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We present improved theoretical calculations of transition frequencies for the fundamental transitions
(L = 0,v = 1) → (L′ = 0,v′ = 0) in the hydrogen molecular ions H2

+ and HD+ with a relative uncertainty
4 × 10−11 and for the two-photon transitions in the antiprotonic helium atom with a relative uncertainty 10−10. To
do that, the one-loop self-energy correction of order α(Zα)6 is derived in the two Coulomb center approximation,
and numerically evaluated in the case of the aforementioned transitions. The final results also include a complete
set of other spin-independent corrections of order mα7. The leading order corrections of α2 ln3(Zα)−2(Zα)6 are
also considered that allows one to estimate a magnitude of yet uncalculated contributions.
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I. INTRODUCTION

The few-body bound-state quantum electrodynamics is a
challenging problem. So far, a complete set of contributions
up to order mα6 has been obtained and calculated for the two-
electron heliumlike atoms [1], one-electron molecular ions
[2], and antiprotonic helium [3]. A contribution of mα7 order
including as well the nonlogarithmic part, has been obtained
for the fine structure of helium 23P level in [4]. Four-particle
systems were addressed in [5] (H2 and its isotopologues) and
in [6] (lithiumlike atoms). Recently, quantum electrodynamics
(QED) calculations up to mα5, and partially mα6 orders were
carried out for the beryllium atom with four electrons [7].

Progress in high-precision spectroscopy of three-body
molecular or moleculelike systems has opened new possi-
bilities for metrology of nucleus-to-electron mass ratios [8].
One-photon rovibrational transitions were observed in HD+
molecular ion with a relative uncertainty of 1–2 ppb [9,10].
Spectroscopy of two-photon transitions in antiprotonic helium
at the 2- to–5-ppb level yielded a new value of the antiproton-
to-electron mass ratio [11]. These experiments, as well as
others [12,13], are currently being developed towards higher
precision, which motivates the evaluation of higher-order
corrections in these systems. The importance of the mp/me

problem is supported by recent experiments [14] with rubidium
atoms, which allow one to deduce a new value of the fine
structure constant, α = e2/(�c), with a relative uncertainty
6.6 × 10−10. Further improvement may be hindered by the

present limits on the proton-to-electron mass ratio, which is
determined by the latest CODATA adjustment [15] with a
relative uncertainty 4.1 × 10−10 (see also [16]).

Theoretical calculation of the complete set of QED
corrections up to order mα6 has brought the theoretical
uncertainty down to 0.3–0.4 ppb in H2

+ or HD+ [2], and
about 1 ppb in antiprotonic helium [3]. Very accurate leading
order relativistic corrections are also available from [17].
In the present work, we compute the complete set of
mα7 order corrections including the one-loop self-energy
contribution, which represents the main source of theoret-
ical uncertainty. This allows us to improve the accuracy
by about one order of magnitude, thus making real the
possibility of improving the knowledge of nucleus-to-electron
mass ratios.

This paper is organized as follows: In Sec. II the one-loop
self-energy contribution at mα7 order for the hydrogenlike
atoms is considered and a general formula for an arbitrary (n,l)
state, derived from comparison of [18,19] and [20,21] results,
is presented. In Sec. III the low-energy part is reconsidered to
reformulate the result of Sec. II in a form which is then suitable
to be extended to the Coulomb two-center problem (Sec. IV A).
A list of other contributions in mα7 and mα8 orders, which
were also taken into account in the final results, are considered
in Sec. IV B. Then examples of numerical calculations for the
hydrogen isotope ions as well as for the antiprotonic helium
are given in Sec. V.

II. THE ONE-LOOP SELF-ENERGY CONTRIBUTION AT ORDER mα7. HYDROGENLIKE CASE

As a starting point of our consideration we take the general result of Refs. [18,19] for a bound electron in a field of external
Coulomb potential, V (r) = −Zα/r , written in the natural relativistic units (� = c = m = 1):
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where

HB = −p4

8
+ π

2
ρ + Hso, Hso = 1

4
σ ij∇ iVpj , 4πρ =�V, Hδ

so = 2iσ ijpi(∇2V )pj ,

and σ ij = [σ iσ j ]/(2i) = εijkσ k . Brackets denote averaging on the nonrelativistic bound state wave function ψ0, E0 and H =
p2/2 + V are, respectively, the nonrelativistic energy of the state and the nonrelativistic Hamiltonian. Here Q is a projector
operator on the subspace orthogonal to ψ0. LH is the low-energy photon contribution or the relativistic Bethe logarithm for the
hydrogen atom state (assuming Z = 1). The above result is valid for all states with nonzero angular momentum and for the
normalized difference of S states,

�n = n3�E(nS) − �E(1s).

