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3Laboratoire Aimé Cotton, CNRS II, Université Paris-Sud, ENS-Cachan, F-91405 Orsay, France

(Received 8 January 2013; revised manuscript received 9 January 2014; published 20 March 2014)

Data on the (5s1/2 + 5p1/2)1g
87Rb2 state under the D1 limit, provided by a photoassociation experiment on

cold atoms, have been analyzed by an improved LeRoy-Bernstein (LRB) approach including linear and nonlinear
terms and provide a c6 value of the potential. To do that, using a model for hyperfine structure shifts, we have first
subtracted the hyperfine effects in the split lines and deduced the vibrational energies. Then, we have compared
three LRB-type models to fit the data. We conclude that the second-order improved LRB is well suited and allows
us to deduce an experimental value of c6 [c6 = (15.14 ± 0.05) × 104 a.u.].
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I. INTRODUCTION

In the context of cold-molecule formation when starting
from cooled atoms, the photoassociation process is very often
the first step of the excitation-deexcitation scheme [1,2].
For that reason, cold-atom photoassociation spectroscopy
(PA) is studied even today because it provides accurate and
useful data which could determine or predict new routes in
cold-molecule formation.

The benefit of photoassociation of cold atoms as a first step
relies on the possibility to bind two cold atoms using a laser
light and to produce an excited molecule in a bound level [3].
With this process we change the nature of the initial free wave
function (two atoms) to a bound-level wave function. Then
the produced excited molecule, often a weakly bound one,
decays with a reasonable Franck-Condon factor to a ground-
state vibrational level. The knowledge of the excited molecule
formed in this intermediate state is thus one of the keys of the
cold-molecule research field.

In this context cold-atom PA provides accurate data [4–8].
Because the initial two atoms are cold (typically in the 100 mK
range) and the laser bandwidth is small enough (typically in the
megahertz range), PA is energetically selective, and the excited
molecule produced is in a well-defined vibrational level. In
addition, because the atoms are initially far from each other,
PA produces mainly molecules in very excited levels (long-
range molecules). PA therefore constitutes a fruitful method to
provide high-resolution data on long-range molecular states.

Consequently, the knowledge of the molecular levels is
correlated to the data analysis methods and to the molecular
model used to compare the measurements and the values
deduced from the models. Many approaches exist, from
semianalytical to all-numerical ones and even both combined.

In the process of cold-atom photoassociation, the molecules
formed are weakly bound molecules whose binding energy
is governed by the long-range interaction. The molecular
potential in this region, close to the dissociation limit, is given
by its asymptotic form, namely, the dipole-dipole interaction.
For homonuclear molecules, depending on the molecular state
symmetry, the asymptotic potential is −1/R3 or −1/R6, where
R is the internuclear distance.

Such potential forms, with an R power-law dependence, are
known to have simple properties, such as an associated binding
energy which varies as a power law of the quantum number of
the level (here the vibrational quantum number). For molecular
levels this property is known as the LeRoy-Bernstein (LRB)
formula [9,10]. Nevertheless, the LRB approach is surely in-
complete because it does not include any short-range potential
effects, neither couplings between molecular potentials nor
other interactions such as the hyperfine interaction. It has
been shown that the LRB formula improved by additional
terms [11,12] or coupled to a quantum defect approach
becomes powerful for quantifying short-range effects [12] or
detecting couplings [13,14].

In the case of the presence of hyperfine interaction the
situation is more complicated. Close to the dissociation limit
(S + P , for example), only the levels with � = 0 (0−

g or 0+
u in

Hund’s case (c), for example) have no hyperfine structure. This
is true in the first-order approximation. For �> 0 the hyperfine
splitting exists in the first-order calculation. Depending on
the competition between rotation and hyperfine coupling, the
structure is strongly mixed or not. The analysis in the strongly
mixed case requires accurate determinations of the potentials
in the adequate molecular basis. Examples for this situation
can be found in Li2 [15–17], Na2 [6,18–20], K2 [21], and
Rb2 [5,22,23].

Nevertheless, in the asymptotic range, like in the situation
presented in this paper, where the hyperfine interaction is
smaller than the binding energy, the hyperfine structure can
be evaluated (in an atomlike basis) and subtracted from the
data in order to get a system which can be analyzed by a
LRB-type method. That is the approach we developed here.

In this paper, we report on the analysis of spectroscopic data
of weakly bound levels of the 1g state of 87Rb2 converging to
the 5s1/2 + 5p1/2 dissociation limit. The data show split line
effects due to the hyperfine interaction. We recorded about 60
vibrational levels over a 20 cm−1 range below the dissociation
limit, and we observed a well-resolved hyperfine structure
for many of them. For binding energies less than 5 cm−1, we
observed a hyperfine splitting into seven components (denoted
by N = −3, − 2, − 1,0,1,2,3). We interpreted the observed
number of components by introducing an intermediate basis
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FIG. 1. PA spectrum below the (5s1/2 + 5p1/2) dissociation limit
showing 0+

u (crosses), 0−
g (pluses), and 1g (squares) series. The relative

energy is defined relative to the atomic transition 87Rb (5S1/2,F =
2) → 87Rb (5P1/2,F

′ = 2) at 12 578.876 cm−1.

defined by the nuclear properties and the 1g basis. In this basis,
the calculated splitting in a perturbative approach is in good
agreement with the measured splitting.

Then, the hyperfine shift of each N component has been
subtracted from the energy lines, and the binding energy of
each vibrational level is deduced. This procedure increases the
set of 60 levels to 120 and therefore allows us to improve the
analysis further.

The binding energy data are analyzed using the asymptotic
molecular potential (first term, −1/R3, in the dipole-dipole
interaction) and the associated LRB formula. We show that
the improved LRB formula has to be used to correctly fit
the data. Then, we discuss the use of the improved LRB
formula including a linear term of energy. Finally, we apply
the second-order improved LRB formula up to the second
order [24] to analyze the data and to determine the role
of the second-order term in the development of the dipole-
dipole interaction [in the case of V (R) = −c3/R

3 − c6/R
6].

We demonstrate, using a residual fit, that the second-order
improved LRB vD − v = (ε/E3)1/6 + γ1ε + γ7/6ε

7/6 + γ2ε
2

including three additional high-order terms (ε,ε7/6, and ε2)
is more appropriate for analyzing photoassociation 1g state
data [24]. Fitting allows us to determine an experimental value
of c6 = (15.14 ±0.05) × 104 a.u.

