 2 and 3 list all
the diagrams that were included in the SPIOS set where {i,j}
represent hole lines and {p,q,r,s} can be either hole or particle
lines {↑,↓}

SPIOS = {D14, . . . ,D27}. (38)

In the next step the M → ∞ limit of the summation of all the
diagrams in set SPIOS were performed and the result is shown
in the following equation:

lim
M→∞

{D14 + · · · + D27}

=
∞∑

pqrs

〈ij |g|pq〉A〈pq|r−1
ee |rs〉A〈rs|g|ij 〉A, (39)

where the subscript A denotes that the matrix elements are
antisymmetric. Substituting the explicit expression of the
antisymmetrizer, we get

lim
M→∞

{D14 + · · · + D27}

=
∞∑

pqrs

〈ij |g(1 − P12)|pq〉〈pq|r−1
ee (1 − P12)|rs〉

× 〈rs|g(1 − P12)|ij 〉. (40)

Using the idempotent property of the antisymmetrizer,

(1 − P12)2 = 2(1 − P12), (41)

we can obtain the following expression:

lim
M→∞

{D14 + · · · + D27}

= 1

4

∞∑
pqrs

〈ij |g(1 − P12)|pq〉〈pq|(1 − P12)r−1
ee

× (1 − P12)|rs〉〈rs|(1 − P12)g(1 − P12)|ij 〉. (42)

The expression (1 − P12)|pq〉 represents a set of Slater deter-
minants for a two-electron system and satisfies the following
closure relationship:

1 = 1

4

∞∑
pq

(1 − P12)|pq〉〈pq|(1 − P12). (43)

Substituting the identity operator in Eq. (43) into Eq. (42),

lim
M→∞

{D14 + · · · + D27} = 4〈ij |gr−1
ee g(1 − P12)|ij 〉 (44)

= 4〈ij |gr−1
ee g|ij 〉A (45)

= 4D28, (46)

where the diagram D28 is shown in Fig. 4. The diagram D28 is
related to the expectation value of the following two-particle
operator:

�ee
2 =

∑
i<j

g(i,j )r−1
ij g(i,j ). (47)

Combining the results from Eqs. (46) and (47), we obtain

〈�0|�ee
2 |�0〉 = 〈�0|

∑
i<j

g(i,j )r−1
ij g(i,j )|�0〉 (48)

= 1

2
D28 (49)

= 1

8
lim

M→∞
{D14 + · · · + D27} (50)

= lim
M→∞

〈�0|�ee
2 |�0〉(M), (51)

where we have used the compact notation

〈�0|�ee
2 |�0〉(M) = 1

8 {D14 + · · · + D27}. (52)

The relationship expressed in Eq. (51) is one of the key results
of the PIOS derivation.

In addition to the gr−1
ee g term, the calculation of the PIOS

energy also requires diagrammatic summation of the overlap
term gg. The derivation for gg is identical to the derivation
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g

g

r−1
ee

m

m

n

n

k l

i j

g

g

r−1
ee

c

k l

i j

d
g

g

r−1
ee

m

m

k l

i j

d

〈ij|g|kl〉A〈kl|r−1
ee |mn〉A〈mn|g|ij〉A 〈ij|g|kl〉A〈kl|r−1

ee |cd〉A〈cd|g|ij〉A 〈ij|g|kl〉A〈kl|r−1
ee |md〉A〈md|g|ij〉A

(D12 () D13 () D14)

g

g

r−1
ee

k l

i j

n

n

c
g

r−1
ee

g
k

k

i j

m n

b
g

r−1
ee

g

i j

m n

l

l

a

〈ij|g|kl〉A〈kl|r−1
ee |cn〉A〈cn|g|ij〉A 〈ij|g|kb〉A〈kb|r−1

ee |mn〉A〈mn|g|ij〉A 〈ij|g|al〉A〈al|r−1
ee |mn〉A〈mn|g|ij〉A

(D15 () D16 () D17)

g

r−1
ee

g

a

i j

m n

b
r−1

ee

g

g

i

a b

c d

j
r−1

ee

g

g

i

k

k

b

m

m

d

j

〈ij|g|ab〉A〈ab|r−1
ee |mn〉A〈mn|g|ij〉A 〈ij|g|ab〉A〈ab|r−1

ee |cd〉A〈cd|g|ij〉A 〈ij|g|kb〉A〈kb|r−1
ee |md〉A〈md|g|ij〉A

(D18 () D19 () D20)

FIG. 2. Diagrams for partial infinite-order summation.

presented above for gr−1
ee g and is not presented here to avoid

repetition. Analogous to �ee
2 , we define the following terms

for the overlap operator �S
2:

〈�0|�S
2 |�0〉 = lim

M→∞
〈�0|�S

2 |�0〉(M), (53)

�S
2 =

∑
i<j

g(i,j )g(i,j ). (54)

Using the results from Eqs. (51) and (53), we define the PCTH-
PIOS energy expression as

EPCTH−PIOS = 〈�0|G(M)†HG(M)|�0〉 − 〈�0|�ee
2 |�0〉(M) + 〈�0|�ee

2 |�0〉
〈�0|G(M)†G(M)|�0〉 − 〈�0|�S

2 |�0〉(M) + 〈�0|�S
2 |�0〉

. (55)
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FIG. 3. More diagrams for partial infinite-order summation.

