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A variational R-matrix approach combined with multichannel quantum defect theory is used for a
computational study of triplet gerade states of H2. Electron-ion reaction (quantum defect) matrices are calculated
as functions of internuclear distance and energy for the bound and continuum ranges including singly and
doubly excited configurations built on the 1σg (X+ 2�g

+) and 1σu (A+ 2�u
+) core states of the H2

+ ion. It
is shown how these matrices can be reduced to effective quantum defect functions adapted to the analysis of
high-resolution spectra in the bound range. These R-matrix effective quantum defects are finally adjusted to the
available experimental data [Sprecher et al., J. Phys. Chem. A 117, 9462 (2013)], producing agreement with
experiment to within 0.5 cm−1, nearly as good as obtained by Sprecher et al. In addition, the R-matrix calculations
predict the evolution of the quantum defects for higher energies, in a range extending far into the electronic
continuum.
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I. INTRODUCTION

The R-matrix approach has been successfully applied to
a wide range of atomic and molecular scattering problems
[1]. Photoionization of complex atoms has been treated at
a near-spectroscopic level [2], and in the case of electron-
molecule collision problems the method has enabled large
systems of biological interest to be treated in a meaningful
way [3]. R-matrix calculations for small molecular systems
have in some cases been extended into the bound range
where the Rydberg manifolds occur [4–16]. The rotational,
vibrational, and spin fine structures of molecular Rydberg
states tend to form complex patterns due to the high density
of rovibronic states close to the ionization threshold and due
to strong nonadiabatic coupling between the electronic and
nuclear degrees of freedom. For ab initio theory to be useful in
this context, quite high accuracy is required. For instance, in
order to obtain an accuracy of the order of a wave-number unit
(cm−1) for a state with a principal quantum number n ≈ 2,
the Rydberg electron phase shift or quantum defect must
be evaluated correctly to within ≈10−5, an accuracy which
probably has never been achieved in scattering calculations.
Under favorable circumstances quantum chemistry is able to
attain this level of accuracy: In the case of molecular hydrogen
H2 Wolniewicz and his collaborators have evaluated electronic
energies for excited states n � 5 with sub-cm−1 precision
[17]. As discussed in more detail in Sec. II below, effective
phase shifts or quantum defects may be extracted from these
accurate energies which turn out to be highly successful for
the purposes of spectroscopic analysis which goes beyond
the Born-Oppenheimer approximation [18]. However, this
is in some sense an empirical approach, which leaves the
question open of how exactly the accurate energies relate
to a wave-function property, i.e., the electron phase shift.
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Moreover, traditional ab initio quantum chemistry is not able
to maintain this sort of accuracy up to higher n members of
molecular Rydberg series, not to speak of structures embedded
in the electronic continua at higher energies.

In this paper we show with the example of the triplet
gerade channels of H2 how by starting out from first-principles
R-matrix electron phase-shift matrix calculations, we can con-
struct quantum defect matrices by successive transformations,
which are directly applicable in the framework of multichannel
quantum defect theory (MQDT) to the Rydberg spectroscopy
of the triplet gerade states of H2 ranging from n = 2–30
[19]. These transformations involve (i) the transformation from
spheroidal to spherical quantum defects; (ii) the elimination of
core-excited channels via application of physical boundary
conditions to these; (iii) the parametrization in terms of
analytic energy dependencies up to second order, separately
for each bond length; and (iv) a final adjustment via a fit to
experimental levels over a wide range of energies.

Three different units of energy are used in the various
sections of this paper depending on whether the ab initio
aspects of the calculation are discussed (Secs. II and III), or
those dealing with quantum defect theory (Secs. IV and V), or
high-resolution spectroscopy (Sec. V): These are, respectively,
atomic units [a.u., E/(�2/ma2

0)], “natural” Rydberg units [Ry,
E/(�2/2ma2

0)], and wave-number units (cm−1, E/hc), where
a0 = 4πε0�

2/me2 is the Bohr radius while the other symbols
have their usual meaning.