A more general expression which would also be valid for individual S states, will differ from (1) only by a term proportional
to the delta function δ(r). To get the unknown contribution for the hydrogen case, we have to compare with the result of [20,21]
obtained for the 1S state of hydrogen. For this purpose, the expectation values in (1) which are divergent for individual S states
should first be regularized; we will use a regularization by cutoff of a small r spherical domain around the nucleus. Any two such
regularizations differ by a term proportional to the delta function, so that the result will still differ from an expression valid for
all states by a delta-function term.

To that end let us introduce two functionals Q and R,
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where

〈φ1|δ′(r)|φ2〉 = 〈φ1|r
r
∇δ(r)|φ2〉 = −〈∂rφ1|δ(r)|φ2〉 − 〈φ1|δ(r)|∂rφ2〉,

〈 〉r0
denotes integration outside a sphere of radius r0. The last line in Eqs. (2) and (3) contains an expectation value of Q (or R)

for nS states of hydrogenlike atoms. Using these expressions all divergent matrix elements appearing in Eq. (1) may be redefined
in a finite form:

〈4πρ p2〉fin = 8π (Zα)2R + 16π (Zα)3Q + 4E0〈V 2〉 − 2〈pV 2p〉 + 2E0〈4πρ〉, (4a)

〈[∇4V ]〉fin = −16π (Zα)2R − 32π (Zα)3Q − 8E0〈V 2〉 + 4〈pV 2p〉 + 2〈p(4πρ)p〉 − 4E0〈4πρ〉, (4b)

〈4πρ Q(E−H )−1QHB〉fin = 〈H ′(1) Q(E−H )−1QH ′(2)〉
+ 1

4

[
4π (Zα)2R + 16π (Zα)3Q + 8E0〈V 2〉 − 4E2

0〈V 〉 + 〈H (1)〉〈V 〉 − 8〈H (2)〉〈V 〉]. (4c)

In the last expression H (1) = 4πρ, H (2) = HB , which are transformed [23,24] as

H ′(1) = −(E0 − H0)U1 − U1(E0 − H0) + H (1)

H ′(2) = −(E0 − H0)U2 − U2(E0 − H0) + H (2)

to eliminate the divergent part from the second-order term, here U1 = 2V and U2 = − 1
4V .

Thus obtained expression should be compared with the complete result for a 1s state [20,21]:

�E(7)
se (1S) = α(Zα)6

π

{
− ln2[(Zα)−2] +

[
28

3
ln 2 − 21

20

]
ln[(Zα)−2] − 30.92414946(1)

}
, (5)

which yields [using L(1S) = −27.25990948(1) [18]],
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for the hydrogenlike atom.

III. THE LOW-ENERGY PART: REDEFINING THE RELATIVISTIC BETHE LOGARITHM TO ATOMIC UNITS

From this point and in what follows we will use atomic units, me = � = e = 1.
In expressions (1) and (6), the relativistic Bethe logarithm LH is defined using the energy scale Z2Eh, which is well suited

for the hydrogenic case, but becomes irrelevant for a system with two Coulomb centers of charges Z1, Z2. For this reason, we
have to redefine the relativistic Bethe logarithm L(Z,n,l) in atomic units.

The low-energy part has been considered in more detail in [22]. Here we will try to elucidate only the key points of the
derivation.

The relativistic Bethe logarithm is determined in integral form as follows:

L(Z,n,l) = 2

3

∫ Eh

0
kdkP

(1)
α2 (k) + 2

3

∫ ∞

Eh

kdkP
(2)
α2 (k), (7)

where Eh is the Hartree energy.
The integrand is a function of energy and is a sum of various contributions:
(a) relativistic corrections to the wave function,

P (1)
rc (k) = 2〈HBQ(E0 − H )−1Qp(E0 − H − k)−1p〉 + 〈p(E0 − H − k)−1(HB − 〈HB〉)(E0 − H − k)−1p〉; (8)

