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Charge asymmetry and relativistic corrections in pure vibrational states of the HD+ ion
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In this work we present very accurate quantum-mechanical calculations of all bound pure vibrational states
of the HD+ ion performed without the Born-Oppenheimer (BO) approximation. All three particles forming
the system are treated on equal footing. The approach involves separating the center-of-mass motion from the
laboratory-frame nonrelativistic Hamiltonian and expending the wave function of each considered state in terms
of all-particle explicitly correlated Gaussian functions. The Gaussian exponential parameters are variationally
optimized with the aid of the analytical energy gradient calculated with respect to these parameters. For each state
the leading relativistic corrections are calculated as expectation values of the corresponding operators with the
non-BO wave function of the state. The non-BO approach allows us to directly describe the charge asymmetry
in HD+ which is due to the nuclear-mass asymmetry. The effect increases with the vibrational excitation and
affects the values of the relativistic corrections. This phenomenon is the focus of the present study.
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I. INTRODUCTION

The idea of performing quantum calculations on molecular
systems without assuming the Born-Oppenheimer approxi-
mation regarding the separability of the motions of electrons
and nuclei is not new. These types of calculations have been
done since the very early stage of the development of quantum
chemistry and have continued till the present day [1–6]. The
calculations have revealed the importance of the nonadiabatic
effects in the calculations of the spectra and other properties
of molecules and molecular ions.

The HD+ ion is good model system to study how the
nonadiabatic effects affect the properties of a molecular
system. This is because as the vibrational excitation in-
creases, the charge asymmetry resulting from the electron
being positioned closer to the deuteron than to the proton
increases. This asymmetry effect can only be described in
quantum-mechanical calculations if the Born-Oppenheimer
(BO) approximation is not assumed. The charge asymmetry
increases to the point that in the two top vibrational states the
electron is almost entirely localized at the deuteron [7]. Thus
the character of the bond changes from being predominantly
covalent in the lowest vibrational states to ionic in the highest
states.

There are 23 bound pure vibrational states of HD+. In
our previous work we calculated the energies of these states
employing a non-BO approach and all-particle explicitly cor-
related Gaussian (ECG) functions. 2000 ECGs were used for
each state except for the top one (v = 22) for which 4000 ECGs
were used. The non-BO wave functions were employed to
calculate the mass-velocity and Darwin relativistic corrections,
which account for the relativistic effects not only associated
with the electronic motions, but also the motion of the nuclei.
In the present non-BO calculations of the HD+ pure vibrational
states the number of Gaussians in the basis set for each state
is doubled. This allows for achieving much better energy
convergence. Also the orbit-orbit (OO) relativistic interactions
are accounted for in the leading relativistic correction. With
these, the present results are significantly more accurate than
those obtained before. They can serve as benchmark values for

other calculations, particularly those performed with methods
based on the BO approximation.

In recent paper [8] we used the ECG basis sets generated
in Ref. [7] for the pure vibrational states of HD+ to calculate
the leading relativistic corrections for these states. We also
examined how the charge asymmetry affects these corrections.
In the present work a similar analysis is also performed based
on the new results which are much improved in comparison
with the results of Ref. [7].

II. HAMILTONIAN

The conventional nonrelativistic quantum-mechanical cal-
culations of atomic and molecular systems are performed
assuming the Born-Oppenheimer (BO) approximation. Thus,
the potential energy surface (PES) is first generated by solving
the electronic Schrödinger equation and then this PES is used
as the potential in the Schrödinger equation describing the
motion of the nuclei. By solving this equation the energies and
the wave functions of the rovibrational states are determined.
Subsequently, the accuracy of the results (energies) can be
improved by including adiabatic and nonadiabatic corrections.
A more direct and potentially more accurate and rigorous (and
perhaps also more interesting) approach is not to assume the
BO approximation and to treat all particles forming the system
on equal footing. In such an approach the coupling of the
motions of the light particles (electrons, positrons) and heavy
particles (nuclei) is not neglected or treated approximately.
The non-BO approach, besides being conceptually appealing,
can provide results which are more accurate than those
obtained with a method based on the BO approximation.
The effort to generate very accurate results in molecular
calculations is motivated by the constantly increasing accuracy
of the experimental techniques used to measure the molecular
spectra. These measurements are starting to reach accuracy of
sub 0.0001 cm−1 which is very hard to achieve in theoretical
calculations based on first principles.

The method for very accurate atomic and molecular cal-
culations developed by the Adamowicz group in recent years
[9–16] is based on equal treatment of all N particles forming
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the system. The approach starts with the general laboratory-
frame nonrelativistic Hamiltonian for the considered molecule
(or atom), which consists of N quantum particles with masses
Mi and charges Qi (i = 1, . . . ,N). Let vectors Ri describe the
positions of the particles in a laboratory coordinate frame and
vectors Pi the corresponding linear momenta:

R =

⎡
⎢⎣

R1
R2

· · ·
RN

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎣

X1

Y1

Z1
...

ZN

⎤
⎥⎥⎥⎥⎦ , P =

⎡
⎢⎣

P1
P2

· · ·
PN

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎣

Px1

Py1

Pz1
...