II. EXPERIMENT AND RESULTS

A. Trap-loss spectroscopy

The experiment consists of photoassociating cold rubidium
atoms provided by a magneto-optical trap (MOT) with a
laser tuned close to and below the 5s1/2 → 5p1/2 atomic
transition. As the frequency of the photoassociation laser (PA
laser) is resonant with a molecular level of Rb2 (a level of a
molecular curve converging to the 5s1/2 + 5p1/2 dissociation
limit), an efficient formation of molecules happens, and as a
consequence, an atom loss is observed. The PA spectrum is
obtained by recording the trap-loss signal while the PA laser
is scanned [10]. Such a PA spectrum is shown in Fig. 1.

Details about the experimental setup have been given in
previous studies [25,26]. Our MOT operates in a stainless
chamber vapor cell where the background pressure is kept in
the 10−9 mbar range by an ionic pump. All the lasers used
to prepare the MOT are provided by laser diodes emitting
about 50 mW of laser power each at 780-nm wavelength.
The trapping laser is provided by a Sanyo diode, with a
linewidth of about 1 MHz and tuned 12 MHz to the red of the
atomic 5S1/2(F = 2) → 5P3/2(F ′ = 3) 87Rb transition. The
repumping laser is generated by a Hitachi diode laser which is
locked to the rubidium line 5S1/2(F = 1) → 5P3/2(F ′ = 2).
The lasers (trapping and repumping) are frequency locked
to atomic lines using saturated absorption spectroscopy in Rb
vapor glass cells. The detuning of the trapping laser is adjusted
via an acoustomodulator. Its total power in the MOT region is
about 40 mW (2 × 20 mW because of retroreflected beams),
and the beams have Gaussian profiles with ∼8-mm waists.
The applied quadrupolar magnetic gradient in the MOT region
is 14 G/cm. It is generated by two coils in an anti-Helmholz
configuration. With these parameters, the produced Rb cold
cloud contains about 107 atoms. The radius of the cloud is
0.5 mm, and its temperature is 30 μK. The atomic density
reaches n ∼ 1011 atoms/cm3.

To photoassociate atoms, a PA laser provided by a widely
tunable titanium-sapphire laser (Coherent MBR 110) is super-
imposed on the Rb sample. The beam power is about 900 mW,
and its linewidth is about 1 MHz. At the MOT location, the PA
laser beam has a waist of 1 mm, so that its intensity is about
25 KW/cm2. The PA laser promotes colliding pairs of Rb
atoms into a specific excited bound level of Rb2. To obtain
a spectrum of these molecular levels, we scan the PA laser
wavelength and simultaneously record the atomic cloud fluo-
rescence, which gives the cloud atom number and thus the trap
loss. The atomic cloud fluorescence is collected onto a photodi-
ode, and the resulting signal is amplified to reach the volt range
and to be stored in a computer. The PA laser wavelength is mea-
sured with a wavemeter (Burleigh WA 1000) with an accuracy
of 300 MHz while the laser is being scanned. A General Pur-
pose Interface Bus connection between the wavemeter and the
computer ensured data storage. Typically, each scan of the PA
laser covers 1 cm−1 (∼30 GHz) and takes 600 s and is recorded
with typically 3000 data points (each 0.2 s). For each scan, we
have checked the linearity of the frequency scan versus time
and have used it to improve the resolution of the wavelength
measurement by a factor 10 (at least). So accuracy is better than
0.002 cm−1; we take this value in the following. With a succes-
sion of scans we obtain the spectrum over 20 cm−1 (see Fig. 1).

The PA laser wavelength is chosen to be red detuned from
the D1 atomic line at 795 nm in order to explore the molecular
states near the 5s1/2 + 5p1/2 limit. The obtained spectra were
calibrated relative to the atomic transition 87Rb (5S1/2,F =
2) → 87Rb(5P1/2,F

′ = 2), whose energy is 12 578.876 cm−1.
In the scanned region (about 20 cm−1 of PA laser detuning) the
losses reach about 30%. Beyond that, the photoassociation pro-
cess is less efficient, and it is very difficult to detect a trap loss.

B. Observation of a hyperfine splitting in the
(5s1/2 +5p1/2)1g levels

The PA spectrum below the (5s1/2 + 5p1/2) dissociation
limit is shown in Fig. 1. In this spectrum, we identified three
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(a)

(b)

FIG. 2. (Color online) Hyperfine structure in 1g resonances: (a)
seven resonances with resolved hyperfine components. (b) Close-
up of the resonance around 3.21 cm−1. Gray lines: experimental
spectrum (0+

u and 0−
g levels are marked by crosses and pluses,

respectively). Black lines: fitting spectrum with a multi-Lorentzian
function to determine the resonances energies. Dashed dark gray
lines: theoretical curve of seven weighted Lorentzian profiles sepa-
rated by � = 0.032 cm−1 with the weights equal to the degeneracies,
namely, 4 − |NT |.

vibrational series corresponding to the 1g , 0+
u , and 0−

g attractive
molecular states. The observed levels of the 0+

u and 0−
g states

have been studied and analyzed in previous works [12,13].
For these series, an analysis based on the vibrational quantum
defect allowed us to quantify the short-range potential effects
in the case of the 0−

g state [12] and a coupling with a
neighboring series via the spin-orbit interaction in the case
of the 0+

u state [13].
In this paper, we focus on the 1g molecular state. For a PA

laser detuning larger than 5 cm−1, the 1g resonances are broad
(Fig. 1). The width of the resonances is about 0.12 cm−1.

In the [1.8 cm−1, 5 cm−1] range, the 1g resonances are
split into seven clearly resolved components [see the close-up
in Fig. 2(a)]. The splitting origin is the hyperfine interaction
in the molecule. The seven components are denoted by NT ,
where NT varies from −3 to 3 [Fig. 2(b)] and is spaced by
∼0.03 cm−1. We will explain in the following this notation
and this splitting value.

For a PA laser detuning less than 1.8 cm−1, it is quite
difficult to clearly identify 0−

g , 0+
u , and 1g resonances, as is

shown in Fig. 3. For that reason we limited our analysis to the
[1.8 cm−1, 21 cm−1] energy range.

The energies of the 1g resonances and of the components
that we have observed are listed in Tables IV and V in
Appendix A. The spectrum analysis consists of measuring the

FIG. 3. PA spectrum below (5s1/2 + 5p1/2) dissociation limit for
PA detuning less than 1.8 cm−1: the 0−

g , 0+
u , and 1g resonances are

not clearly identified.

energy of each resonance and each component by using a local
fitting with a Lorentzian shape. The measured binding energy
ε is given relative to the atomic transition 87Rb (5S1/2,F =
2) → 87Rb (5P1/2) at 12 578.780 cm−1. The data are presented
in two tables. Table IV lists binding energies of broad
87Rb (5s1/2 + 5p1/2)1g resonances. In that case we give the
center of the resonance as the binding energy. Table IV also
gives the relative vibrational quantum number, i.e., vD − [v].
Table V lists the binding energies of the components for the
12 observed split resonances. For three of them, it was not
possible to clearly assign the binding energy of the seven NT

components.

