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Ground-state hyperfine splitting in the Be+ ion
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Relativistic and QED corrections are calculated for the hyperfine splitting (hfs) in the 2S1/2 ground state of
9Be+ ions with an exact account for electronic correlations. The achieved accuracy is sufficient to determine the
finite nuclear size effects from the comparison to the experimental hfs value. The obtained results establish the
ground to determine the neutron halo in 11Be.
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I. INTRODUCTION

High-precision atomic spectroscopy makes possible the
accurate determination of the electromagnetic properties of
nuclei, including short-lived exotic isotopes. The best known
example is the mean-square nuclear charge radius, which
can be obtained from the isotope shift of atomic transition
energies [1]. Here, we develop a computational technique for
the determination of magnetic properties of nuclei, which can
be obtained from hyperfine splitting. Apart from the magnetic
moment, they are very much unknown. The atomic hyperfine
splitting is sensitive to the distribution of the magnetic moment
and, to some extent, to combined polarizabilities. Altogether it
can be expressed in terms of the effective Zemach radius r̃Z [2].
The results recently obtained for 6,7Li indicate that r̃Z(6Li) is
more than 40% smaller than r̃Z(7Li), which is not necessarily
easy to understand. This significant difference can probably
be resolved only by detailed nuclear structure calculations.

In this work we perform analogous, accurate calculations
of hyperfine splitting in the 2S1/2 ground-state Be+ ions, in
order to determine r̃Z for 7,9,11Be isotopes. Since the magnetic
moment is known for 9Be, we can compare r̃Z(9Be) with
theoretical predictions here. For other 7,11Be isotopes our
calculations lay the foundation for the determination of r̃Z ,
once the magnetic moment is experimentally known. It would
be very interesting to confirm the large neutron halo in 11Be
using atomic spectroscopy measurements, and to study the
dependence of Bohr-Weisskopf effects on the isotope.

Our computational approach is based on explicitly corre-
lated basis functions. This allows us to accurately solve the
Schrödinger equation, while relativistic and QED effects are
calculated perturbatively in terms of expectation values with
the nonrelativistic wave function.

II. EFFECTIVE HAMILTONIAN

Hyperfine splitting is a result of the interaction between the
nuclear magnetic moments of atomic nuclei and electrons.
In the nonrelativistic QED approach, relativistic and QED
corrections are expressed in terms of an effective Hamiltonian,
so the expansion in the fine-structure constant α is of the form

Ehfs = 〈
H

(4)
hfs

〉 + 〈
H

(5)
hfs

〉 + 2

〈
H (4) 1

(E − H )′
H

(4)
hfs

〉

+ 〈
H

(6)
hfs

〉 + 〈
H

(6)
rad

〉 + 〈
H

(7)
hfs

〉 + · · · , (1)

where H (n) ∼ mαn, and the nonrelativistic Hamiltonian in the
clamped nucleus limit and the nonrelativistic energy of the
ground state are H and E, respectively. Higher-order terms,
denoted by dots, are neglected as the highest-order term H

(7)
hfs

will be calculated in an approximate way.

A. Leading-order hfs

The leading interaction H
(4)
hfs of order mα4 between the

nuclear spin �I and electron spins �σa is obtained from the
nonrelativistic coupling of electrons to the electromagnetic
field

H
(4)
hfs = −

∑
a

e

m
�pa · �A(�ra) − e

2m

g

2
�σa · �B(�ra), (2)

with �A and �B fields derived from the nuclear magnetic
moment �μ,

e �A(�r) = e

4π
�μ × �r

r3
= −Zα

gN

2M
�I × �r

r3
, (3)

eBi(�r) = (∇ × �A)i = −Zα
gN

2M

8π

3
δ3(r)I i

+Zα
gN

2M

1

r3

(
δij − 3

rirj

r2

)
I j . (4)

After some simplifications, Eq. (2) becomes

H
(4)
hfs = ε

(
g

2
HA

hfs + HB
hfs + HC

hfs

)
, (5)