Equation (55) illustrates the conceptual structure of the
PIOS method. Starting with the finite-basis expression of the

gr−1
ee g

i

i

j

j

〈ij|gr−1
ee g|ij〉A

(D28)

FIG. 4. Diagram for the gr−1
ee g integral.

congruent transformed Hamiltonian, the partial infinite-order
summation technique allows us to remove the finite-basis ap-
proximation for one of the components (�ee

2 in this case) of the
energy expression. The term (〈�0|�ee

2 |�0〉 − 〈�0|�ee
2 |�0〉(M))

represents the missing piece in the PCTH energy expression
because of the finite size of the projected space.

D. Form of the correlation function

Although the expression in Eq. (55) is valid for any
form of g(1,2), the computational cost and ease of imple-
mentation depend on the specific choice of g(1,2). In this
work, we have used Gaussian-type geminal (GTG) functions
[11,12,16,24,25,29,47–51] for representing the two-body cor-
relation function

g(r12) =
Ng∑
k=1

bke
−r2

12/d
2
k , (56)
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where bk,dk are the geminal parameters that completely
define the GTG function. There are mainly two different
techniques for determining the geminal parameters. In the
first method, the parameters are determined variationally by
minimizing the total energy. Although this approach is very
accurate, it becomes computationally expensive because it
involves multidimensional minimization and recomputation
of the atomic orbital (AO) integrals. The second approach is to
have a set of precomputed values of the geminal parameters.
This approach is computationally fast; however, the challenge
is to find a transferable set of parameters that can be applied
to different molecules. In this work, we have developed a
mixed approach where the linear geminal parameters bk are
variationally optimized by minimizing the PIOS energy and
the nonlinear geminal parameters dk are precomputed before
the start of the geminal optimization.

The strategy for determining the nonlinear parameters
developed in this work is to use an appropriate characteristic
length scale associated with the molecule for calculating the
dk parameters. We have used the average electron-electron
separation distance as the characteristic system-dependent
quantity for calculating the geminal parameters. Using the
reference Slater determinant �0, we define the average
electron-electron distance as

〈
r2

12

〉
0 = 2

N (N − 1)
〈�0|

∑
i<j

r2
ij |�0〉. (57)

The dk parameters are selected from a set of numbers obtained
by scaling 〈r2

12〉0

d2
k ∈

[
1

n

〈
r2

12

〉
0, . . .

1

2

〈
r2

12

〉
0,

〈
r2

12

〉
0,2

〈
r2

12

〉
0, . . . n

〈
r2

12〉0

]
. (58)

The choice of 〈r2
12〉0 over 〈r12〉0 was made purely for compu-

tational convenience. The integral involving r2
12 is separable

in x,y, and z components and can be integrated easily with
Cartesian Gaussian-type orbitals (GTOs). Similar separation
is not possible for 〈r12〉0. The above procedure provides a fast
and physically intuitive method for obtaining the nonlinear
geminal parameters.

One of the advantages of the GTG function is that the AO
integrals involving the GTG functions are analytical and can be
expressed in a closed form. Analytical expressions for integrals
involving s-type GTOs are known and were derived by Boys
[52]. An analytical form for the higher angular momentum
GTOs using the McMurchie-Davidson algorithm was derived
by Persson and Taylor [47]. Because of the availability of fast
analytical integral routines, Gaussian-type geminal functions
have found widespread application in a large number of ex-
plicitly correlated calculations [11,12,16,24,25,29,40,44,47–
51]. As seen in Eq. (55), the geminal integrals needed for
computation of the energy expression is of the form G0k . These
geminal integrals are known as the overlap integrals and are
especially efficient to compute because they can be written as
a product of three one-dimensional integrals

[μν|e−r2
12/d

2
k |λσ ] = IxIyIz. (59)

The exact expression for the integrals can be found in
Refs. [47,52].