PzN

⎤
⎥⎥⎥⎥⎦ . (1)

The nonrelativistic laboratory-frame Hamiltonian of the sys-
tem is

Hnr(R) =
N∑

i=1

P2
i

2Mi

+
N∑

i=1

N∑
j>i

QiQj

‖Ri − Rj‖ . (2)

Next, the 3N -dimensional problem represented by the above
Hamiltonian is reduced to a (3N − 3)-dimensional problem by
eliminating from the laboratory-frame Hamiltonian the center-
of-mass motion. This elimination is achieved by transforming
the Hamiltonian to a new coordinate system, whose first three
coordinates, r0, are the coordinates of the center of mass in
the laboratory coordinate frame and the remaining 3N − 3
coordinates are internal coordinates. The internal coordinates,
ri , i = 1, . . . ,N − 1, are coordinates in a Cartesian coordinate
system whose center is placed at a selected reference particle
(usually the heaviest one). Let us denote N − 1 by n. The
application of the coordinate transformation to the laboratory-
frame total Hamiltonian (2) allows for separating out the
operator representing the kinetic energy of the center-of-mass
motion from the internal Hamiltonian:

H tot
nr (r0,r) =

(
−1

2

1

Mtot
∇2

r0

)
+

⎛
⎝−1

2

n∑
i

1

μi

∇2
ri

− 1

2

n∑
i �=j

1

m0
∇ri

∇rj
+

n∑
i<j

qiqj

rij

+
n∑

i=1

q0qi

ri

⎞
⎠ ,

(3)

where qi = Qi+1, μi = m0mi

m0+mi
are the reduced masses, Mtot is

the total mass of the system, m0 is the mass of the reference
particle, mi = Mi+1, ∇ri

is the gradient vector expressed in
terms of the xi,yi,zi coordinates of vector ri , rij = ‖ri −
rj‖ = ‖Ri+1 − Rj+1‖, and r0i ≡ ri = ‖ri‖ = ‖Ri+1 − R1‖.
One can call the particles described by the above Hamiltonian
“pseudoparticles” because, even though they have the same
charges as the original particles, their masses are not the
original masses but the reduced masses. The separation of
the total nonrelativistic laboratory-frame Hamiltonian into the
operator representing the kinetic energy of the center-of-mass
motion, H cm

nr (r0), and the internal Hamiltonian, H int
nr (r), is

rigorous:

H tot
nr (r0,r) = H cm

nr (r0) + H int
nr (r). (4)

The sum of H cm
nr (r0) and H int

nr (r) provides a complete descrip-
tion of the state of all particles in space. As in this work we are

only concerned with the internal bound states of the system,
the eigenvalues and eigenfunctions of the internal Hamiltonian
are calculated. The internal Hamiltonian can be viewed as
describing a system of n pseudoparticles with the masses equal
to reduced masses μi and charges qi (i = 1, . . . ,n) moving in
the central field of the charge of the reference particle, q0. The
pseudoparticles interact with each other by the Coulombic
potential and additionally their motions are coupled through
the mass-polarization terms, − 1

2

∑n
i �=j

1
m0

∇ri
∇rj

. One can say
that the internal Hamiltonian, (3), is a generalized atomic
Hamiltonian due to its spherical symmetry. However, while
in an atom the moving particles are all electrons with minus
one (in a.u.) charges, in the generalized atom represented
by (3) the moving pseudoparticles can have negative (−1)
and positive charges. As the internal Hamiltonian is fully
symmetric (isotropic) with respect to all rotations around the
center of the internal coordinate system, its wave functions
transform as irreducible representations of the fully symmetric
group of rotations (like for atoms).

III. CORRELATED GAUSSIAN BASIS SET

The generalized atomic Hamiltonian commutes with the
the square of the total angular momentum operator. Thus,
if one uses basis functions which are eigenfunctions of that
operator in expanding the wave functions of the molecular
system under consideration, states corresponding to different
total-angular-momentum quantum numbers are separated. In
particular, if one considers only the rotationless states (i.e.,
states with the zero total angular momentum or pure vibrational
states), as we do in the present work, one needs to use fully
spherically symmetric basis functions. When ECGs are used
as such functions for an atomic system with s electrons, they
have the following form:

ψk(r) = exp[−rT Āk r], (5)

where Āk is a symmetric matrix of the variational exponential
parameters and T denotes the transpose. Āk can be written as
Āk = Ak ⊗ I3, where I3 is the 3 × 3 unit matrix. To ensure
square integrability of ψk(r), Ak has to be positive definite.
To ensure that, Ak is represented in the Cholesky factored
form as Ak = LkLT

k , where Lk is an n × n, rank n, lower
triangular matrix. ψk(r) is square-integrable for Lk matrix
elements being any real numbers. Function (5) is invariant
upon any orthogonal unitary transformation representing a
rotation about the center of the internal coordinate frame.

Let us now consider a diatomic system, for example,
the HD+ ion, in rotationless states. The ECGs for such
states have to also be spherically symmetric, but the non-BO
wave functions now have to describe the correlated motion
of two pseudoparticles, one of which has a charge of −1
(pseudoelectron), but the other one has a positive charge
(pseudonucleus). As the pseudonucleus is repelled by the
central positive charge of the reference nucleus (the deuteron
for HD+), the ECGs have to describe a deep “Coulomb hole”
in the wave function resulting from this repulsion. Also, if
excited vibrational states are considered in the calculations,
whose wave functions have nodes in terms of the internuclear
distance coordinate (this coordinate is r1 in the internal
coordinate frame), the atomic ECGs (5) need to be multiplied
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by nonnegative powers of this coordinate:

φk = r
mk

1 exp[−rT (Ak ⊗ I3)r] = r
mk

1 exp[−rT Āk r], (6)

where r1 = |R2 − R1|. The factor r
mk

1 shifts the maximum of
the Gaussian away from the reference particle (which is located
in the center of the coordinate system) to a sphere with a radius,
which depends on the mk power. The higher is the power the
larger is the radius. In our calculations the mk powers range
from 0 to 250 and they are either zero or even numbers. These
powers are variational parameters which are optimized in the
calculation along with the matrix elements of Lk .