III. THE 1g STATE DESCRIPTION INCLUDING THE
HYPERFINE INTERACTION

A. Generalities

Early groups working on PA spectroscopy of cold atoms
pointed out the role of the hyperfine interaction in long-range
excited molecules. They pointed out that the binding energy of
the molecule or the rotational energy is small and thus on the
same order of magnitude as the hyperfine interaction. In this
case, mixing of potential curves appears, and a description with
an adapted basis is required. This problem was well illustrated
in Ref. [27], where the calculated PA spectrum of Na2 for the
v = 80 vibrational level shows that the hyperfine and rotational
structures are on the same order of magnitude (see Fig. 3
of Ref. [27]). Williams and Julienne [27] showed that the
correct basis to describe the molecule is F = J + I , obtained
by coupling the molecular number J with the total nuclear spin
I = I1 + I2 (I1 and I2 being the atomic nuclear spins). For a
dimer, the good quantum number is the projection of F along
the molecular axis. This description gives many molecular
states and thus many molecular curves (see, for example, Fig. 2
of Ref. [27]).

Using this multitude of curves to compare the experimental
results and the molecular description is not easy. The numerous
potential curves in the asymptotic region are remarkably
grouped by packets, in which the curves are nearly parallel.
That means that the molecular curves are only energy shifted
relative to each other. At large interatomic distances the curves
are energy shifted relative to the molecular curve obtained in
the usual basis of Hund’s case (c). For the 87Rb2 molecule, the
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TABLE I. The c3 and c6 expressions and values for the (5s1/2 +
5p1/2)1g state. As detailed in [12], we take C3 = 8.949(10) a.u., A =
158.39893662 cm−1 ≡ 7.2171865892 × 10−4 au, C�

6 = 8.05 ×
103 a.u., and C�

6 = 12.91 × 103 a.u. Thus 28
27 C2

3/A = 11.5073 × 104

a.u., and (2C�
6 + C�

6 )/3 = 0.967 × 104 a.u.

Expression Value

c3 = 2
3 C3 5.966 a.u. [29]

c6 = 2C�
6 +C�

6
3 + 28C2

3
27A

12.4743 104 a.u. [30]

εscale = c2
3/c6 62.6 cm−1

hyperfine potential-energy curves are illustrated by Fig. 6 of
Ref. [22].

These observations lead us to describe the molecule in the
basis of Hund’s case (c) first and then to add the hyperfine
interaction via an intermediate basis.

B. The 1g molecular potential in Hund’s case (c)

Close to the dissociation limit, in the energy range studied
in this paper, the spin-orbit interaction is large compared to
the binding energy of the vibrational level, so the dimer is
described in the basis of Hund’s case (c) [28]. In this basis, at a
large value of the internuclear distance R, the 1g molecular
potential is given by the dipole-dipole interaction, and its
development, including the first two terms, is

V (R) = −c3/R
3 − c6/R

6, (1)

where c3 and c6 are effective coefficients related to atomic
matrix elements. Table I gives the c3 and c6 expressions and
the values for the Rb2 (5s1/2 + 5p1/2)1g state.

C. Vibrational energy: LeRoy-Bernstein approach

The vibrational energies (binding energies) are the eigenso-
lutions of the Schrödinger equation for the molecular potential
given by Eq. (1). In the context of weak binding energies the
solutions can be found using the Wentzel-Kramers-Brillouin
(WKB) approximation and the Bohr-Sommerfeld quantiza-
tion.

If the potential given by Eq. (1) is limited to its first term,
namely, −c3/R

3, the WKB solution is the well-known LRB
formula [9]. The LRB formula gives the eigenenergies of the
Schrödinger equation in the case of an attractive potential
−cn/R

n, with n �= 2 [9]. For n = 3, the binding energy εv of
the vibrational level labeled v is given by

εv = E3(vD − v)6, (2)

where vD is a noninteger number and E3 is an energy constant
related to c3 and the reduced mass μ. According to the LRB
notations, E3 = H 6

3 , where H3 is a quantity defined by H−1
3 =

√
2μ√
π

c
1/3
3
�


(5/6)

(4/3) , with 
 being the Euler gamma function. With

the values of Table I, we find E3 = 11.786 × 10−12 cm−1. We
denote it as E0

3 .
Usually, data analysis done using the LRB formula (2)

is performed by plotting the quantity n = integer[vD] − v

versus the measured binding energy ε and then by fitting
the obtained curve by the function a + [(ε − ε0)/E3]1/6. The
fitting procedure provides a, ε0, and E3 (see Ref. [7], for

example). The parameter a gives the noninteger part of vD .
The parameter ε0 allows us to adjust slightly the value of
the dissociation limit, and the energy constant E3 allows the
determination of c3.

The LRB formula is applicable when the term −c6/R
6 in

formula (1) is negligible compared to −c3/R
3. This condition

expressed on the energy variable gives a binding energy εv

which has to be less than εscale = c2
3/c6 [24]. For Rb2 in the

1g state, with the values of Table I, one gets εscale ∼ 60 cm−1.
With the data considered in this paper we have ε < 20 cm−1;
thus the condition ε � εscale is not fulfilled.

The fitting method using the LRB formula is quite powerful;
nevertheless, for very accurate studies, it has been shown that
the LRB formula has to be corrected in order to include short-
range potential effects and terms in the potential multipolar
expansion. It has been shown that the main additional term to
the LRB formula is linear [11,12], giving the improved LRB
formula:

vD − v = (εv/E3)1/6 + γ εv, (3)

where γ is a parameter connected to the short-range potential.
In Ref. [12] it was shown that the parameter γ is connected to
short-range characteristics of the potential, e.g., the repulsive
region of the molecular potential.

In a more accurate approach [24], a model including the
−c6/R

6 term and the short-range potential has shown that the
LRB formula has to be modified with three additional terms:
one is linear as a function of the energy, another depends
on ε

7/6
v , and the last one is quadratic as a function of the

energy. Because this approach includes the second-order term
in the multipolar development of the molecular potential, the
corresponding improved LRB formula, called the second-
order improved LRB formula, is

vD − v = (εv/E3)1/6 + γ1εv + γ7/6ε
7/6
v + γ2ε

2
v . (4)

In this second improved LRB formula γ1, γ7/6, and γ2 depend
on the short-range potential and on the quantity c2

3/c6 (see
details in Refs. [12,24]).