III. RESULTS AND CONCLUSION

The implementation of the PCTH-PIOS method was tested
by performing the ground-state energy of the isoelectronic
10-electron systems Ne, HF, H2O, NH3, and CH4. All the
calculations were performed using Ng = 2 with two Gaussian-
type geminal functions. The first set of geminal parameters
were fixed at b1 = 1 and d2

1 = ∞. The resulting expression
for g used in the calculation is given by

g(1,2) = 1 + b2 e−r2
12/d

2
2 . (60)

This choice of parameters ensured that the PCTH energy is
always bounded from the top by the Hartree-Fock (HF) energy.
The PCTH energy is bounded from below by the energy
derived by the configuration interaction (CI) method that is
limited to single and double excitations (the CISD energy).
This is because the energy expression of the PCTH method
is identical to the CISD energy where the CI coefficients are
constrained to ck = 〈�k|G|�0〉. The upper and lower bounds
of the PCTH energy calculated using the HF reference wave
function is given by the expression

ECISD < EPCTH < EHF. (61)

The Hartree-Fock calculation was performed, and 〈r2
12〉0

was evaluated and used to construct the following trial set for
the selection of the d2 parameter:

d2
trial ∈ 1

3

〈
r2

12

〉
0,

1
2

〈
r2

12

〉
0,

〈
r2

12

〉
0,2

〈
r2

12

〉
0,3

〈
r2

12

〉
0. (62)

The b2 parameter was optimized for each trial d2
2 , and the b2,opt

and d2
2,opt were obtained by finding the lowest PCTH energy in

the trial set. The change in the energy as a function of the trial
nonlinear parameter is presented in Fig. 5. Interestingly, the
optimum expression for d2 in all the systems was found to be
d2

2 = 〈r2
12〉0/2. This result shows that although the numerical

value of the d2 parameter is different for each chemical
system, the relationship between d2 and the average electron-
electron separation distance is conserved. The PCTH-PIOS
calculations were performed using the optimized geminal
parameters. The correlation energies obtained from the PCTH-
PIOS method are compared with other methods (CISD, MP2,

1__ <r12
2 >03

1__ <r12
2 >02

<r12
2 >0 2 <r12

2 >0

0

0.02

0.04

0.06

0.08

ΔΕ

Ne
HF
H2O
NH3
CH4

FIG. 5. (Color online) �E = Emin−E

Emin
× 100, where Emin is the

EPCTH energy obtained using 1
2 〈r2

12〉0.
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TABLE I. Correlation energies for isoelectronic 10-electron systems. All values are reported in a.u.

Method Ne HF H2O NH3 CH4

PCTH/6-31G� −0.130603 −0.151003 −0.155345 −0.143408 −0.118838
PCTH-PIOS/6-31G� −0.160906 −0.269057 −0.300579 −0.257571 −0.192598
MP2/6-31G� −0.150315 −0.179777 −0.186849 −0.170397 −0.137732
CCSD/6-31G� −0.152327 −0.184207 −0.195842 −0.185705 −0.158185
CISD/6-31G� −0.148933 −0.178315 −0.188207 −0.178082 −0.152076
CISD/cc-pVTZ −0.320384 −0.322179 −0.305133 −0.272034 −0.227915

and CCSD) and the results are presented in Table I. Comparing
the PCTH energies with the CISD/6-31G* results, it is seen
that the PCTH energies are higher than the CISD energies.
As discussed in Eq. (61), this is an expected result because
the PCTH energy is bounded from below by CISD energy.
However, the PCTH-PIOS energies in all cases are lower
than the CISD/6-13G* results. We attribute this lowering
of energy to the additions of diagrams in the PCTH-PIOS
method. Comparing PCTH-PIOS/6-31G* and CISD/cc-pVTZ
results we see that the PCTH-PIOS energies are bounded from
below by the exact ground-state energy. These results indicate
the relevance of the infinite-order diagrammatic summation
approach of the PCTH-PIOS method.

In conclusion, we have presented the development of
the projected congruent transformed Hamiltonian method for
many-electron systems. The congruent transformation of the
many-electron Hamiltonian was performed using Gaussian-
type geminal functions. The challenge of efficient optimization
of the geminal function was addressed by using different
strategies for optimizing linear and nonlinear parameters.
The linear geminal parameters were obtained variationally by

minimizing the PCTH energy. The expectation value of the
square of the electron-electron separation distance was used as
the characteristic length scale for construction of the nonlinear
geminal parameters. One of the key results in this work is
the development and application of the partial infinite-order
summation method. The PCTH-PIOS method is based on
performing infinite-order summation for a subset of diagrams
in the PCTH energy expression. The closed-shell version of
the PCTH-PIOS method was implemented and the method
was applied to a series of 10-electron systems. The correlation
energies computed using the PCTH-PIOS method were found
to be in good agreement with CISD calculations. This is an
interesting result because unlike the CISD method, the PCTH-
PIOS method avoids construction and diagonalization of the CI
Hamiltonian. The results indicate that PCTH-PIOS can be used
for treating electron correlation in many-electron systems.
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