The use of only even powers of the internuclear distance
as preexponential multipliers of the Gaussians would be a
problem, if the probability of two nuclei being in a single point
in space were not negligible and the cusp behavior had to be
accurately described. But this probability is negligible and the
description of the internuclear cusp has no effect on the energy.
As the use of the even powers considerably simplifies the
calculation, only such powers are used here. There is, however,
another reason why functions (6) may not be as effective as
Hylleraas-type or Slater-type basis functions. This has to do
with the correct description of the behavior of the electrons (the
electron in the case of HD+) when they approach the nuclei
and when they approach each other. The use of Gaussians, due
to their improper representation of the electron-nucleus and
electron-electron cusps, may lead to longer expansions of the
wave function to achieve adequate accuracy in the calculations.

To obtain the energy eigenvalues of Hamiltonian (3) the
Rayleigh-Ritz variational scheme based on the minimization
of the Rayleigh quotient,

ε(a,c) = min
(a,c)

cT H(a)c
cT S(a)c

, (7)

is used, where H(a) and S(a) are the Hamiltonian and overlap
matrices, respectively. Equation (7) is minimized in terms of
the Lk parameters and mk powers represented in (7) by (a),
and the linear expansion coefficients (c) of the wave function
in terms of ECGs. To accelerate the minimization of (7) with
respect to Lk , which is the most time-consuming step of the
calculation, we use the analytic energy gradient determined
with respect to the Lk matrix elements [9].

A. Relativistic operators

The Breit-Pauli relativistic Hamiltonian [17], H rel, is used
in this work to calculate the leading relativistic corrections.
As the wave function generated in our non-BO calculation de-
scribes the motion of pseudoparticles in the internal coordinate
system, there are two ways the calculations of the relativistic
corrections can be carried out. The first way is to back-
transform the pseudoparticle wave function to describe the
real particles and then use this back-transformed wave function
and the Breit-Pauli Hamiltonian in its original form expressed
in the laboratory coordinates to calculate the relativistic
corrections. An analysis of Korobov’s work [18,19] shows that
this seems to be the approach he takes. The second way, which
is employed here, involves transforming the laboratory-frame
Breit-Pauli Hamiltonian to the coordinate system used in the
present calculations and use this transformed Hamiltonian and
the non-BO pseudoparticle wave functions to determine the

relativistic corrections. The transformation of the Breit-Pauli
from the laboratory coordinates to the internal coordinates was
shown before [7,13]. After the transformation the Breit-Pauli
Hamiltonian becomes a function of the coordinates of the
center of mass, r0, and the internal coordinates, r1,r2, . . . ,rn,
and splits into three contributions:

H rel(r,r0) = H rel
cm(r0) + H rel

int (r) + H rel
cm−int(r,r0), (8)

where H rel
cm(r0) is the term describing the relativistic effects

associated with the motion of the center of mass, H rel
int (r)

describes the internal relativistic effects, and H rel
cm−int(r,r0)

describes the relativistic coupling of the internal and external
motions. The appearance of this last term results from using
in the transformation a coordinate system, which allows for
a rigorous separation of the external motion (the motion
of the center of mass) from the internal motion in the
nonrelativistic Hamiltonian, but does not allow for separation
of the relativistic effects in the same manner. This lack of
full separability has its origin in the coordinate system used
in the transformation involving the center of mass and not
the center of the total linear momentum. In general, the
center of mass in the relativistic quantum mechanics is not
unambiguously defined because the masses of the particles
depend on their velocities. In the nonrelativistic approach the
center of mass and the center of the total linear momentum
are identical and the separation of the total nonrelativistic
laboratory-frame Hamiltonian into the internal Hamiltonian
and the Hamiltonian representing the center-of-mass motion
can be rigorously achieved.

The coupling term in the Breit-Pauli relativistic Hamil-
tonian, H rel

cm−int(r,r0), resulting from the coordinate transfor-
mation can be symbolically written as P0W (R) + P 2

0 Q(R),
where P0 is the momentum of the center-of-mass motion, and
W (R) and Q(R) are operators which do not depend on the
center-of-mass coordinates. Let us now take a total wave func-
tion for the system in the form of a product of the wave function
describing the state of the center of mass and dependent only on
r0, and an r0-independent wave function describing the internal
state of the system (such a product wave function is the correct
form of the nonrelativistic wave function). If such a function
is used to calculate the expectation value of the coupling term,
H rel

cm−int(r,r0), a product of the average value of the linear
momentum of the center-of-mass and matrix elements of the
W or Q operators is obtained. If one assumes that the center-
of-mass momentum is zero, the contribution of the coupling
term to the relativistic correction vanishes. Thus, in this limit
the approach used in the present calculations of the relativistic
correction is correct. However, a slight difference may still
appear between the present results and the results obtained with
the approach based on the BO approximation. That difference
includes the so-called recoil correction, but it may also include
relativistic effects due to the internal motion of the nuclei.