HA
hfs ≡

∑
a

�I · �σaH
A
a,hfs =

∑
a

4Zα

3m3
�I · �σaπδ3(ra), (6)

HB
hfs ≡ �I · �HB

hfs =
∑

a

Zα

m3
�I · �ra × �pa

r3
a

, (7)

HC
hfs ≡ I iσ j

a H
Cij

a,hfs

=
∑

a

− Zα

2m3

I iσ
j
a

r3
a

(
δij − 3

ri
ar

j
a

r2
a

)
, (8)

where

ε = m2

M

gN

2
, (9)
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M (m) are masses, and gN (g) are g factors of the nucleus
(electron). The relation of gN to the magnetic moment μ of the
nucleus with charge Z is

gN = M

Zmp

μ

μN

1

I
, (10)

where μN is the nuclear magneton and I is the nuclear spin.
The only nonvanishing term in the ground state HA

hfs is well
known as the Fermi contact interaction. Expectation values of
HB

hfs and HC
hfs contribute in the second order of perturbation

calculus. In principle these terms also involve the electron g

factor, but here we set g = 2.

B. Correction of order mα5

Correction 〈H (5)
hfs 〉 of order mα5 is a Dirac-δ interaction

with the coefficient obtained from the two-photon forward-
scattering amplitude. It has the same form as in hydrogen
and depends on the nuclear structure. At the limit of a point
spin-1/2 nucleus, it is

H
(5)
hfs = −HA

hfs
3Zα

π

m

mN
ln

(
mN

m

)
≡ H (5)

rec , (11)

a small nuclear recoil correction. For a finite-size nucleus H
(5)
hfs

does not vanish at the nonrecoil limit. When assuming a heavy
and rigid nucleus, H

(5)
hfs takes the form

H
(5)
hfs = εHA

hfs(−2ZαmrZ), (12)

where

rZ =
∫

d3r d3r ′ρE(r)ρM (r ′)|�r − �r ′| (13)

and ρE and ρM are electric charge and magnetic-moment
density. The inelastic contribution, usually neglected, is
sometimes important. Since it depends on nuclear excitations,
this correction is very difficult to estimate and usually limits
the precision of theoretical predictions. For this reason, we
will interpret our calculation using experimental values as
a determination of the effective Zemach radius according to
Eq. (12), where rZ is replaced by r̃Z .

C. Relativistic correction of order mα6

The first term for the relativistic correction of order mα6 in
Eq. (1) comes from a perturbation of the wave function by the
Breit-Pauli Hamiltonian H (4) in the nonrecoil limit:

H (4) = HA + HB + HC, (14)

HA ≡
∑

a

HA
a =

∑
a

[
− p4

a

8m3
+ Zαπ

2m2
δ3(ra)

]

+
∑
a>b

[
πα

m2
δ3(rab) − α

2m2
pi

a

(
δij

rab

+ ri
abr

j

ab

r3
ab

)
p

j

b

]
,

(15)

HB ≡
∑

a

�σa · �HB
a =

∑
a

Zα

4m2

�ra

r3
a

× �pa · �σa

+
∑
a �=b

α

4m2

�rab

r3
ab

× (2 �pb − �pa) · �σa, (16)

HC ≡
∑
a>b

σ i
aσ

j

b H
Cij

ab =
∑
a>b

α

4m2

σ i
aσ

j

b

r3
ab

(
δij − 3ri

abr
j

ab

r2
ab

)
.

(17)

The next term, H (6)
hfs , includes nuclear spin-dependent operators

that contribute at order mα6. In hydrogenic systems it leads
to the so-called Breit correction. For three-electron atoms this
term was first derived in Ref. [3] and recently rederived and
simplified in [2]. The result is

H
(6)
hfs = ε

∑
a

�σa · �I
[

(Zα)2

6m4

1

r4
a

− Zα

12m5

{
p2

a,4πδ3(ra)
}

+
∑
b �=a

Zα2

6m4

�rab

r3
ab

·
(

2
�rb

r3
b

− �ra

r3
a

)]
, (18)

where braces denote an anticommutator. The resulting
operators are divergent, and in the next section we describe
the cancellation of singularities with those in second-order
matrix elements.