(b) modification of the vertex interactions,

P (2)
rc (k) = 〈( − p2pi − 1

2σ ij∇jV
)
(E0 − H − k)−1pi

〉
; (9)

(c) nonrelativistic quadrupole contribution,
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dn(δij −ninj ){〈pi(n · r)(E0−H −k)−1(n · r)pi〉 − 〈pi(n · r)2(E0−H −k)−1pi〉}, (10)

where k = kn.
The complete contribution is Pα2 (k) = P (1)

rc (k) + P (2)
rc (k) + Pnq(k). Its asymptotic expansion for large k may be written in

operator form up to terms of O(1/k2) (see Appendix for asymptotic expansion of separate contributions):
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The finite expectation values are defined in a similar way as in the previous section, taking into account that the functionals
Q and R should be accordingly modified:

Q = lim
r0→0

{〈
1

4πr3

〉
r0
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As is discussed in [18,22] we have to subtract the leading terms of expansion (11):

P
(1)
α2 (k) = Pα2 (k) − Fα2 − Aα2

k
− Bα2

k3/2
, (14a)

and

P
(2)
α2 (k) = Pα2 (k) − Fα2 − Aα2

k
− Bα2

k3/2
− Cα2 ln k

k2
− Dα2

k2
. (14b)

Constants F , A, B, C, and D are taken by evaluating expectation values of operators appearing in the expansion (11) for the
nonrelativistic wave function of a particular state.
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The previous definition of the relativistic Bethe logarithm LH assumes scaling to (Zα) = 1, and thus it may be expressed in
atomic units as

LH (n,l) = Z−6
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]
. (15)

Comparing (15) with (7) one gets a relation between the two definitions of the relativistic Bethe logarithm:
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, (16)

and now substituting this into expression (6) we immediately get the general expression for the one-loop self-energy correction
in the mα7 order in atomic units:
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This formula is quite general and may be extended to the case of external electric field of two (or more) Coulomb sources. One
may check that the above expression matches the result of Erickson and Yennie for the logarithmic term for an arbitrary nS state
of the hydrogen atom [25].

IV. COULOMB TWO-CENTER PROBLEM

A. One-loop self-energy

For the case of the two-center Coulomb problem one needs
to replace the delta-function distribution, Z2〈πρ〉, in the last
line of Eq. (17) by a distribution:

Vδ = π
[
Z3

1δ(r1) + Z3
2δ(r2)

]
. (18)

To present our results we will adopt a similar notation as
for hydrogenlike ions [26]:

�E(7)
se = α5

π
〈Vδ〉[A62 ln2[α−2] + A61 ln[α−2] + A60], (19)

where A62 = −1; expressions for A61 and A60 coefficients are
obtained by comparison between Eqs. (17) and (19).
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[(
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]/
〈Vδ〉. (20)

Since we are interested in the spin-independent part of
transition frequency we have dropped out the terms from
Eq. (17), which correspond to the spin-orbit interaction. They
will be considered elsewhere.

The coefficients A61 and A60 now may be calculated by
averaging of the “effective” potentials over the vibrational
wave function of a three-body state (see Sec. V and Figs. 1
and 2).
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FIG. 1. The coefficients A61(R) and A60(R) for the ground (1sσ ) electronic state of the two-center problem (Z1 = Z2 = 1, H2
+ case) as a

function of a bond length R.

B. Other contributions

In addition to the one-loop self-energy correction, we
computed several other contributions at orders mα7 and mα8,
which did not require extensive calculations. Using the results
from [27] we see that most of the terms are proportional to
|�(0)|2.

To better identify the most relevant terms, we give numeri-
cal values of all the correction terms to the fundamental vibra-
tional transition frequency (v = 0,L = 0) → (v = 1,L = 0)
in H2

+ (see Sec. V for details on the numerical calculations).
For comparison, the one-loop self-energy term we have just
obtained gives a contribution:

�E(7)
se ≈ 125 ± 2 kHz. (21)

The uncertainty here is primarily due to numerical inaccuracy
in the calculated data for the relativistic Bethe logarithm [22].