Thus H rel
int (r) is used in the present calculations to de-

termine the relativistic correction. The explicit form of the
components of H rel

int (r) accounting for the mass-velocity (MV),
Darwin (D), and orbit-orbit (OO) interactions in HD+ are as
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follows [7,13]:

ĤMV(r) = −1

8

⎡
⎣ 1

m3
0

(
2∑

i=1

∇ri

)4

+
2∑

i=1

1

m3
i

∇4
ri

⎤
⎦ , (9)

ĤD(r) = π

2

2∑
i=1

(
4

3

1

m2
0

+ 1

m2
i

)
q0qi δ3(ri)

+ π

2

2∑
i=1

2∑
j �=i

1

m2
i

qiqj δ3(rij ), (10)

ĤOO(r) = −1

2

2∑
i=1

2∑
j=1

q0qj

m0mj

×
[

1

rj

∇ri
· ∇rj

+ 1

r3
j

rj · (
rj · ∇ri

)∇rj

]

+ 1

2

2∑
i=1

2∑
j>i

qiqj

mimj

×
[

1

rij

∇ri
· ∇rj

+ 1

r3
ij

rij · (
rij · ∇ri

)∇rj

]
.

(11)

As was the case in the work of Korobov [18,19] the spin-
spin hyperfine interactions are not included in the present
calculations. Thus, the transition energies do not include the
hyperfine splittings of the lines which originate from these
interactions. Also, as the considered states of HD+ have
zero total angular momentum, the spin-orbit interaction is
zero.

IV. NUMERICAL RESULTS

As mentioned, the non-BO nonrelativistic calculations are
done using the standard variational method. Each state is
calculated separately from other states. In the calculation a
ECG basis set for each state is generated and optimized.

We will now describe the results of the calculations of the
pure vibrational spectrum of HD+ performed in this work. The
first step of the calculations involves doubling (or in some cases
tripling) the number of ECGs in the basis set for each state from
the number of ECGs used in our previous calculations [7].
Adding new Gaussians to the basis set is done incrementally.
The functions are added in the subsets of 100, one function
at time. The initial values of the Lk parameters for a newly
added function are obtained by adding random perturbations
to one of the most contributing functions already included in
the basis set. The new function, before it is optimized with
the gradient-based optimization procedure, is check for linear
dependency with the functions already included in the set. If

TABLE I. The convergence of the total nonrelativistic non-BO energies of the pure vibrational states of HD+. All values are given in a.u.
(hartrees).

No. No. No. No.
v ECGs Energy v ECGs Energy v ECGs Energy v ECGs Energy

0 2000 −0.597 897 968 460 1 2000 −0.589 181 829 062 2 2000 −0.580 903 700 134 3 2000 −0.573 050 546 235
3000 −0.597 897 968 564 3000 −0.589 181 829 497 3000 −0.580 903 700 198 3000 −0.573 050 546 421
4000 −0.597 897 968 577 4000 −0.589 181 829 537 4000 −0.580 903 700 201 4000 −0.573 050 546 451

4 2000 −0.565 611 041 772 5 2000 −0.558 575 519 997 6 2000 −0.551 935 947 607 7 2000 −0.545 685 913 715
3000 −0.565 611 041 956 3000 −0.558 575 520 589 3000 −0.551 935 948 442 3000 −0.545 685 914 874
4000 −0.565 611 042 015 4000 −0.558 575 520 667 4000 −0.551 935 948 624 4000 −0.545 685 914 996

8 2000 −0.539 820 639 350 9 2000 −0.534 337 010 968 10 2000 −0.529 233 631 698 11 2000 −0.524 510 905 881
3000 −0.539 820 640 428 3000 −0.534 337 012 858 3000 −0.529 233 634 350 3000 −0.524 510 909 188
4000 −0.539 820 640 553 4000 −0.534 337 013 108 4000 −0.529 233 634 746 4000 −0.524 510 909 642

12 2000 −0.520 171 137 438 13 2000 −0.516 218 698 798 14 2000 −0.512 660 176 700 15 2000 −0.509 504 627 044
3000 −0.520 171 143 409 3000 −0.516 218 708 132 3000 −0.512 660 189 014 3000 −0.509 504 645 408
4000 −0.520 171 143 836 4000 −0.516 218 708 878 4000 −0.512 660 190 557 4000 −0.509 504 646 834

5000 −0.512 660 191 254 5000 −0.509 504 647 412

16 2000 −0.506 763 834 484 17 2000 −0.504 452 646 624 18 2000 −0.502 589 181 516 19 2000 −0.501 194 732 351
3000 −0.506 763 867 392 3000 −0.504 452 682 298 3000 −0.502 589 214 075 3000 −0.501 194 778 027
4000 −0.506 763 872 653 4000 −0.504 452 688 975 4000 −0.502 589 222 933 4000 −0.501 194 793 303
5000 −0.506 763 873 462 5000 −0.504 452 691 193 5000 −0.502 589 226 578 5000 −0.501 194 792 626
6000 −0.506 763 873 837 6000 −0.504 452 691 747 6000 −0.502 589 227 342 6000 −0.501 194 793 351