D. Radiative corrections of order mα6,7

H
(6)
rad in Eq. (1) is a QED radiative correction [4,5]

H
(6)
rad = HA

hfsα(Zα)
(
ln 2 − 5

2

)
, (19)

which is similar to that in hydrogen. There are no further
corrections of this order, so all terms at mα6 are known exactly.

The last term E
(7)
hfs of order mα7 is calculated approximately

using the hydrogenic value for the one-loop correction from [6]
and the two-loop correction from [5],

H
(7)
hfs = HA

hfs

[
α

π
(Zα)2

(
−8

3
ln2(Zα)

+ a21 ln(Zα) + a20

)
+ α2

π
(Zα)b10

]
, (20)

where a21(2S) = −1.1675, a20(2S) = 11.3522, and b10 =
0.771 652.

E. Hyperfine structure constant

The hyperfine splitting can be expressed in terms of the
hyperfine constant A

Ehfs = �I · �JA, (21)

where �J is the total electronic angular momentum. If we use
the notation that Hhfs = �I · �Hhfs, then

A = 1

J (J + 1)
〈 �J · �Hhfs〉. (22)
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The expansion of A in α takes the form

A = ε

(
g

2
α4A(4) +

∞∑
n=5

αnA(n)

)
. (23)

All the results of numerical calculations will be presented here
in terms of dimensionless coefficients A(n). The leading-order
term A(4) obtained from Eq. (6) is in turn expanded in the
reduced electron mass μ to the nuclear mass M ratio

A(4) = 1

J (J + 1)

4πZ

3

〈
�J · �σa

[
δ3(ra)

− μ

M
(3δ3(ra) + 2[δ3(ra)]mp)

]〉
(24)

= A(4,0) − μ

M
A(4,1). (25)

The finite mass correction due to mass scaling of the δ3(ra)
operator is included into A(4,1), as well as the second-order
element with the mass polarization correction to the wave
function

[δ3(ra)]mp = δ3(ra)
1

(H − E)′
∑
b>c

�pb · �pc. (26)

The next to leading correction A(5) and all others are obtained
in the leading order in the mass ratio, so that

A(5)
rec = −A(4) 3Z

π

m

mN
ln

(
mN

m

)
, (27)

A(5) = A(4)(−2Zmr̃Z). (28)

The most demanding part of the calculation is the correction of
order mα6 given by A(6). Due to the symmetry of intermediate
states in the second-order matrix element of Eq. (1), the A,
B, and C parts of the hfs Hamiltonian give the nonvanishing
contributions with the corresponding A, B, and C parts of
Eq. (14). Of note, the matrix element of the first-order term in
Eq. (18) and the second-order A terms are divergent separately
at small ra . However, these divergences can be eliminated in
the sum of both terms denoted by A

(6)
AN . So the complete A(6)

is of the form

A(6) = A
(6)
AN + A

(6)
B + A

(6)
C + A

(6)
R , (29)

A
(6)
AN = 2

J (J + 1)

〈∑
a

�J · �σaH
A
a,hfs

1

(E − H )′
HA

〉

+ 1

J (J + 1)

〈
�J · �σa

[
Z2

6

1

r4
a

− 2Z

3
p2

aπδ3(ra)

+
∑
b �=a

Z

6

�rab

r3
ab

·
(

2
�rb

r3
b

− �ra

r3
a

)]〉
, (30)

A
(6)
B = 2

J (J + 1)

〈
�J · �HB

hfs
1

(E − H )′
HB

〉
, (31)

A
(6)
C = 2

J (J + 1)