II. EFFECTIVE QUANTUM DEFECTS EXTRACTED FROM
CLAMPED-NUCLEI BORN-OPPENHEIMER CURVES

The left column of Fig. 1 depicts the existing quantum-
chemical Born-Oppenheimer potential-energy curves of triplet
gerade H2 from the work of Wolniewicz, Kolos, and collab-
orators [17,20,21], along with the 1σg and 1σu ground-state
and first excited-state curves of the ion core. These curves are
accurate to less than 1 cm−1 or 10−5 a.u. and correspond to
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FIG. 1. (Color online) (Left column) Clamped-nuclei energies E(R) as functions of the internuclear separation, R. Top to bottom: 3�g
+

symmetry (a, g, h, 4, and 5 states), 3�g symmetry (i, r , and w states), 3�g symmetry (j and s states). The two long-dashed curves at the top
in each panel represent the 1σg (X+ 2�g

+) and 1σu (A+ 2�u
+) ground and first-excited states of the ion core. The positions of the v+ = 0

and 4 vibrational levels of the ion core ground state are indicated by horizontal thin lines. (Right column) (the color codings in the left and
right columns are the same) Corresponding effective quantum defects n − n∗ evaluated with Eq. (1). The enlarged inset in the top-right panel
illustrates the avoided crossing near R = 2 a.u. between sσ - and dσ -type effective quantum defect curves.

the present state of the art. A look at the left column of Fig. 1
immediately suggests—and this, of course, has been known
for a long time [22]—that near equilibrium (R ≈ 2) the curves
form Rydberg series converging to the ion ground state. Thus,
for 3�g

+ we have a nsσ series starting with n = 2 and a
ndσ series starting with n = 3. For 3�g and 3�g symmetry
we have, respectively, ndπ and ndδ series starting with n = 3.
Considering this zero-order one-electron picture, it is therefore
tempting to extract “effective” quantum defects μ(eff)

n using the
Rydberg equation,

μ(eff)
n (R) = n − n∗(R) = n − {

2
[
E+

1σg
(R) − En(R)

]}− 1
2 .

(1)

Here n and n∗ are the principal (integer) and effective principal
quantum number and En and E+ are the molecular and
ion clamped-nuclei energies in atomic units. The resulting
effective quantum defects are plotted in the set of right-hand
panels. At first sight the plots appear to demonstrate the
physical reality of the simple one-electron picture in a striking
manner.

(i) 3�g symmetry: The quantum defect is small (|μ(eff)| <

0.1) and negative and varies little with R and n, in line with
what is expected for a nonpenetrating dδ Rydberg electron.

(ii) 3�g symmetry: The quantum defect increases mono-
tonically with R and reaches values close to unity near
R = 5 a.u. This behavior is characteristic for a “promoted”
orbital dπ in the one-electron–two-center system (Mulliken
[23]), i.e., one whose effective principal quantum number
decreases by one unit upon dissociation and which therefore

is antibonding. Equivalently, one may say that the quantum
defect increases by one unit over the same range.

(iii) 3�g
+ symmetry: Two distinct families of curves ap-

pear corresponding to a slightly bonding sσ orbital (quantum
defect monotonically decreasing with R) and a promoted anti-
bonding dσ orbital (quantum defect monotonically increasing
with R).

While the effective quantum defect curves of Fig. 1 reveal
the underlying one-electron Rydberg physics, they retain the
high accuracy of the quantum-chemical calculations from
which they have been derived via Eq. (1). However, the
quantum-chemical calculations in turn are based on a sophis-
ticated configuration interaction (CI) treatment, far beyond,
and not invoking, the single-electron Rydberg picture. Indeed,
these curves could not have been obtained in any meaningful
way in a one-electron picture. This is demonstrated, for
instance, by the work of Ref. [24], where quantum defect
functions were computed for the singlet ungerade Rydberg
states of H2 based on Kohn’s variational principle implemented
in an independent-electron static-exchange approximation.
Figures 5 and 6 of that reference show that these curves do
not even qualitatively reproduce the exact values, both with
regard to their values at equilibrium and to their evolution
with R.