(1) The one-loop vacuum polarization,

�E(7)
vp = α5

π
[V61 ln(Zα)−2 + V60]〈Vδ〉 ≈ 2.9 kHz. (22)

For S states in the hydrogen atom these coefficients are

V61(nS) = − 2

15
, [29]

V60(nS) = 4

15

[
−431

105
+ ψ(n + 1) − ψ(1)

− 2(n − 1)

n2
+ 1

28n2
− ln

n

2

]
. [30,31]

The coefficient V61 does not depend on n; the logarithmic
contribution is thus proportional to the delta function. To
estimate the nonlogarithmic contribution in (22), we use the
approximate electronic wave function ψe(re) ≈ N [ψ1s(r1)+
ψ1s(r2)], where ψ1s is the ground-state wave function of the
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FIG. 2. The coefficients A61(R) and A60(R) for the ground (1sσ ) electronic state of the two-center problem (Z1 = 2, Z2 = −1, He+p̄

case) as a function of a bond length R.
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hydrogen atom. The coefficient V60 for the 1S state is equal to
−0.63357.

In fact, the latter term should be calculated numerically
for the three-body case. But the contribution itself is of order
1 kHz and this simple approximation provides a good estimate.

(2) The Wichman-Kroll contribution [32],

�E
(7)
WK = α5

π
W60 〈Vδ〉 ≈ −0.1 kHz. (23)

Here W60(nS) = 19
45 − π2

27 .
(3) The complete two-loop contribution [33],

�E
(7)
2loop = α5

π
[B50]

〈
Z2

1δ(r1)+Z2
2δ(r2)

〉 ≈ 10.1 kHz. (24)

Here B50 = −21.55447(12), this contribution is valid for a
bound electron in an arbitrary configuration of few pointlike
Coulomb sources.

(4) The three-loop contribution is already negligible. For
the hydrogen molecular ion fundamental transition it gives
[34–36]

�E
(7)
3loop = α5

π2
[0.42]〈Z1δ(r1)+Z2δ(r2)〉 ≈ −60 Hz. (25)

The above is the complete set of contributions at mα7 order
in the nonrecoil limit.

In the next order (mα8) we evaluate only the leading
ln3(Zα)−2 contribution. It represents the second-order pertur-
bation with two one-loop self-energy operators (mα2(Zα)6)
[37]:

�E
(8)
2loop = α6

π2

[
− 8

27

]
ln3(Zα)−2〈Vδ〉 ≈ 1 kHz. (26)

Using its value we determine the theoretical uncertainty of yet
uncalculated terms in the mα8 order and higher.

V. NUMERICAL RESULTS

The numerical approach to the two-center problem has been
already described in [22,28]; briefly, the following expansion
for the electronic wave function is used:

�m(r1,r2) = eimϕr |m|
∞∑
i=1

Cie
−αir1−βir2 , (27)

where r is the distance from the electron to the z axis and φ

the azimuthal angle. For Z1 = Z2 the variational wave function
should be symmetrized:

�m(r1,r2) = eimϕr |m|
∞∑
i=1

Ci(e
−αir1−βir2 ± e−βir1−αir2 ), (28)

where (+) is used to get a gerade electronic state and (−) is
for an ungerade state, respectively. Parameters αi and βi are
generated in a quasirandom manner.

We calculated mean values for all operators appearing in
Eq. (20) for the ground (1sσ ) electronic state of the two-center
problem, both for Z1 = Z2 = 1 (H2

+ and HD+ case) and Z1 =
2, Z2 = −1 for the antiprotonic helium. In this way we obtain
the coefficients A60 and A61 (see Figs. 1 and 2) as well as the
other contributions given in Sec. IV B in the form of effective
electronic potential curves.

TABLE I. Summary of contributions to the (v = 0,L = 0) →
(v′ = 1,L′ = 0) fundamental transition frequency of H2

+ and HD+

molecular ions (in MHz).

H+
2 HD+

�Enr 65 687 511.0714 57 349 439.9733
�Eα4 1091.0397 958.1510
�Eα5 −276.5450 −242.1263
�Eα6 −1.9969 −1.7481
�Eα7 0.138(2) 0.120(2)
�Eα8 0.001(1) 0.001(1)

�Etot 65 688 323.708(2) 57 350 154.371(2)

We then averaged these electronic curves over vibrational
wave functions in order to obtain energy corrections for
individual states. Adding these new results to previously
calculated contributions [2,3], one obtains precise theoretical
predictions for the frequencies of experimentally relevant
transitions (see Tables I and II). Nonrelativistic energies and
leading order corrections were obtained with the CODATA10
[15] recommended values. It is necessary to note that we
used improved calculations for the leading order relativistic
corrections (mα4) and newly obtained values for the Bethe
logarithm [38], which were the major source of inaccuracy in
the leading order radiative corrections (mα5). That allowed
us to significantly reduce numerical uncertainties in the
contributions at these orders.