〈∑
a

J iσ j
a HCij

a

1

(E − H )′
HC

〉
, (32)

A
(6)
R = A(4)

(
ln 2 − 5

2

)
, (33)

and the higher-order term is

A(7) = A(4)

[
Z2

π

(
−8

3
ln2(Zα) + a21 ln(Zα) + a20

)

+Z

π
b10

]
. (34)

III. CALCULATIONS

A. Cancellation of singularities in A(6)
AN

The operators in Eq. (30) are transformed with the use of

4πδ3(ra) ≡ 4π [δ3(ra)]r −
∑

a

{
2

ra

,E − H

}
, (35)

HA ≡ [HA]r + 1

4

∑
a

{
Z

ra

,E − H

}
. (36)

Regularized operators [HA]r and [δ3(ra)]r have exactly the
same expectation value as the operator inside the square
brackets if the exact wave function is used. From Eq. (35)
and Eq. (36) we can obtain the following formulas:

4π [δ(ra)]r = 4(E − V )
1

ra

− 2
∑

b

�pb

1

ra

�pb, (37)

[HA]r =
∑

a

[
−1

8

[
p4

a

]
r
+ 1

2
pi

a

(
V + Z

2

∑
b

1

rb

)
pi

a

]

−
(

V + Z

2

∑
b

1

rb

)
(E − V )

+
∑
a>b

[
3πδ3(rab) − 1

2
pi

a

(
δij

rab

+ ri
abr

j

ab

r3
ab

)
p

j

b

]
,

(38)

∑
a

[
p4

a

]
r

= 4(E − V )2 − 2
∑
a>b

�p 2
a �p 2

b . (39)

After this transformation both the first- and second-order
matrix elements in A

(6)
AN become separately finite:

A
(6)
AN = A

(6)
A + A

(6)
N , (40)

A
(6)
A = 2

J (J + 1)

〈 ∑
a

�J · �σa

[
HA

a,hfs

]
r

1

(E − H )′
[HA]r

〉
,

A
(6)
N = 1

J (J + 1)

〈
�J · �σa

Z

6

[
1

ra

∑
b

p4
b − 4πδ3(ra)p2

a

+
∑
b �=a

�rab

r3
ab

·
(

2
�rb

r3
b

− �ra

r3
a

)
+ 4πZ

∑
b �=a

(
δ3(ra)

rb

−δ3(rb)

ra

)
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− 2

ra

∑
b>c

4πδ3(rbc) + 4
∑
b>c

pi
b

1

ra

(
δij

rbc

+ ri
bcr

j

bc

r3
bc

)
pj

c

− 4πZδ3(ra)

〈∑
b

1

rb

〉
+ 8

ra

〈HA〉
]〉

. (41)

It is still necessary, however, to remove apparent singularities
in some of the first-order operators by repeated use of the
Schrödinger equation, namely〈

1

ra

∑
b

p4
b − 4πδ3(ra)p2

a

〉

=
〈
−2

∑
b;b �=a

�rab

r3
ab

· �ra

r3
a

+ 4

ra

[
(E − V )2 − Z2

r2
a

]

− 2
∑

b,c;b>c

p2
b

1

ra

p2
c + 2Z �pa

1

r2
a

�pa

+
[

8πδ3(ra)+4Z

r2
a

] ( ∑
b;b �=a

p2
b

2
+V +Z

ra

−E

)〉
. (42)

In this form, all matrix elements with the nonrelativistic wave
function can safely be calculated.

B. Wave function and first-order operators

The wave function for a lithiumlike system in the ground
state is represented as a linear combination of ψ terms, the
antisymmetrized product of S-symmetry spatial φ, and doublet
spin functions [7],

ψ = 1√
6
A[φ(�r1,�r2,�r3)[α(1)β(2) − β(1)α(2)]α(3)], (43)

where A denotes antisymmetrization with respect to electron
variables, and the spin functions are defined by σzα(·) = α(·)
and σzβ(·) = −β(·).