D. Hyperfine structure in the 1g state

The Hund (c) basis takes into account only the spin-
orbit effect in the atoms. For a complete description of the
molecule, the hyperfine interaction must be included. Its
order of magnitude is, in a crude approach, given by the
atomic hyperfine interaction in the 5s1/2 and 5p1/2 atomic
levels. The atomic hyperfine splitting in the atomic ground
state 5s1/2, namely, the F = 1 − F = 2 separation, is �

hf

5s1/2
=

6.834 GHz. In the 5p1/2 excited state it is �
hf

5p1/2
= 0.816 GHz.

These values define a limit for the validity of the long-range
potential form given by Eq. (1). Typically, for a binding energy
that is very large compared to �

hf

5s1/2
+ �

hf

5p1/2
∼ 0.25 cm−1, the

hyperfine effects can be added in a perturbative approach.
To apply the perturbative approach we define an intermedi-

ate basis denoted |1gM = ±1〉|I1N1〉|I2N2〉, where I1 = I2 =
3/2 is the 87Rb nuclear spin and N1 and N2 are the associated
projections. Details about the basis and the calculation of the
energy shift are given in Appendix B.
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FIG. 4. (Color online) Measured hyperfine energy splittings in
the 1g resonances (those with seven resolved components). The red
line is the mean value of 63 measured hyperfine energy splitting
values.

The intermediate basis is convenient to perform the cal-
culation (because many matrix elements are zero), and in a
perturbative approach the energy correction only depends on
NT = N1 + N2. The energy correction due to the hyperfine
interaction is

�hf (NT ) = �NT , (5)

with � = 1
8 (�hf

5s1/2
+ �

hf

5p1/2
) = 0.956 GHz = 0.032 cm−1.

The allowed values of N1 and N2 provide seven values of
NT in the range [−3,3]. Each level degeneracy is 4 − |NT |.

The splitting of the 1g resonances into seven components
has been observed for binding energies ranging from 1.8 to
5 cm−1 (Fig. 2 and Table V), i.e., 12 resonances. For eight of
them, the seven components are clearly resolved and identified.
From the measured energy position of the components, we
have deduced the hyperfine energy splittings and plotted them
in Fig. 4. The statistics on the 63 values gives 0.0325±
0.0038 cm−1, which is in good agreement with the expected
value, i.e., � = 0.032 cm−1.

The degeneracies, measured by the peak amplitudes, are
also well described by this model [see Fig. 2(b)], except when
a 0−

g or a 0+
u resonance overlaps the 1g resonances. Notice that

the red (dark gray) line in Fig. 2(b), which represents a theo-
retical model with seven Lorentzian functions weighted by the
degeneracies and spaced by a value of �, is not a fitting curve
and is quite in agreement with the experimental spectrum.

E. Total energy

The total binding energy of a 1g component (level including
the hyperfine interaction), which is a positive quantity defined
by the energy at the dissociation limit minus the level energy
and denoted εT , is then

εT = εv − �hf (NT ), (6)

where εv is the vibrational binding energy associated with the
potential V (R).

For each level, because the quantity �hf (NT ) is known,
we can deduce the vibrational binding energy εv associated
with the 1g resonance. As a consequence, in the case of a
1g resonance with seven resolved hyperfine components, we
get seven measurements of the 1g vibrational binding energy.
Therefore this increases the number of available experimental
data points for the vibrational binding energy εv of the 1g

FIG. 5. Energy spacings between the 1g vibrational level and
its first neighbor (solid circles) obtained by ε(i) − ε(i − 1), its
second neighbor (triangles) obtained by ε(i) − ε(i − 2), and its third
neighbor (squares) obtained by ε(i) − ε(i − 3). For each vibrational
level, three energy spacings are plotted as a function of ε(i). The index
i is an attribute integer value for each line (see Tables IV and V).
Number (1) concerns a nondetected resonance. Number (2) concerns
the point located at 19.81 cm−1. Open circles: two nonregular points
(3) at 19.12 and (4) at 21.75 cm−1. Gray lines help guide the eye.

state in order to analyze them with LRB or improved LRB
approaches. With our set of data we thus extract a set of 126
energy values of εv .

IV. DATA ANALYSIS

A. Energy progression of the levels

In order to attribute the vD − v value to the resonances, we
checked at the energy progression of the levels. We attribute
an integer value denoted i to each resonance (see Tables IV
and V). i should be the integer [vD] − v, but because we do
not know the exact value of vD , i is defined relatively. For a
given i, levels i + 1, i + 2, and i + 3 are called, respectively,
the first, second, and third neighbors. For each i resonance
of Table IV we calculate the quantities ε(i) − ε(i + 1), ε(i) −
ε(i + 2), and ε(i) − ε(i + 3) from the mean ε column and plot
them versus ε(i) (see Fig. 5). For the lines in Table V we only
take the energy values of NT = 0 lines.

As shown in Fig. 5, in log-log scale we observe that the
points are aligned. On the lower line, which gives the energy
distance to the first neighbor, we observe a hole between
6.5 and 7.5 cm−1. The corresponding data point [black point
denoted by (1)] is located on the second line, which is the
energy distance to the second neighbor. The missing level
(or undetected level) numbered i = 20 is indicated as a “not
detected” level in Table IV.

For points denoted (2), (3), and (4), a fine analysis of the
spacing allows us to deduce that one level has not been detected
(may not be detectable) and that two others (at 19.12 cm−1 and
at 21.75 cm−1) do not belong to the 1g series. The nondetected
level is indicated in Table IV with i = 5 as “not detected.” As
a consequence, for level i = 3, at 19.81 cm−1, marked by (2)
in Fig. 5, ε(3) − ε(4) is out of the first slope, ε(3) − ε(6) is
on the second slope, and ε(3) − ε(7) is on the third slope. We
thus deduce that i = 3, at 19.81 cm−1, belongs to the 1g series.
The energy spacing analysis allows us to attribute the value of
vD − v to each resonance.
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FIG. 6. Analysis of the 125 points using the LRB formula of
Eq. (2). The top view shows experimental points and their fit curves.
The bottom view presents the residual for each fit. Fit 1, shown
by the black line, gives E3 = (17.409 ± 0.07) × 10−12 cm−1, y0 =
−63.05 ± 0.06, and χ 2 = 0.00552. Fit 2 dashed black lines gives
y0 = −68.55 ± 0.06 and χ 2 = 0.44423; E3 was fixed to be E0

3 =
11.786 × 10−12 cm−1.

B. Analysis using the LeRoy-Bernstein formula

In a natural approach, the set of 125 labeled (p attributed)
levels is analyzed using the LRB formula (2). We have done
two fits, fit 1 and fit 2, using the following fitting function:
y = y0 + ( x

E3
)1/6. Fit 1 gives y0 = −63.05 ± 0.06 and E3 =

(17.409 ± 0.07) × 10−12 cm−1. Even if the corresponding
residual curve, shown in Fig. 6, is close to y = 0 (from −0.227
to +0.198), the obtained value of E3 does not correspond to the
expected one (E0

3 = 11.786 × 10−12 cm−1). They are different
by 48%. Such a difference indicates that the model used is not
accurate enough. It suggests that a fitting function including
an additional nonlinear term would be more appropriate.