In the mα7 order the uncertainty on the contribution stems
from numerical uncertainty in calculation of the relativistic
Bethe logarithm [22]. The recoil terms are already negligible
at order α6(m/M), where they contribute about 300 Hz to the
fundamental transitions of the hydrogen molecular ion.

The contribution from the finite charge distributions of nu-
clei deserves special discussion. For the fundamental transition
in the H2

+ ion the CODATA10 uncertainty results in 250 Hz
uncertainty for the transition energy. If we use instead the
charge radius from the muonic hydrogen measurements [40],
the frequency will move by 3 kHz; rovibrational spectroscopy
of H2

+ is thus sensitive to the discrepancy between determi-
nations of the proton radius. The CODATA10 uncertainty due
to the deuteron rms charge radius for the HD+ fundamental
transition is 215 Hz and is so far negligible. In the antiprotonic
helium the value of the rms charge radius of the alpha particle
is taken from [41] and results in a frequency uncertainty of
7 kHz, while the corresponding uncertainty from the antiproton
rms charge radius is more than order of magnitude less, the
antiproton-electron interaction being repulsive.

TABLE II. Summary of contributions to the (36,34) → (34,32)
transition frequency of the 4He+p̄ atom (in MHz).

�Enr 1 522 150 208.13
�Eα4 −50 320.64
�Eα5 7 070.28
�Eα6 113.11
�Eα7 −10.46(20)
�Eα8 −0.12(12)

�Etotal 1 522 107 060.3(2)
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TABLE III. Comparison with most accurate experimental mea-
surements of transition frequencies for HD+ and antiprotonic helium
(in MHz). The two transitions [13,42] are currently studied experi-
mentally and for convenience of future comparison we present our
theoretical values for these transitions.

Experiment Theory

HD+(v,L)

(0,2) → (4,3) [9] 214 978 560.6(5) 214 978 560.948(8)
(0,0) → (1,1) [10] 58 605 052.00(6) 58 605 052.156(2)
(0,0) → (0,1) [42] — 1 314 925.7523(1)
(0,2) → (8,3) [13] — 383 407 177.150(15)
4He+p̄ (n,L) [11]

(36,34)→ (34,32) 1 522 107 062(4) 1 522 107 060.3(2)
(33,32)→ (31,30) 2 145 054 858(5) 2 145 054 858.1(2)
3He+p̄ (n,L)

(35,33)→ (33,31) 1 553 643 100(7) 1 553 643 102.4(3)

At present most accurate experimental results are available
for the HD+ molecular ion and for the antiprotonic helium.
In Table III we compare our new theoretical results with the
best experimental ones. Agreement is excellent in all cases
except for the v = 0 → v = 1 transition in HD+ where the
discrepancy is 2.6 σexp. It is difficult to say what the reason is
for such a difference, but it is necessary to say that it remains if
we exclude the mα7 order contribution, and keep only the terms
up to and including mα6. The most conceivable explanation is
that some systematic effect has been missed from the analysis
of the experimental data.

VI. CONCLUSION

We have completed the calculation of the α7-order one-
loop self-energy correction in two-center systems, and used
these results to obtain new predictions of experimentally
relevant rovibrational transition frequencies for the three-
body molecular type systems. The theoretical uncertainty has

been improved by about one order of magnitude to reach a
level of 0.03 ppb in molecular hydrogen ions (respectively,
0.13 ppb in the antiprotonic helium). The achieved accuracy
already allows for improved determination of the proton-
and antiproton-to-electron mass ratios [15], and may still be
improved further as discussed above. Particularly, as a first
step we intend to improve the relativistic Bethe logarithm
calculations using the asymptotic expansions for Prc(k), and
Pnq(k) functions presented in the Appendix. That may result in
reducing uncertainty in the one-loop self-energy contribution
by a factor of three and reduce theoretical relative uncertainty
for vibrational transitions to 10−11.
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APPENDIX: ASYMPTOTIC EXPANSION OF P (1)
rc (k),

P (2)
rc (k), AND Pnq(k)