Until now, the most accurate nonrelativistic wave functions
for lithiumlike systems were obtained using the Hylleraas-type
basis functions [7–11] with elements of the form

φH (�r1,�r2,�r3) = r
n1
23r

n2
31r

n3
12r

n4
1 r

n5
2 r

n6
3 e−α1r1−α2r2−α3r3 , (44)

with non-negative integers nk . We use the wave function
obtained variationally [11] to evaluate most of the first-order
matrix elements of the hyperfine structure operators, including
the Fermi contact term in Eq. (24). Such matrix elements can
be expressed as a linear combination of Hylleraas integrals,
defined as

f (n1,n2,n3,n4,n5,n6) =
∫

d3r1

4π

∫
d3r2

4π

∫
d3r3

4π

× r
n1−1
23 r

n2−1
31 r

n3−1
12 r

n4−1
1 r

n5−1
2 r

n6−1
3

× e−w1r1−w2r2−w3r3 . (45)

In a series of papers, we have formulated an analytic
method for calculations of Hylleraas integrals with recursion
relations [7,12,13], which is sufficient for the evaluation of
energy levels including corrections up to mα5 order [14,15].
At higher orders, additional classes of Hylleraas integrals
are necessary, e.g., f (−1,−1,n3,n4,n5,n6). These difficult

TABLE I. Symmetrization coefficients in matrix elements.

(k,l,m) cklm cA
klm cF1

klm cF2
klm cF3

klm

(1,2,3) 2 1 0 0 2
(1,3,2) −1 −1 1 −1 −1
(2,1,3) 2 1 0 0 2
(2,3,1) −1 −1 −1 1 −1
(3,1,2) −1 1 1 −1 −1
(3,2,1) −1 −1 −1 1 −1

integrals have been solved with the use of Neumann-type
expansions [16], but this approach is not effective enough
in large-scale calculations. There is also an exceptional group
of operators of A

(6)
N with accompanying Dirac-δ operators.

We are not able to regularize them by rewriting in a form
analogous to Eq. (37). However, the direct treatment of Dirac-δ
is applicable in the Hylleraas basis set, where the matrix
elements are expressed in terms of well-known two-electron
integrals [17–19].

It has been demonstrated recently [2] that matrix elements
of some complicated operators, which are intractable in
the Hylleraas basis, can be calculated with exponentially
correlated Gaussian (ECG) functions [20],

φG(�r1,�r2,�r3) = e−α1r
2
1 −α2r

2
2 −α3r

2
3 −β1r

2
23−β2r

2
13−β3r

2
12 . (46)

Even if the wave function in the ECG basis decays too fast
at long interparticle distances and fails to correctly satisfy the
Kato cusp condition, it can be sufficiently accurate to obtain
matrix elements of these complicated hfs operators with at
least 4–5-digit precision (see numerical results in Table II).
This has been verified by more accurate calculations using
correlated Slater functions [11,21] for the lithium case [2].
Hopefully, the numerically dominating operators in A

(6)
N are

those obtained with Hylleraas functions. This is especially
important due to the cancellation of about 2–3 digits in this
sum. Calculations of mean values with the ECG basis for
operators like �rab ·�ra

r3
abr

3
a

, p2
b

1
ra

p2
c , or pi

b
1
ra

( δij

rbc
+ ri

bcr
j

bc

r3
bc

)pj
c involve

nonstandard classes of integrals that nevertheless have been
considered in the Gaussian basis set with linear terms [22].