7000 −0.501 194 794 224

20 2000 −0.500 292 401 660 21 2000 −0.499 910 333 885 22 4000 −0.499 865 777 505
3000 −0.500 292 446 616 3000 −0.499 910 356 535 5000 −0.499 865 778 116
4000 −0.500 292 451 530 4000 −0.499 910 358 905 6000 −0.499 865 778 267
5000 −0.500 292 452 970 5000 −0.499 910 359 126 7000 −0.499 865 778 308
6000 −0.500 292 453 455 6000 −0.499 910 359 337
7000 −0.500 292 453 636 7000 −0.499 910 359 483
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none is found, its mk power is optimized (this is the only time
the power of the ECG is optimized) and then the optimization
of its Lk parameters is carried out. After the optimization
the function is again checked for linear dependency and it
is included in the basis set only if no linear dependency is
found. After each 100-function subset is added to the basis set,
the whole basis is reoptimized in a cyclic optimization where
each function is separately optimized with the gradient-based
method. The cyclic optimization is repeated several times
after each addition of 1000 functions. This rather elaborate
optimization procedure allows for very tight convergence of
the total energy of each state. Also, the increase of the basis set
size is carried out for each state to the point when the changes
in the total energy are smaller than 10−9 hartrees. This means
that for lower states smaller numbers of ECGs in the basis sets
are generated than for higher states, as the wave functions with
fewer number of nodes require less ECGs to be represented.

The convergence of the total energies for all 23 pure
vibrational states of HD+ is shown in Table I. As one can
see, the target convergence of below 10−9 hartrees is reached
for all states. The size of the basis set is increased to 4000 for
the ground v = 0 state and to 7000 for the four top states. It
should be mentioned that in the previous calculations of the
pure vibrational spectrum of HD+ by Howells and Kennedy
[20] the highest 23rd state was not described.

In the non-BO approach used in this work the relativistic
corrections to the energies of the pure vibrational states of HD+
are obtained as expectation values of the relativistic operators
using the all-particle wave functions obtained in the non-BO
calculations. The non-BO approach was also used by Korobov
[18,19] and by Zhong et al. [21]. However, as mentioned,
their relativistic corrections were calculated with a somewhat
different procedure than the one used in the present work.
Also, due to the use of Slater-type rather than Gaussian-type
basis functions by Korobov and Zhong et al. their results are
likely to be more accurate than ours. However, they only
calculated the lowest five vibrational states, while in the
present work all 23 bound pure vibrational states of HD+ are
considered.

There are two reasons why the present results for the
relativistic corrections, as well as the results obtained by
Korobov [19] and Zhong et al. [21], are not strictly identical
to the results obtained in the conventional approach where
the BO approximation is assumed. The first one is related to
the present relativistic corrections including the contributions
due to both nuclei and electrons, while the results of the
conventional approach include only the electronic relativistic
contribution. The second reason is due to the vibrational
wave functions in the conventional approach being dependent
on the relativistic effects as they are generated using a
potential which includes the electronic relativistic corrections,
while the non-BO wave functions obtained in the present
approach (a part of the non-BO wave function describes the
vibrational state of the molecule) do not include any relativistic
effects. These effects are accounted for using the first-
order perturbation theory after the non-BO calculations are
completed.

The results of the calculations of the relativistic corrections
performed in this work are presented in Table II. For each state
the convergence of the individual relativistic contributions [i.e.,

TABLE II. Expectation values of the operators representing the
leading relativistic corrections: mass-velocity (MV), Darwin (D),
orbit-orbit (OO), and the total non-BO relativistic correction (α2Erel).
All values are given in cm−1.

v Basis MV D OO α2Erel

0 2000 −9.1989 7.6026 −5.59×10−3 −1.6019
3000 −9.2005 7.6042 −5.59×10−3 −1.6020
4000 −9.2010 7.6046 −5.59×10−3 −1.6020

1 2000 −8.9900 7.4257 −5.46×10−3 −1.5698
3000 −8.9942 7.4297 −5.46×10−3 −1.5700
4000 −8.9955 7.4309 −5.46×10−3 −1.5701
5000 −8.9955 7.4309 −5.46×10−3 −1.5700

2 2000 −8.8012 7.2658 −5.33×10−3 −1.5407
3000 −8.8033 7.2678 −5.33×10−3 −1.5409
4000 −8.8036 7.2679 −5.33×10−3 −1.5410

3 2000 −8.6224 7.1131 −5.22×10−3 −1.5145
3000 −8.6227 7.1135 −5.22×10−3 −1.5145
4000 −8.6232 7.1139 −5.22×10−3 −1.5145

4 2000 −8.4547 6.9691 −5.12×10−3 −1.4907
3000 −8.4570 6.9719 −5.12×10−3 −1.4902
4000 −8.4583 6.9726 −5.12×10−3 −1.4907

5 2000 −8.2995 6.8356 −5.03×10−3 −1.4689
3000 −8.3033 6.8389 −5.03×10−3 −1.4694
4000 −8.3043 6.8394 −5.03×10−3 −1.4699

6 2000 −8.1592 6.7138 −4.94×10−3 −1.4504
3000 −8.1607 6.7152 −4.94×10−3 −1.4505
4000 −8.1612 6.7157 −4.94×10−3 −1.4505

7 2000 −8.0275 6.5984 −4.87×10−3 −1.4340
3000 −8.0301 6.6010 −4.87×10−3 −1.4340
4000 −8.0310 6.6018 −4.87×10−3 −1.4340