Here we present without proof the results for the asymptotic
expansion of the functions defined in Eqs. (8)–(10), which
appear in the integrand of (7). Of particular importance is
the term of order 1/k2, which contributes to the α6 ln α part
of Eq. (17). It is finite and the πZ3 〈δ(r)〉 “counterterm” is
determined by the choice of regularization of the divergent
operators. As in [22] we separate P (1)

rc into two parts:

P (1a)
rc (k) = 〈p(E0−H −k)−1(HB −〈HB〉),(E0−H −k)−1p〉,

(A1a)

P (1b)
rc (k) = 2〈HBQ(E0−H )−1Qp,(E0−H −k)−1p〉. (A1b)

In the following expressions, the second line gives the
numerical values of the asymptotic expansion coefficients for
the 1S state of the hydrogen atom.

P (1a)
rc (k) = −

√
2

k3/2
πZ2〈δ(r)〉+ 8 ln 2−13

2k2
πZ3〈δ(r)〉 + 1

16k2
〈(∇4V )〉fin − 1

k2
〈(HB −〈HB〉)∇2〉fin + . . .

= −
√

2

k3/2
+ 8 ln 2 + 1

2k2
+ . . . , (A2)

P (1b)
rc (k) = 2

k
〈(HB −〈HB〉)(E0−H )−1∇2〉 + 2

√
2

k3/2
πZ2〈δ(r)〉 + ln k

k2
πZ3〈δ(r)〉 + 5 ln 2−1

k2
πZ3〈δ(r)〉

+ 1

k2
〈(HB −〈HB〉)(E0−H )−1(∇2V )〉fin + 1

k2
〈(HB −〈HB〉)∇2〉fin + . . .

= −2

k
+ 2

√
2

k3/2
+ ln k

k2
+ 3 ln 2 − 6

k2
+ . . . , (A3)

P (2)
rc (k) = 〈∇4〉

k
− 8

√
2

k3/2
πZ2〈δ(r)〉 + 4 ln k

k2
πZ3〈δ(r)〉

− 12 ln 2 + 4

k2
πZ3〈δ(r)〉 − 1

2k2
〈(∇2V )p2〉fin − 1

k2
〈(∇V )2〉fin + . . .

= 5

k
− 8

√
2

k3/2
+ 4 ln k

k2
− 20 ln 2−18

k2
+ . . . , (A4)
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Pnq(k) = −1

2
〈∇2〉 − 1

5k
〈∇4〉 − 1

2k
〈(∇2V )〉 + 8

√
2

k3/2
πZ2〈δ(r)〉 − 8 ln k

k2
πZ3〈δ(r)〉

+ 40 ln 2 + 76

5k2
πZ3〈δ(r)〉 + 2

k2
〈(∇V )2〉fin + 3

40k2
〈(∇4V )〉fin + 1

2k2
〈(∇2V )p2〉fin

= 1

2
− 3

k
+ 8

√
2

k3/2
− 8 ln k

k2
+ 24 ln 2−10

k2
+ . . . . (A5)

The sum of these terms makes up the result given in Eq. (11).
It is worth noting here that this is the main point where we differ from the approach used in [18], where the formal expansion

over 1/k has been used:

1

E0−H −k
= −1

k
− E0−H

k2
− (E0 − H )2

k3
+ . . . , (A6)

which gives divergent matrix elements for individual S states in the hydrogenlike atom, but still the “normalized difference” �n

is finite. This formalism is enough to get a complete result for arbitrary states in the hydrogen atom [see Eq. (3.43) and Table 1
of Ref. [18]], but not suitable for our generalization. So we took another way, which is to derive an appropriate approximation
to the ψ1 function,

ψ1 = (E0−H −k)−1 ip ψ0, (A7)

where ψ0 is a stationary solution of the Schrödinger equation. ψ1 is a regular function at small r thus providing finite expectation
values for the operators appearing at 1/k2 order. This procedure is very similar to what was used to obtain the asymptotic
expansion for the nonrelativistic Bethe logarithm in [39].
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N. Zurlo, Nature (London) 475, 484 (2011).

[12] J.-Ph. Karr, A. Douillet, and L. Hilico, Appl. Phys. B 107, 1043
(2012).

[13] J. C. J. Koelemeij, D. W. E. Noom, D. de Jong, M. A. Haddad,
and W. Ubachs, Appl. Phys. B 107, 1075 (2012).
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