Fit 2 is done using an imposed E3 = E0
3 = 11.786 ×

10−12 cm−1. It gives y0 = −68.55 ± 0.06. The corresponding
fit residue clearly exhibits a nonlinear behavior versus ε,
indicating that the LRB is not sufficient in such a situation.

Both fits undoubtedly show the need for an improved LRB
formula [12]. Such behavior has already been observed in our
previous works. In fact, we have demonstrated the role of the
linear term in the LRB model.

First, in the case of 87Rb2 (5s1/2 + 5p1/2)0−
g , it has been

shown that the additional term is linear [12]. This term is
also required in the case of series with perturbations (analysis
by the Lu-Fano graph), as shown in the cases of 87Rb2

(5s1/2 + 5p1/2)0+
u [13], 133Cs2 (6s1/2 + 6p1/2)0+

u [14], and
133Cs2 (6s1/2 + 6p1/2)0−

g [31–33].

C. Analysis using the improved LeRoy-Bernstein formula

In this section, we apply the improved LRB formula
[Eq. (3)] and the second-order improved LRB formula [Eq. (4)]
in order to examine the effects of the −c6/R

6 term. In the rest of
this section, E3 will be taken to be E0

3 = 11.786 × 10−12 cm−1.
Our approach relies on the Ref. [24], where we have shown

that parameters are related to the short-range potential (i.e.,
its barrier) and to the second-order term in the long-range po-
tential, namely, −c6/R

6. Our analysis also showed that in the
case of the 1g state of alkalis (Cs, Rb, K) the short-range effect

FIG. 7. Analysis of the 125 points using the improved LRB
formula of Eq. (3) (fit 3) and using the second-order improved LRB
formula of Eq. (4) (fit 4). The top view shows experimental points
and their fit curves. The bottom view presents the residual for each fit.
For two fits, E3 was set as E0

3 = 11.786 × 10−12 cm−1. Fit 3 (gray
line) gives y0 = −67.67 ± 0.01, γ = −0.135 ± 0.002 (cm−1)−1, and
χ 2 = 0.0074. Fit 4 dashed gray line gives y0 = −67.511 ± 0.002,
γ1 = −0.2223 ± 0.0004 (cm−1)−1, εscale = 51.58 ± 0.17 cm−1, and
χ 2 = 0.00019.

is negligible compared to that of −c6/R
6. In that case γ = γ1,

γ7/6, and γ2 are given by Eqs. (24), (25), and (26) of Ref. [24].
They are only related to c3 and εscale by the following formulas:

γ1 =
√

2μ

h
c

1/3
3 ε

−5/6
scale



(

4
3

)

(− 5

6 )

3
√

π
, (7)

γ2 = −
√

2μ

h
c

1/3
3 ε

−5/6
scale

2

3εscale



(

4
3

)

(− 5

6 )

3
√

π
, (8)

γ 7
6

=
√

2μ

h
c

1/3
3

√
π

3


( 5
6 )



(

4
3

) 2

7εscale
. (9)

In this framework, we first start by analyzing data using
Eq. (3). For that we fit data using the y = y0 + ( x

E3
)1/6 + γ

x function, where E3 is equal to E0
3 . Fit 3, shown in Fig. 7,

gives y0 = −67.67 ± 0.01 and γ = −0.135 ± 0.002(cm−1)−1

with χ2 = 0.0074 and a residue curve ranging from −0.160 to
+0.316. According to Eq. (7), we deduce that ε#3

scale = 321.763
±4.767 cm−1. This value is quite large compared to the
estimated one in Sec. IIIC. This indicates that the improved
LRB formula [Eq. (3)] is not accurate enough to match the data.

In an advanced analysis, we use Eq. (4) and the following
fitting function: y = y0 + ( x

E3
)1/6 + γ1 x+γ7/6x

7/6+ γ2x
2.

Because the parameters γ1,γ7/6, and γ2 are correlated, in
addition we impose

γ7/6 = −0.19022ε
−1/6
scale γ1 (10)

γ2 = − 2
3ε−1

scaleγ1 (11)

Such a procedure (fit 4 of Fig. 7) provides y0 = −67.511 ±
0.002, γ1 = −0.2223 ± 0.0004 (cm−1)−1, ε#4

scale = 51.58 ±
0.17 cm−1, with χ2 = 0.00019 and a residue curve ranging
from −0.024 to +0.061. Clearly, fit 4 is better than fit 3. χ2

is reduced by a factor of 40. The residue curves show a better
adequation of the second-order improved LRB formula for
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large binding energies, confirming the role of the ε7/6 and ε2

terms.

D. Discussion

Fit results and deduced parameters are regrouped in
Table II.

The value of εscale provided by fit 4, namely, ε#4
scale = 51.58

cm−1, is in good agreement with the estimated one (εscale =
62.6 cm−1). They differ from each other by 17.5%, which
is not large, relatively speaking, if we take into account the
uncertainty on εscale. Indeed, in the expression of εscale = c2

3/c6,
only c3 is well known, but c6 includes C�

6 and C�
6 , which have

never been determined experimentally. The values of C�
6 and

C�
6 have been determined only by theoretical calculations.

From our fit procedure we extract εscale, with �εscale
εscale

= 0.3%;

thus c6 = (15.14 ±0.05) × 104 a.u. This value differs from the
calculated one given in Table I by 21%. It is extracted with
�c6
c6

= 0.3% also.

From the c6 value, we do not deduce the values of C�
6 and

C�
6 , only the combination 2C�

6 +C�
6

3 = (3.64 ±0.05) ×104 a.u.
The value is not very accurate, and it is far (3.65 times higher)
from the value given in Table I. The combination is found with
�

2C�
6 +C�

6
3

2C�
6 +C�

6
3

= 1.4%.

In order to check, we have done another fit (named fit 5 and
not plotted in Fig. 7) wherein E3 becomes a fit parameter. The
fit result is y0 = −66.104 ± 0.263, E3 = 13.304 ± 0.315 ×
10−12 cm−1, γ1 = −0.143 ± 0.018 (cm−1)−1, and ε#5

scale=
(63.86 ± 8.48) cm−1. We deduced from E3 and ε#5

scale the
multipolar coefficient 1g potential values c3 = 5.615 ± 0.067
a.u. and c6 = c2

3/ε
#5
scale = (10.84 ± 1.69) × 104 a.u. The values

differ from calculated values given in Table I by 6% and
13%, respectively. We deduce the value of the combina-

tion 2C�
6 +C�

6
3 = (0.65 ± 0.18)×104 a.u., which is 1.53 times

smaller than that given in Table I. The combination value is

given with
�

2C�
6 +C�

6
3

2C�
6 +C�

6
3

= 27.7%.