8 2000 −7.9069 6.4919 −4.80×10−3 −1.4198
3000 −7.9099 6.4947 −4.80×10−3 −1.4200
4000 −7.9099 6.4948 −4.80×10−3 −1.4199

9 2000 −7.7995 6.3962 −4.74×10−3 −1.4080
3000 −7.8018 6.3984 −4.74×10−3 −1.4081
4000 −7.8023 6.3989 −4.74×10−3 −1.4081

10 2000 −7.6988 6.3050 −4.69×10−3 −1.3986
3000 −7.7013 6.3075 −4.69×10−3 −1.3985
4000 −7.7018 6.3079 −4.69×10−3 −1.3985

11 2000 −7.6118 6.2251 −4.65×10−3 −1.3914
3000 −7.6151 6.2283 −4.65×10−3 −1.3914
4000 −7.6155 6.2287 −4.65×10−3 −1.3914

12 2000 −7.5258 6.1436 −4.61×10−3 −1.3869
3000 −7.5290 6.1474 −4.61×10−3 −1.3863
4000 −7.5292 6.1475 −4.61×10−3 −1.3863

13 2000 −7.4618 6.0825 −4.59×10−3 −1.3839
3000 −7.4663 6.0869 −4.59×10−3 −1.3840
4000 −7.4673 6.0878 −4.59×10−3 −1.3841

14 2000 −7.4005 6.0213 −4.57×10−3 −1.3838
3000 −7.4055 6.0262 −4.57×10−3 −1.3839
4000 −7.4060 6.0267 −4.57×10−3 −1.3838
5000 −7.4072 6.0279 −4.57×10−3 −1.3839

15 2000 −7.3498 5.9681 −4.57×10−3 −1.3863
3000 −7.3565 5.9745 −4.57×10−3 −1.3866
4000 −7.3567 5.9748 −4.57×10−3 −1.3865
5000 −7.3569 5.9749 −4.57×10−3 −1.3865

16 2000 −7.3079 5.9213 −4.57×10−3 −1.3911
3000 −7.3106 5.9242 −4.57×10−3 −1.3909
4000 −7.3155 5.9290 −4.57×10−3 −1.3911
5000 −7.3160 5.9295 −4.57×10−3 −1.3911
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TABLE II. (Continued.)

v Basis MV D OO α2Erel

6000 −7.3161 5.9295 −4.57×10−3 −1.3911
17 2000 −7.2749 5.8810 −4.58×10−3 −1.3984

3000 −7.2804 5.8864 −4.58×10−3 −1.3986
4000 −7.2837 5.8898 −4.58×10−3 −1.3984
5000 −7.2867 5.8926 −4.58×10−3 −1.3987
6000 −7.2867 5.8926 −4.58×10−3 −1.3987

18 2000 −7.2556 5.8513 −4.59×10−3 −1.4088
3000 −7.2599 5.8559 −4.59×10−3 −1.4086
4000 −7.2627 5.8588 −4.59×10−3 −1.4085
5000 −7.2672 5.8629 −4.59×10−3 −1.4088
6000 −7.2675 5.8632 −4.59×10−3 −1.4089

19 2000 −7.2488 5.8318 −4.60×10−3 −1.4216
3000 −7.2516 5.8348 −4.60×10−3 −1.4214
4000 −7.2588 5.8417 −4.60×10−3 −1.4217
5000 −7.2593 5.8421 −4.60×10−3 −1.4218
6000 −7.2595 5.8422 −4.60×10−3 −1.4219
7000 −7.2609 5.8435 −4.60×10−3 −1.4220

20 2000 −7.2589 5.8259 −4.52×10−3 −1.4375
3000 −7.2645 5.8314 −4.52×10−3 −1.4377
4000 −7.2653 5.8323 −4.52×10−3 −1.4375
5000 −7.2669 5.8338 −4.52×10−3 −1.4376
6000 −7.2675 5.8344 −4.52×10−3 −1.4376
7000 −7.2676 5.8345 −4.52×10−3 −1.4376

21 2000 −7.2773 5.8248 −3.48×10−3 −1.4559
3000 −7.2867 5.8339 −3.48×10−3 −1.4563
4000 −7.2869 5.8341 −3.48×10−3 −1.4563
5000 −7.2871 5.8343 −3.48×10−3 −1.4563
6000 −7.2872 5.8343 −3.48×10−3 −1.4563
7000 −7.2872 5.8344 −3.48×10−3 −1.4564

22 4000 −7.2947 5.8375 −3.22×10−3 −1.4604
5000 −7.2949 5.8377 −3.22×10−3 −1.4604
6000 −7.2953 5.8381 −3.22×10−3 −1.4604
7000 −7.2953 5.8381 −3.22×10−3 −1.4604

D + H+ −7.2966 5.8389 −3.18×10−3 −1.4609
D+ + H −7.2887 5.8341 −6.35×10−3 −1.4609

mass-velocity, Darwin (one and two particles), spin-spin, and
orbit-orbit], as well as the convergence of the total relativistic
correction, is shown. As one can see, the total corrections for
all states is convergent to the last-shown fourth digit after the
decimal point (in cm−1) with the number of ECGs used for
each state.