C. Spin variables reduction

Matrix elements of each spin-independent operator Q, after
eliminating spin variables, takes the standard form

〈ψ ′|Q|ψ〉 ≡ 〈φ′(r1,r2,r3)|Q|P[c123φ(r1,r2,r3)]〉, (47)

with cklm coefficients defined in Table I, and P is the sum of all
permutations of 1, 2, and 3. This reduction is applicable in an
evaluation of the overlap matrix and the Hamiltonian. Another
useful form is obtained for the Fermi contact matrix element.
If we denote

〈ψ ′|Qa|ψ〉F ≡
〈
φ′(r1,r2,r3)|P

[∑
a

cFa
123Qaφ(r1,r2,r3)

]〉
,

(48)
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then for the ground state of Be+ with J = 1/2 and �J =∑
a �σa/2, we get

1

J (J + 1)
〈ψ ′| �J ·

∑
a

�σaQa|ψ〉 = 2〈ψ ′|Qa|ψ〉F . (49)

Second-order terms involve spatially antisymmetric states,

ψA = 1√
6
A[φ(�r1,�r2,�r3)α(1)α(2)α(3)], (50)

for which reduced matrix elements are of the form

〈ψ ′
A|Qa|ψ〉A ≡ 〈

φ′(r1,r2,r3)|
×P

[
cA

123(Q1 − Q2)φ(r1,r2,r3)
]〉
, (51)

〈ψ ′
A|Qab|ψ〉A ≡ 〈

φ′(r1,r2,r3)|
×P

[
cA

123(Q12 − Q23)φ(r1,r2,r3)
]〉
. (52)

D. Second-order matrix elements

Calculations of the second-order terms in Eqs. (31), (32),
and (41) are also highly nontrivial. The approach using
Hylleraas functions encounters severe numerical problems.
Namely, the optimization of the nonlinear parameters for
the pseudostate in the second-order matrix elements leads to
differences of many orders of magnitude between variational
parameters, and it destroys the numerical stability of the
recursion method for extended Hylleraas integrals [13]. Also,
the complexity of such calculations makes an optimization

process very time consuming. An alternative solution is the
use of a well-optimized ECG basis. With this, function
representations of pseudostates can be determined sufficiently
accurately and very efficiently.

At the first step, we reduce spin variables with the help of
a computer algebra program. Next, the second-order elements
for the ground state of the lithiumlike atom involve spatial
coordinates only and are of the following form:

A
(6)
A = 4

∑
n�=0

〈ψ |[HA
a,hfs

]
r
|ψn〉F 〈ψn|[HA]r |ψ〉
E − En

, (53)

A
(6)
B = 4

3

∑
n

〈
ψ

∣∣HBi
hfs

∣∣ψi
n

〉〈
ψ

j
n

∣∣HBj

b |ψ〉F
E − En

, (54)

A
(6)
C = 8

3

∑
n

〈ψ |HCij

a,hfs

∣∣ψij

nA

〉
A

〈
ψkl

nA

∣∣HCkl
ab |ψ〉A

E − En

. (55)

The symmetry of internal pseudostates in the above is
determined as follows. Since, [HA]r is a scalar operator, the
symmetry of the pseudostate in A

(6)
A has to be exactly the same

as that of the wave function in Eq. (43). For A
(6)
B and A

(6)
C , the

spatial part can be represented with elements of P -even and
D symmetry,

φi
ab(�r1,�r2,�r3) = εijkr

j
a rk

bφ(�r1,�r2,�r3), (56)

φ
ij

ab(�r1,�r2,�r3) =
(

ri
ar

j

b

2
+ ri

br
j
a

2
− δij

3
�ra · �rb

)
φ(�r1,�r2,�r3),

(57)

respectively. The normalization of the corresponding wave
functions is set by Eq. (47) with an implicit sum over

TABLE II. Numerical values of first-order operators in the ground state of Li (Ref. [2]) and Be+; H: Hylleraas basis; G: Gaussian basis.