According to Table II, which summarizes the results of all
fits, one can consider fit 4 more appropriate than fit 5 even
if the results of fit 5 seem better overall. There are several
reasons why we believe that fit 4 is more relevant than fit 5:

(i) χ2 of fit 4 is 7 times smaller than that deduced from
fit 5.

(ii) Fit 5 gives a c3 value with a 6% deviation relative to
the theoretical value. Then this value presents a very large dis-
agreement on c3 compared to previous works (amply con-
firmed by several previous works either experimentally or
theoretically).

(iii) 2C�
6 +C�

6
3 is given with 1.4% relative accuracy for fit 4,

while the relative accuracy reaches 27.7% for fit 5.
In Table III, we report for comparison the quantity

2C�
6 +C�

6
3 extracted from this work and two other works ([34]

and [35]). The two others works, a theoretical one and an
experimental one, are in good agreement each other. However,
our values, extracted from fits 4 and 5, are not in good
agreement. We think that this discrepancy occurs for several
reasons:

(i) Our fitting model is based on crude approximations. In
Ref. [14] we suppose that the potential is V (R) = −c3/R

3 −
c6/R

6, truncated at an internuclear distance called R−.
(ii) In this work, we fitted a limited set of data with

binding energies ε < 20 cm−1. The authors of Ref. [35] used
a larger set of vibrational levels (71 levels) belonging to the
0−

g (P3/2) pure long-range electronic state of the87Rb2 molecule
to determine more accurate C�

6 and C�
6 .

In addition, we propose that the value of c6, which has
been determined only twice previously, must be revisited
by means of theoretical calculations and/or by additional
experiments.

TABLE II. Results of fits: Fit parameters and deduced values of E3,εscale,c3, c6, and
2C�

6 +C�
6

3 .

Fit 1 Fit 2 Fit 3 Fit 4 Fit 5

y0 + ( x

E3
)1/6

y0 + ( x

E3
)1/6 +γ1x

Fitting function y0 + ( x

E3
)1/6 y0 + ( x

E3
)1/6

+γ1x − 2
3 ε−1

scaleγ1x
2

−0.19022ε
−1/6
scale γ1x

7/6

Fit parameters
χ 2 0.00545 0.44087 0.0074 0.00019 0.00133
y0 −63.05 ± 0.06 −68.55 ± 0.06 −67.67 ± 0.01 −67.511 ± 0.002 −66.104 ± 0.263
E3 fixed at fixed at fixed at

17.409 ± 0.07 13.304 ± 0.315
(10−12 cm−1) 11.786 11.786 11.786
γ1 [(cm−1)−1] −0.135 ± 0.002 −0.2223 ± 0.0004 −0.143 ± 0.018
εscale (cm−1) 51.58 ± 0.17 63.86 ± 8.48

Deduced parameters
εscale (cm−1) 321.763 ± 4.767 51.58 ± 0.17 63.86 ± 8.48
c3 (a.u.) 4.909 ± 0.01 5.615 ± 0.067
c6 (104 a.u.) 15.14 ±0.05 10.84 ± 1.69
2C�

6 +C�
6

3 (104 a.u.) 3.64±0.05 0.65 ± 0.18

032514-7



HAIKEL JELASSI AND LAURENCE PRUVOST PHYSICAL REVIEW A 89, 032514 (2014)

TABLE III. The quantity
2C�

6 +C�
6

3 deduced from this work and
compared to values provided by [34] and [35].

This work Other works

Fit 4 Fit 5 Theory [34] Expt. [35]

C�
6 (104 a.u.) 0.8047 0.805

C�
6 (104 a.u.) 1.205 1.291

2C�
6 +C�

6
3 (104 a.u.) 3.64 0.65 0.938 0.967

V. CONCLUSION

In this paper we have shown two main results. First, the
hyperfine structure existing in the 1g levels, as a line splitting,
can be removed (subtracted) by using a hyperfine structure
calculation. Hyperfine structure in 1g levels makes the analysis
more complicated than usual. In order to extract the binding
energies and to analyze them with a LRB-like approach,
we calculate the hyperfine structure shift and subtract it. A
model to calculate hyperfine structure is proposed using an
intermediate basis and gives an analytical expression of the

hyperfine shifts. We have checked the relevance of the model
by a comparison with data.

Second, we have shown that in the case of 1g levels, the
term −c6/R

6 can be measured from the data using a LRB-type
approach. The usual LRB approach does not permit us to
deduce a c6 value. Including both the linear term and the
second-order nonlinear terms (namely, γ7/6ε

7/6
v and γ2ε

2
v ), it

is possible to extract from a fitting procedure the c6 value.
Even if the measurement is not very accurate, it provides an
experimental value in a context where only a theoretical value
has been given. The approach we have tested on Rb2 1g states
relies on a model [24] with some assumptions and probably
could be upgraded to obtain a more accurate c6 value.
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TABLE IV. Binding energies of broad 87Rb (5s1/2 + 5p1/2)1g resonances. The measured binding energy ε is given relative to the atomic
transition 87Rb (5S1/2,F = 2) → 87Rb (5P1/2) at 12 578.780 cm−1.

i Measured ε (cm−1) Mean ε (cm−1) Attributed vD − [v] NT

1 21.750(2) 21.750(2) not 1g level
2 21.130(2) 21.130(2) 110 0
3 19.816(2) 19.816(2) 109 0
4 19.122(2) 19.122(2) not 1g level 0
5 not detected 108
6 17.522(2) 17.522(2) 107 0
7 16.538(2); 16.548(2) 16.542(2) 106 0
8 15.536(2); 15.538(2); 15.546(2)

15.546(2); 15.596(2) 15.552(2) 105 0
9 14.582(2); 14.602(2); 14.604(2)

14.610(2); 14.610(2) 14.602(2) 104 0
10 13.694(2) 13.694(2) 103 0
11 12.854(2); 12.862(2); 12.868(2) 12.862(2) 102 0
12 12.050(2); 12.054(2); 12.054(2)

12.056(2); 12.062(2) 12.056(2) 101 0
13 11.270(2); 11.280(2); 11.300(2); 11.132(2) 11.246(2) 100 0
14 10.546(2); 10.562(2); 10.582(2); 10.592(2) 10.570(2) 99 0
15 9.870(2); 9.870(2); 9.872(2); 9.888(2) 9.875(2) 98 0
16 9.220(2); 9.260(2); 9.260(2); 9.275(2) 9.254(2) 97 0
17 8.616(2) 8.616(2) 96 0
18 8.034(2) 8.034(2) 95 0
19 7.526(2) 7.526(2) 94 0
20 not detected 93
21 6.570(2) 6.570(2) 92 0
22 6.054(2) 6.054(2) 91 0
23 5.676(2) 5.672(2) 90 0
24 5.274(2); 5.278(2) 5.276(2) 89 0
25 4.878(2); 4.912(2) 4.896(2) 88 0

APPENDIX A: TABLE OF BINDING ENERGIES OF THE 1g LEVELS
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TABLE V. Binding energies of the components for the 12 observed split resonances. The measured binding energy ε is given relative to
the atomic transition 87Rb (5S1/2,F = 2) → 87Rb (5P1/2) at 12 578.780 cm−1.