It is interesting to again (this was also done in our previous
work [8]) examine, based on the present more accurate
results, how the charge asymmetry, which strongly increases
in the top vibrational states of HD+, affects the values of
the total relativistic correction and the individual relativistic
contributions. Assessing this effect can be done by comparing
the values with the results for the products of the two possible
dissociation paths, i.e., the lowest-energy dissociation path
which yields a deuterium and a proton and the dissociation
path which yields products with a slightly higher energy, i.e.,
a deuteron and a hydrogen atom (see the last two lines in
Table II). As one can see, the mass-velocity, Darwin, and
orbit-orbit relativistic corrections converge, as expected, to
the D + H+ results. This adds credibility to the way these

TABLE III. Convergence of the total energy, which includes the
the nonrelativistic energy (Enr) and the α2 correction (α2Erel), in
a.u. (hartrees) and the HD+ dissociation energy for the different
vibrational states in cm−1. Factor 219 474.631 370 8(11) cm−1/hartree
is used to convert the results in hartrees to cm−1.

v Basis Enr + α2Erel E(H+ + D) − E(HD+)

0 2000 −0.597 905 267 343 21 516.1507
3000 −0.597 905 267 667 21 516.1507
4000 −0.597 905 267 814 21 516.1508

1 2000 −0.589 188 981 611 19 603.1471
3000 −0.589 188 982 927 19 603.1473
4000 −0.589 188 983 354 19 603.1474
5000 −0.589 188 983 189 19 603.1474

2 2000 −0.580 910 720 066 17 786.2787
3000 −0.580 910 721 065 17 786.2789
4000 −0.580 910 721 736 17 786.2790

3 2000 −0.573 057 446 617 16 062.6844
3000 −0.573 057 446 799 16 062.6844
4000 −0.573 057 446 928 16 062.6844

4 2000 −0.565 617 833 831 14 429.8781
3000 −0.565 617 831 941 14 429.8777
4000 −0.565 617 834 361 14 429.8782

5 2000 −0.558 582 213 014 12 885.7378
3000 −0.558 582 215 774 12 885.7384
4000 −0.558 582 217 931 12 885.7389

6 2000 −0.551 942 556 150 11 428.5016
3000 −0.551 942 557 255 11 428.5018
4000 −0.551 942 557 517 11 428.5019

7 2000 −0.545 692 447 411 10 056.7612
3000 −0.545 692 448 469 10 056.7615
4000 −0.545 692 448 763 10 056.7615

8 2000 −0.539 827 108 217 8 769.4681
3000 −0.539 827 110 211 8 769.4685
4000 −0.539 827 110 296 8 769.4685

9 2000 −0.534 343 426 432 7 565.9390
3000 −0.534 343 428 597 7 565.9395
4000 −0.534 343 428 972 7 565.9396

10 2000 −0.529 240 004 058 6 445.8673
3000 −0.529 240 006 508 6 445.8678
4000 −0.529 240 006 914 6 445.8679

11 2000 −0.524 517 245 411 5 409.3416
3000 −0.524 517 249 004 5 409.3424
4000 −0.524 517 249 547 5 409.3425

12 2000 −0.520 177 456 502 4 456.8680
3000 −0.520 177 459 656 4 456.8687
4000 −0.520 177 460 305 4 456.8689

13 2000 −0.516 225 004 263 3 589.4050
3000 −0.516 225 014 206 3 589.4072
4000 −0.516 225 015 297 3 589.4074

14 2000 −0.512 666 482 163 2 808.3997
3000 −0.512 666 494 478 2 808.4024
4000 −0.512 666 495 818 2 808.4027
5000 −0.512 666 496 717 2 808.4029

15 2000 −0.509 510 943 549 2 115.8390
3000 −0.509 510 963 295 2 115.8434
4000 −0.509 510 964 292 2 115.8436
5000 −0.509 510 964 875 2 115.8437

16 2000 −0.506 770 172 715 1 514.3094
3000 −0.506 770 204 853 1 514.3164
4000 −0.506 770 210 795 1 514.3177
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TABLE III. (Continued.)

v Basis Enr + α2Erel E(H+ + D) − E(HD+)

5000 −0.506 770 211 813 1 514.3179
6000 −0.506 770 212 303 1 514.3180

17 2000 −0.504 459 018 320 1 007.0696
3000 −0.504 459 054 629 1 007.0776
4000 −0.504 459 060 682 1 007.0789
5000 −0.504 459 064 188 1 007.0797
6000 −0.504 459 064 592 1 007.0798

18 2000 −0.502 595 600 480 598.0967
3000 −0.502 595 632 079 598.1036
4000 −0.502 595 640 731 598.1055
5000 −0.502 595 645 753 598.1066
6000 −0.502 595 646 667 598.1068

19 2000 −0.501 201 209 459 292.0632
3000 −0.501 201 254 421 292.0731
4000 −0.501 201 271 189 292.0767
5000 −0.501 201 270 867 292.0767
6000 −0.501 201 271 858 292.0769
7000 −0.501 201 273 411 292.0772

20 2000 −0.500 298 951 269 94.0404
3000 −0.500 298 997 194 94.0505
4000 −0.500 299 001 358 94.0514
5000 −0.500 299 003 295 94.0518
6000 −0.500 299 003 773 94.0519
7000 −0.500 299 003 850 94.0520

21 2000 −0.499 916 967 542 10.2047
3000 −0.499 916 992 065 10.2101
4000 −0.499 916 994 072 10.2105
5000 −0.499 916 994 609 10.2106
6000 −0.499 916 994 955 10.2107
7000 −0.499 916 995 200 10.2107

22 4000 −0.499 872 431 585 0.4302
5000 −0.499 872 432 210 0.4303
6000 −0.499 872 432 563 0.4304
7000 −0.499 872 432 478 0.4304

D + H+ −0.499 870 471 620

corrections are calculated in the present work. The D + H+
results are noticeably different from the D+ + H results. Also,
the total relativistic correction converges to the D + H+ result.
However this result is identical to the D+ + H result as the
recoil correction for an one-electron atom vanishes.