Signs of the breakdown of the single-electron Rydberg
picture become apparent also in the present Fig. 1. An avoided
crossing occurs between the sσ and dσ 3�g

+ quantum defect
functions near R = 2 a.u. for n � 3 (but not for n = 2 since
no 2dσ state exists) and reveals the presence of nonspherical
	-mixing interactions even at small internuclear distances.
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Strong n dependencies of the 3�g
+ and 3�g quantum defect

functions appear for R � 4 a.u. in Fig. 1 and indicate the
presence of increasingly strong configuration mixing (CM).
Indeed, as the internuclear separation becomes larger, “major
CM”—in terms of Mulliken’s [25] concepts—sets in and
eventually leads to a new regime where it is dominant and
the independent-electron approximation breaks down because
the one-electron states are now “entangled.” We conclude that
the plots displayed on the right column of Fig. 1 convey a
deceivingly simplified picture which provides physical insight
but cannot be used for quantitative predictions. The goal of the
present paper is to define a procedure that fills the gap between
the intuitive and the quantitative approaches.

III. R-MATRIX CALCULATIONS OF TRIPLET GERADE
QUANTUM DEFECTS OF H2

A. Variational R-matrix approach

In recent years we have developed an ab initio R-matrix
approach [15] which enables bound states and core-excited
scattering states of H2 to be calculated for fixed nuclei.
Our work is based on the ideas of Greene and Yoo [11],
which it adapts such as to yield quantum defect matrices
that evolve smoothly throughout the bound and continuous
energy regions, and which also vary reasonably mildly as
functions of the molecular geometry (internuclear distance R).
Our “halfium model” combines the variational eigenchannel
R-matrix method [26] with the generalized multichannel
quantum defect theory (GMQDT) [27] implemented using
prolate spheroidal electron coordinates. The approach has been
used to investigate singlet ungerade symmetries (1�u,

1�u)
[15,28] and gerade symmetries (1�g,

1�g,
1�g) [16] of H2,

both for the bound and the continuum (autoionization) regions
as well as for very highly excited states of �− symmetry
[29,30].

The R-matrix method is not particularly adapted a priori
to treat systems for very large internuclear distances, and
up to date most applications have dealt with molecules at
or near their equilibrium geometries [3]. However, owing to
the use of spheroidal coordinates the halfium model appears
well adapted to be applied for moderately large R values.
Its implementation in terms of these coordinates allows the
partial wave expansion of the electron wave functions to be
kept to a minimum. The R-matrix scheme leads to a global
analysis of the interactions as no distinction is made between
“open” and “closed” channels at the outset, but instead all
channels are treated on the same footing irrespective of their
channel thresholds. In this picture core-excited states are
included explicitly as electron-ion collision channels in their
own right.

In the halfium model, the two-electron configuration space
is divided into two regions: (i) a reaction volume where
the variational R-matrix method is employed and (ii) the
remaining space, called the asymptotic zone, where GMQDT
is used. The connection of the inner-zone and outer-zone
wave functions then yields the desired reaction matrix or
equivalent quantum defect matrix. In the inner zone the full
nonrelativistic two-electron Hamiltonian is taken into account,
whereas in the asymptotic zone the single escaping electron

is assumed to move in the field of two Z = 1
2 point charges

separated by R, with polarization terms added on each center
following the method of Ref. [13]. This halfium representation
of the asymptotic field representation is more realistic than
the spherical Coulomb field with Z = 1, which is commonly
used in R-matrix calculations, as the half charges provide a
reasonable approximation to the nonspherical field of the ion
core and in particular to its quadrupole component [31].