Operator Basis Li Be+

E = 〈H 〉 H −7.478 060 323 910 10(32)a −14.324 763 176 790 43(22)a

〈HA〉 H −12.049 907 85(6) −43.688 013 68(8)
〈δ3(ra)〉F H 0.231 249 661(2) 0.994 525 337(5)
〈[δ3(ra)]mp〉F H −0.027 726 521(11) −0.087 880 92(4)
〈r−1

a 〉 H 5.718 110 882 476 5(4) 7.973 888 857 015 4(5)
〈r−1

a 〉F H 0.360 344 320 41(8) 0.628 135 118 56(2)
〈δ3(ra)

∑
b �=a r−1

b 〉F H 0.419 203 4(10) 2.620 526 3(15)
〈r−1

a

∑
b �=a δ3(rb)〉F H 4.095 692 0(4) 16.792 994(4)

〈r−1
a

∑
b>c δ3(rbc)〉F H 0.173 834 1(2) 0.846 757 5(3)

〈δ3(ra)(
∑

b �=a p2
b/2 + V + Zr−1

a − E)〉F H 0.733 477(4) 4.857 754(5)

〈r−2
a (

∑
b �=a

p2
b

2 + V + Zr−1
a − E)〉F H 1.506 463(3) 7.372 057 2(8)

〈r−1
a [(E − V )2 − Z2r−2

a ]〉F H 43.824 14(2) 232.429 630(7)
〈 �par

−2
a �pa〉F H 4.863 37(4) 28.631 62(3)

E = 〈H 〉 G −7.478 060 322 96 −14.324 763 175 15

〈∑b �=a
�rab

r3
ab

· �ra
r3
a
〉F G 0.017 363 5(7) 0.081 258 7(9)

〈∑b �=a
�rab

r3
ab

· �rb
r3
b

〉F G −0.065 937 5(6) −0.438 358 5(6)

〈∑b>c p2
br

−1
a p2

c 〉F G 12.663 6(8) 74.893(4)

〈∑b>c pi
br

−1
a ( δij

rbc
+ ri

bc
r
j
bc

r3
bc

)pj
c 〉F G 0.266 794(3) 0.922 84(3)

aReference [11].
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TABLE III. Numerical values of dimensionless relativistic and
QED corrections to the hyperfine splitting in Be+ ion; results
from [23] in terms of GM1 are multiplied by 256/3.

Contribution Value

A(4,0) 33.326 863 92(18)
Ref. [24] 33.326 8(8)
A(4,1) 97.035 673 8(13)
Ref. [24] 102(18)
A

(6)
A 1 196.97(4)

A
(6)
N − 133.631(16)

A
(6)
B 0.134 6(2)

A
(6)
C 0.814 2(6)

A
(6)
R − 240.866 95

A(6) 823.42(4)

Ref. [23] 823
Ref. [24] 756(42)
A(7) −2 992(481)

Cartesian indices. In the calculations of the second-order
matrix elements, we generated the ground-state wave function
with ECG basis functions of progressively doubling size
from 256 to 2048 terms. Next, for the given external wave
function of a given size N , the nonlinear parameters for
pseudostates were optimized using a symmetric second-order
element with the corresponding hyperfine operator. Such a
matrix element can be minimized using the adopted variational
principle. In our approach, the basis set for the pseudostate
in A

(6)
A is divided into two sectors. The first sector is built

of the basis functions with the nonlinear parameters of size
N/2 determined in the optimization of the external wave
function. The nonlinear parameters here are fixed during the
optimization in order to enable accurate representation of the
states orthogonal to the ground state. The second sector, of
size N , consists of basis functions that undergo optimization.
For A

(6)
B and A

(6)
C an orthogonality to the ground state is

realized by a different symmetry of the basis functions in
Eqs. (56) and (57). Then, only a single sector is needed with
all parameters to be optimized for the basis sizes N and
2N , respectively. The size of the pseudostate is chosen to
achieve convergence for a fixed external wave function. We
noted that the symmetric second-order element with HCij is
divergent. Therefore, in the optimization of the pseudostate for
the A

(6)
C term we use a lower singular operator by decreasing

the power of ra by one. Due to the more complicated structure
of the second-order matrix elements, both the convergence and
the cost of the optimization are less favorable in comparison
to the wave-function optimization.