In Table III we show the total energy obtained as a
sum of the nonrelativistic energy plus the leading relativistic
correction for each state and the corresponding dissociation
energy calculated with respect to the D + H+ dissociation
limit. This latter value should be considered converged to about
0.0001–0.0003 cm−1.

Finally, in Table IV we show a comparison of the contribu-
tions from the nonrelativistic energy and from the relativistic
correction to the v = 0 → v = 1 transition energy (in MHz)
obtained in the present calculations with the corresponding
values taken from the very accurate calculations of Korobov
[18,19]. As one can see, the nonrelativistic energies are
virtually identical, while there is a difference of about 6 MHz
in the relativistic correction. As mentioned, this difference
is likely due to the different algorithms for calculating the

TABLE IV. The v = 0 → v = 1 transition energy (in MHz)
which includes the nonrelativistic and relativistic contributions in
comparison with the values obtained by Korobov [18,19]. The
relativistic contribution does not include the spin-spin interaction.
CODATA12 [22] recommended values have been used in the present
calculations. The result marked with ∗ is obtained using the values
calculated with 5000 ECGs for the v = 1 state and 4000 ECGs for
the v = 0 state. Factor 6 579 683 920.729(33) MHz/hartree
is used to convert the results expressed in hartrees
to MHz.

No. ECGs Present Work Ref. [19]

Enr

2000 57 349 442.2539
3000 57 349 440.0693
4000 57 349 439.8957 57 349 439.9717
5000∗ 57 349 439.8635

α2Erel

2000 962.828
3000 958.480
4000 956.817 958.152
5000∗ 957.933

corrections and due to the different types of the basis functions
used. As the expectation values of the relativistic operators
are sensitive to the cusp behavior of the wave function, they
are calculated more accurately using Slater-type functions,
such as the ones employed by Korobov [19] and Zhong
et al. [21], than with the Gaussian-type functions. Thus the
comparison with Korobov’s results provides a good test of
the accuracy of the relativistic corrections calculated in this
work.

V. SUMMARY

High-quality non-BO calculations are performed for all
pure vibrational states of the HD+ ion with explicitly cor-
related Gaussian functions multiplied by even powers of
the internuclear distance. The analytic energy gradient de-
termined with respect to the Gaussian exponential parameters
is used in the variational optimization of these parameters.
The non-BO wave functions of the states are expanded
in terms of 4000 to 7000 Gaussians. Subsequently these
wave functions are used to calculate the leading relativistic
corrections using the first-order perturbation theory. It is shown
that the individual contributions to the relativistic correction
converge to the values obtained for the D + H+ dissociation
products as the level of the vibrational excitation increases.
The total energies of the considered states obtained by
summing the nonrelativistic energies and the relativistic cor-
rections are used to determine the corresponding dissociation
energies.

ACKNOWLEDGMENTS

This work has been supported in part by a National Science
Center (NCN) of Poland grant to M.S. We are grateful to the
University of Arizona Center of Computing and Information
Technology for the use of their computer resources.

032503-7



MONIKA STANKE AND LUDWIK ADAMOWICZ PHYSICAL REVIEW A 89, 032503 (2014)

[1] W. Kolos and L. Wolniewicz, Rev. Mod. Phys. 35, 473 (1963).
[2] P. M. Kozlowski and L. Adamowicz, Chem. Rev. 93, 2007

(1993).
[3] D. B. Kinghorn and L. Adamowicz, J. Chem. Phys. 106, 8760

(1997).
[4] A. K. Bhatia, Phys. Rev. A 58, 2787 (1998); A. K. Bhatia and

R. J. Drachman, ibid. 59, 205 (1999); ,61, 032503 (2000).
[5] V. I. Korobov and Zhen-Xiang Zhong, Phys. Rev. A 86, 044501

(2012).
[6] S. Bubin, M. Pavanello, W.-Ch. Tung, K. L. Sharkey, and L.

Adamowicz, Chem. Rev. 113, 36 (2013).
[7] D. Kedziera, M. Stanke, S. Bubin, M. Barysz, and

L. Adamowicz, J. Chem. Phys. 125, 084303 (2006).
[8] M. Stanke and L. Adamowicz, J. Phys. Chem. 117, 10129

(2013).
[9] D. B. Kinghorn and L. Adamowicz, Phys. Rev. Lett. 83, 2541

(1999).
[10] M. Cafiero and L. Adamowicz, Phys. Rev. Lett. 89, 073001

(2002).
[11] S. Bubin and L. Adamowicz, J. Chem. Phys. 121, 6249

(2004).

[12] S. Bubin, E. Bednarz, and L. Adamowicz, J. Chem. Phys. 122,
041102 (2005).
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