Each two-electron basis function defined in the reaction
zone is expressed in spheroidal coordinates (ξ,η,ϕ) and
corresponds to a configuration i,j (cf. [15,29]) with a specified
set of quantum numbers {S,,p,q} and including appropriate
symmetrization. The reaction zone is defined by a preselected
value ξ0 which typically varies with the molecular geometry,
R. S and  refer to the total electron spin and the component
of orbital angular momentum along the molecular axis as
usual, while the indices p and q refer, respectively, to the
symmetry gerade or ungerade [(−1)p with p even or odd] and
to − symmetry (q = 1) or + symmetry (q = 0) depending
on whether the sign changes or not upon reflection σv of all
electron coordinates at any plane containing the two nuclei.
Two of these four quantum numbers, S and q, appear explicitly
in the wave-function expressions given below, while the other
two,  and p, impose requirements on the selection of
molecular orbitals, as detailed below.

For  = 0 we write

yij (−→r1 ,
−→
r2 ) = Nij [y+−

ij (−→r1 ,
−→
r2 ) + (−1)q y−+

ij (−→r1 ,
−→
r2 )], (2)

where −→
r1 and −→

r2 are the position vectors of each electron
defining the corresponding spheroidal coordinates (ξ,η,ϕ).
The functions y+−

ij and y−+
ij are products of one-electron

orbitals characterized by signed orbital angular momentum
components,

y+−
ij (−→r1 ,

−→
r2 ) = Nij [φ+

i (−→r1 )φ−
j (−→r2 ) + (−1)Sφ−

j (−→r1 )φ+
i (−→r2 )],

y−+
ij (−→r1 ,

−→
r2 ) = Nij [φ−

i (−→r1 )φ+
j (−→r2 ) + (−1)Sφ+

j (−→r1 )φ−
i (−→r2 )],

(3)

with

φ±
i (−→r ) = χi(ξ )√

ξ 2 − 1

ζi(η)√
1 − η2

1√
2π

exp(±iλiϕ)

≡ χi(ξ )√
ξ 2 − 1

Y	̃i ,±λi
(η,ϕ), (4)

the ith H2
+ one-electron wave function confined to the reaction

volume. For  = 0, λi = λj is selected (where λ � 0 is
assumed). For  �= 0 the condition λi = λj is relaxed, and
functions y++

ij and y−−
ij are also used in Eqs. (2) and (3) when

 > 0 is even, corresponding to || = |λi + λj |. Nij and Nij

are normalization factors given in Ref. [29].
Each one-electron function defined by Eq. (4) may be

designated by the shorthand ket notation |i〉 = |ni 	̃iλi〉. It is
implied here and later in this section that 	̃i is the generalized
orbital angular momentum quantum number arising when
spheroidal coordinates are used [15]. The factors Y	̃λ (η,ϕ)
on the second line of Eq. (4) thus are normalized spheroidal
harmonics, analogous to the familiar spherical harmonics (see
[13] for the definitions and numerical implementation that
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we use). The one-electron functions |i〉 are therefore gerade
when 	̃ is even, and they are ungerade when 	̃ odd. The
desired symmetry g/u of the two-electron functions is then
(−1)p = (−1)	̃i+	̃j and is obtained by appropriately combining
even and/or odd 	̃ orbitals. The basis of two-electron functions
yij used in the variational R-matrix approach consists both
of “closed” functions whose radial component χ (c)(ξ0) in
Eq. (4) vanishes on the reaction surface max(ξ1,ξ2) = ξ0 and of
“open” functions whose radial component χ (o)(ξ0) is nonzero
but has a vanishing radial derivative on the reaction surface
max(ξ1,ξ2) = ξ0 [11,15].

The two-electron basis functions are used to solve the
Schrödinger equation inside the reaction volume in the way
prescribed by the variational R-matrix method for any given
total energy E. The eigensolutions are denoted �β(−→r1 ,

−→
r2 ),

where β is a solution index, and are characterized by
stationary logarithmic derivatives bβ on the reaction surface
max(ξ1,ξ2) = ξ0. They are obtained inside the reaction volume
as an expansion over the two-electron configurations,

�β =
∑
ij

c
(β)
ij yij , (5)

where the expansion coefficients c
(β)
ij are the result of the

variational calculation.
Each solution �β may be continued in the external zone,

i.e., for radii of the outer electron larger than ξ0, as a linear
combination of regular and irregular two-center Coulomb
radial functions,

�β(E,ω,ξ � ξ0) =
∑

k

�k(E,ω)
1√

ξ 2 − 1

× [fk(εk,ξ )Ikβ(E) − gk(εk,ξ )Jkβ(E)].