Attributed Attributed Attributed
i ε(cm−1) vD − [v] NT i ε (cm−1) vD − [v] NT i ε (cm−1) vD − [v] NT

−3 3.458(2) −3 2.540(2) −3
−2 3.428(2) −2 2.510(2) −2

4.596(2) −1 −3.400(2) −1 2.478(2) −1
26 4.562(2) 87 0 30 3.372(2) 83 0 34 2.452(2) 79 0

4.532(2) +1 3.342(2) +1 2.426(2) +1
4.496(2) +2 3.308(2) +2 2.388(2) +2
4.464(2) +3 3.274(2) +3 2.360(2) +3

−3 3.220(2) −3 2.360(2) −3
4.296(2) −2 3.184(2) −2 2.322(2) −2
4.266(2) −1 3.150(2) −1 2.298(2) −1

27 4.236(2) 86 0 31 3.118(2) 82 0 35 2.264(2) 78 0
4.202(2) +1 3.082(2) +1 2.228(2) +1
4.170(2) +2 3.044(2) +2 2.192(2) +2
4.140(2) +3 3.008(2) +3 2.166(2) +3

4.016(2) −3 2.972(2) −3 −3
3.984(2) −2 2.936(2) −2 −2
3.956(2) −1 2.904(2) −1 −1

28 3.928(2) 85 0 32 2.864(2) 81 0 36 2.102(2) 77 0
3.900(2) +1 2.830(2) +1 2.066(2) +1
3.860(2) +2 2.796(2) +2 2.032(2) +2

3.822(2) +3 2.760(2) +3 1.996(2) +3
3.716(2) −3 2.730(2) −3 −3
3.688(2) −2 2.700(2) −2 1.950(2) −2
3.656(2) −1 2.672(2) −1 1.912(2) −1

29 3.626(2) 84 0 33 2.644(2) 80 0 37 76 0
3.596(2) +1 2.612(2) +1 1.880(2) +1
3.564(2) +2 2.576(2) +2 1.842(2) +2
3.534(2) +3 2.544(2) +3 1.806(2) +3

APPENDIX B: HYPERFINE INTERACTION IN WEAKLY
BOUND MOLECULES, CALCULATED

IN THE ATOMIC BASIS

We calculate the energy correction due to the hyperfine
interaction (only the magnetic dipole term) in the molecule by
using a perturbative method.

1. The intermediate basis

Because we study the asymptotic range, we use the
atomic basis, namely, the linear combination of atomic
orbitals (LCAO) basis. In Hund’s case (c), the two 1g states,
associated with the projection M = ±1 of J = 1, can be
expressed as a linear combination of atomic states labeled
with |((n1l1j1),(n2l2j2))J,M〉, where ni denotes the principal
quantum number of the atom, li is the angular momentum, ji

is the total angular momentum defined by ji = li + si , with
si being the spin, and J is obtained by angular composition
of j1 and j2. With this notation, the 1g states lying above the
(5s1/2 + 5p1/2) asymptote are expressed by

|1gM = ±1〉 = 1√
2
{|(5s1/2,5p1/2)J = 1,M = ±1〉

+ |(5p1/2,5s1/2)J = 1,M = ±1〉}. (B1)

By taking into account the nuclear spin for each atom we
introduce the noncoupled basis defined by

|1gM = ±1〉|I1N1〉|I2N2〉, (B2)

where Ii = 3/2 is the 87Rb nuclear spin and Ni is its associated
projection. Thus we obtain 2 × 16 states.

2. Hyperfine interaction: Magnetic dipole term

A detailed description of the hyperfine interaction in a
homonuclear diatomic molecule can be found in Ref. [5]. We
consider the expression of the magnetic dipole term given
in Sec. 2.1α [36]. We denote the Hamiltonian describing the
hyperfine interaction of the system of two nuclei and two
electrons as Whf . We write Whf as an interaction term for
the nucleus denoted 1 and another one for the nucleus 2:
Whf = Hhf (1) + Hhf (2). Each term contains the interaction
between the two electrons and the nucleus and can be written
as scalar products of rank 1 tensor operators, Hhf (1) =
W0

∑
e=1,2 Q1(1,e)I 1(1), with the summation being over the

electrons. I 1(1) is the magnetic moment of nucleus 1. W0 is
a constant given byW0 = μ0

4π
gSgIμBμN , where μ0

4π
= 10−7 SI

(The International System of Units), gS and gI are the Landé
factors of the electron and the nucleus, and μB and μN are the
Bohr magneton and the nuclear magneton. Q1(1,e) is a tensor
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operator containing the electron variables, namely, the angular
momentum and the space variables, and can be expressed as
Q1(1,e) = 1

R3
1e

(L1 − √
10{S1C2}1) + 8π

3 δ(R1e)S1, where R1e

is the distance electron nucleus, L1 is the angular momentum
operator of the electron, S1 is the electron spin, and C2 is the
operator associated with the harmonic spherical functions Ym

2 .

Using the tensor operator components, we finally get

Whf = W0

∑
e=1,2

q=1∑
q=−1

[
Q1

q(1,e)I 1
−q (1) + Q1

q(2,e)I 1
−q(2)

]
.

(B3)

a. Matrix elements

In the perturbative approach the matrix elements that we have to evaluate are then

W (N1N
′
2N

′
1N

′
2) = 〈1gM = ±1|〈I1,N1|〈I2,N2|Whf |1gM = ±1〉|I1,N

′
1〉|I2,N

′
2〉,

W ′(N1N2N
′
1N

′
2) = 〈1gM = ±1|〈I1,N1|〈I2,N2|Whf |1gM = ∓1〉|I1,N

′
1〉|I2,N

′
2〉.