IV. RESULTS

The final results of the numerical calculations are presented
in Tables II and III. The values and their uncertainties have
been obtained by extrapolation of the results obtained for
several sizes of basis sets. Most of the first-order matrix
elements in Table II were obtained in Hylleraas basis sets
because of the much higher accuracy that can be obtained
in comparison to using the ECG functions. However, some

TABLE IV. Contributions in MHz to the hyperfine splitting con-
stant A in 9Be+; physical constants are g = 2.002 319 304 361 53(53)
and α−1 = 137.035 999 074(44). The second uncertainty of Atheor

comes from the nuclear magnetic moment.

9Be+

μ[μN ] (Ref. [25]) − 1.177 432(3)
Atomic mass [u] (Ref. [26]) 9.012 182 20(43)
gN − 1.755 335 5(25)
ε × 10−9 − 6.602 679(17)
εα4g/2A(4) − 624.600 44
εα5A(5)

rec 0.006 85
εα6A(6) − 0.820 96
εα7A(7) 0.021 8(36)

Atheor (point nucleus) − 625.392 7(36)(16)
Ref. [23] − 625.401(22)
Aexpt (Ref. [27]) − 625.008 837 048(10)

(Aexpt − Atheor)/Aexpt −614(6)(3) ppm
Ref. [23] (theory) −514(16) ppm
r̃Z 4.07(5)(2) fm
rE (Ref. [28]) 2.519(12) fm

of the matrix elements have been calculated only with
Gaussians. These are the most complicated ones, but they
are numerically less significant than the other terms in A

(6)
N .

The achieved numerical accuracy is sufficiently high that the
main uncertainty comes from estimation of higher-order terms,
such as those in Table IV. All the second-order matrix elements
have been calculated only with Gaussian functions by global
optimization of nonlinear parameters in about 1000 functions,
which are used to represent the sum over intermediate states. In
spite of the fact that Gaussian functions do not satisfy the cusp
condition at the coalescent points, they are flexible enough to
achieve much greater accuracy than with Hylleraas functions
for second-order matrix elements.

Results of the expansion of (dimensionless) hyperfine
constantA in powers of α and the mass ratio for the Be+ ion are
presented in Table III. Leading-order terms, the Fermi contact
interaction, and the mass polarization correction are compared
with previous results by Yan et al. [24]. Our result for A(6)

are in excellent agreement with the relativistic CI calculations
of Yerokhin [23]. It gives us confidence in the theoretical
approach and in the numerical results obtained in this work.
Table IV summarizes the results for the 9Be+ ion. From the
measured hyperfine constant and the magnetic moment, we
determined finite nuclear size effects, which are expressed in
terms of the effective Zemach radius r̃Z . We observed that the
experimentally determined r̃z(9Be) does not agree well with
the approximate nuclear structure calculations in Ref. [23].
Bearing in mind the significant differences in r̃z in Li isotopes,
considerable theoretical work is needed to correctly describe
the finite nuclear size and polarizability effects in the atomic
hyperfine splitting.

V. SUMMARY

We have developed a nonrelativistic QED approach to
the hyperfine splitting in light atomic systems and have
demonstrated that from the comparison to experimental values
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one can obtain valuable information about the finite nuclear
distribution. We observed in Ref. [2] that the Zemach radius for
6Li is about 40% smaller than that of 7Li. Here we demonstrate
that by means of atomic spectroscopy one can obtain the
Zemach radius for Be isotopes, and give example for 9Be,
for which the magnetic moment is well known. For other
Be isotopes, although hyperfine splitting is known [29,30],
the magnetic moment has not yet been measured with sufficient
accuracy. We do not attempt here to accurately relate r̃Z to
the distribution of the magnetic moment, as our knowledge

of nuclear theory is not sufficient. We point out, however,
that this model is an independent and very accurate (as
accurate as the magnetic moment) method to approach nuclear
magnetic-moment distribution.
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