Using expression (B3), we deduce

W (N1N
′
2N

′
1N

′
2) = W0

∑
e=1,2

∑
q

{〈1gM = ±1|Q1
q(1,e)|1gM = ±1〉δN2,N

′
2
〈N1|I 1

−q(1)|N ′
1〉

+ 〈1gM = ±1|Q1
q(2,e)|1gM = ±1〉δN1,N

′
1
〈N2|I 1

−q(2)|N ′
2〉

}
,

W ′(N1N2N
′
1N

′
2) = W0

∑
e=1,2

∑
q

{ 〈
1gM = ±1

∣∣ Q1
q(1,e)

∣∣1gM = ∓1
〉
δN2,N

′
2
〈N1| I 1

−q(1)
∣∣N ′

1

〉

+〈1gM = ±1|Q1
q(2,e)|1gM = ∓1〉δN1,N

′
1
〈N2|I 1

−q(2)|N ′
2〉

}
.

Then by using the Wigner-Eckart theorem, the matrix elements can be expressed with 3j coefficients and reduced matrix elements
as

〈1gM = ±1|Q1
q(1,e)|1gM = ±1〉 = (−1)1∓1

(
1 1 1

∓1 q ±1

)
(1g‖Q1(1,e)‖1g) (B4)

〈1gM = ±1|Q1
q(1,e)|1gM = ∓1〉 = (−1)1±1

(
1 1 1

∓1 q ∓1

)
(1g‖Q1(2,e)‖1g) (B5)

In (B5) the 3j symbol is zero and implies W ′(N1N
′
2N

′
1N

′
2) = 0. In (B4) the 3j symbol is nonzero if q = 0. Then, because

〈n1|I 1
0 (1)|n1〉 = n1, one gets

W (N1N
′
2N

′
1N

′
2) = W0(−1)1∓1

(
1 1 1

∓1 0 ±1

) ∑
e=1,2

{δN2,N
′
2
(1g‖Q1(1,e)‖1g)N1 + δN1,N

′
1
(1g‖Q1(2,e)‖1g)N2}.

Using the formula ( j 1 j

−m 0 m) = (−1)j−m m√
j (j+1)(2j+1)

, we finally deduce for M = ±1 states that

W (N1N
′
2N

′
1N

′
2) = ±W0√

6

∑
e=1,2

{δN2,N
′
2
(1g‖Q1(1,e)‖1g)N1 + δN1,N

′
1
(1g‖Q1(2,e)‖1g)N2}. (B6)

Remark. We point out that, in such an approach, for 0−
g or 0+

u states, because J = 0,1 and M = 0, we get matrix elements

equal to zero because the expressions contain (0 1 0
0 0 0) or (1 1 1

0 0 0), which are null. That means that the correction due to the
hyperfine interaction is zero.
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b. Reduced matrix elements

In expression (B6) we just have to evaluate the reduced matrix element, which is expressed by

(1g‖Q1(1,e)‖1g) = 1
2 [(5s1/2,5p1/2J = 1‖Q1(1,e)‖5s1/2,5p1/2J = 1) + (5s1/2,5p1/2J = 1‖Q1(1,e)‖5p1/2,5s1/2J = 1)

+ (5p1/2,5s1/2J = 1‖Q1(1,e)‖5s1/2,5p1/2J = 1) + (5p1/2,5s1/2J = 1‖Q1(1,e)‖5p1/2,5s1/2J = 1)].

A similar expression is obtained for nucleus 2. The calculation of (1g‖Q1(1,2)‖1g) will involve the distance R12, which is on the
same order of magnitude as R and large compared to R11. Thus, for a long-range molecule, (1g‖Q1(1,1)‖1g)  (1g‖Q1(1,2)‖1g),
and we neglect the smallest term. Then, because Q1(1,1) operates on the first electron, we deduce

(1g‖Q1(1,1)‖1g) = (−1)( 1
2 + 1

2 +1+1)3

2

{
1 1 1
1
2

1
2

1
2

}
[(5s1/2‖Q1‖5s1/2)

+ (5s1/2‖Q1‖5p1/2) + (5p1/2‖Q1‖5s1/2) + (5p1/2‖Q1‖5p1/2)],

with Q1 being the atomic operator (one electron and one nucleus):Q1 = 1
r3 (L1 − √

10{S1C2}1) + 8π
3 δ(r1e)S1. Selection rules

due to the operator give (5s1/2‖Q1‖5p1/2) = (5p1/2‖Q1‖5p1/2) = 0. With {1 1 1
1
2

1
2

1
2
} = −1/3 one gets

(1g‖Q1(1,1)‖1g) = (1g‖Q1(2,2)‖1g) = 1
2 [(5s1/2‖Q1‖5s1/2) + (5p1/2‖Q1‖5s1/2)].

c. Atomic reduced matrix elements

The elements (5s1/2‖Q1‖5s1/2) and (5p1/2‖Q1‖5p1/2) are one-electron reduced matrix elements which appear in the hyperfine
energy calculation of the atomic hyperfine structure.

Let us consider the well-known hyperfine atomic splitting 5s1/2f = 1 − 5s1/2f = 2 and 5p1/2f = 1 − 5p1/2f = 2 with the
respective values �

hf

5s1/2
= 6.834 GHz and �

hf

5p1/2
= 0.816 GHz. For an atomic state denoted |n((lj )I )f Mf 〉, the hyperfine energy,

calculated by a similar approach, is

〈n((lj )I )f Mf |Whf |n((lj )I )f Mf 〉 = W0
f (f + 1) − j (j + 1) − I (I + 1)√

2j (2j + 1)(2j + 2)
(nlj‖Q1 ‖nlj ) ,

leading to

�
hf

5s1/2
= 4√

6
W0(5s1/2‖Q1‖5s1/2),

�
hf

5p1/2
= 4√

6
W0(5p1/2‖Q1‖5p1/2),

and then

(1g‖Q1(1,1)‖1g) = (1g‖Q1(2,2)‖1g) =
√

6

8W0

[
�

hf

5s1/2
+ �

hf

5p1/2

]
.

d. Hyperfine energy

Using such an approach, it is not required to calculate a radial integral, and the hyperfine energy in the large molecule is
therefore related to the atomic hyperfine splitting by

W (N1N
′
2N

′
1N

′
2) = 1

8

[
�

hf

5s1/2
+ �

hf

5p1/2

]
(N1 + N2)δN1,N

′
1
δN2,N

′
2
.

Let us define the energy spacing � = 1
8 [�hf

5s1/2
+ �

hf

5p1/2
] and NT = N1 + N2 to get the simple expression of the energy perturbation

as

�hf (NT ) = �NT .

e. Validity

The perturbative calculation is valid as soon as �hf (NT ) is weak compared to the binding energy of the molecule. In our
approach we have also neglected terms involving (1g‖Q1(1,2)‖1g) and (1g‖Q1(2,1)‖1g), whose order of magnitude is ∼ 1

R3 with
R ∼ 100 a.u. The element (1g‖Q1(1,1)‖1g) is evaluated by ∼ 1

r3 with r ∼ 1 a.u.
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