(6)

Here E is the total energy and εk = E − E+
k is the energy of

the outer electron with respect to the state E+
k of the residual

core corresponding to the channel k and for the given R value.
ω stands for all coordinates except the radial coordinate of the
outermost electron. The summation index k runs over those
channels k ≡ i ′j ′, which are taken into account explicitly in
the asymptotic zone. The matching of the outer and inner
eigensolutions defines the coefficient matrix elements Ikβ and
Jkβ that appear on the right-hand side of Eq. (6). This equation
also shows how the matching requires expanding each inner-
zone variational solution �β on the reaction surface in terms
of so-called “surface harmonics,” �k (ω) , for each asymptotic
channel k and for each solution β (see [15]). The form of
these surface harmonics as well as their symmetrization and
normalization is detailed in Ref. [29].

By projecting each R-matrix eigensolution �β(−→r1 ,
−→
r2 ) onto

a surface harmonic �k (ω) at max(ξ1,ξ2) = ξ0, one obtains
surface expansion coefficients ukβ(ξ0) of the form

ukβ(ξ0) = 〈〈�k(ω)|�β(ω,ξ0)〉〉 = fk(ξ0)Ikβ − gk(ξ0)Jkβ (7)

(where the energy dependencies have been omitted for clarity).
The detailed expression of the projection integral 〈〈· · · 〉〉
(integration over ω) is given in Ref. [29]. In order to ensure
the continuity of the wave function as well as of its derivative

across the reaction surface, the projection integrals ukβ must
also satisfy the equation

bβukβ(ξ0) = f ′
k(ξ0)Ikβ − g′

k(ξ0)Jkβ, (8)

where bβ is the logarithmic derivative for each variational
solution β obtained in constructing the expansion Eq. (5) and
the primes refer to the radial derivative.

By combining the matching conditions, Eqs. (7) and (8),
the matrices I and J and hence the short-range reaction
matrix K = JI−1 and equivalent quantum defect matrix are
determined.

B. Multicore-multichannel R-matrix quantum defects

In order to test the robustness and power of the R-matrix
approach, we have deliberately carried out the calculations
reported here with minimal basis sets, both with regard to
the radial and angular components included, as well as with
regard to the electronic ion core (target) states retained in
the calculations. We explicitly included only the 1σg and 1σu

core states in the asymptotic region (ξ � ξ0) and we limited
the partial wave expansion to 	̃ � 3. This scheme leads to
the following triplet gerade channels to be considered:

3�g
+ : (1σg)εs̃σ, (1σg)εd̃σ, (1σu)εp̃σ,(1σu)εf̃ σ,

3�g : (1σg)εd̃π, (1σu)εp̃π, (1σu)εf̃ π, (9)
3�g : (1σg)εd̃δ, (1σu)εf̃ δ.

The angular basis used in the inner R-matrix region was also
restricted to 	̃ � 3. For each angular component ten radial
basis functions χ (ξ ) [Eq. (4)] were evaluated, of which eight
were closed and two were open (i.e., whose radial component
or radial derivative, respectively, vanishes on the reaction
surface). The number of antisymmetrized configurations ȳij

[Eq. (2)] then ranged from 50 to 200 depending on the
symmetry and the R value considered. Details concerning the
selection of configurations may be found in Ref. [15].

The R-matrix procedure is adapted to situations where
only one of the electrons at a time effectively escapes from
the core. This means that the reaction volume defined by ξ0

should be chosen large enough that the n = 1 H2
+ orbitals

are enclosed within the ellipsoid of revolution and become
identical to the corresponding quantum-chemical H2

+ orbitals
in the usual sense. We have chosen ξ0 as small as possible, in
such a way that the energies of the enclosed 1σu orbital and
the quantum-chemical one differ by less than about 0.001 a.u.
Note, however, that in the MQDT calculations we use the exact
values of the H2

+ threshold energies. The values of ξ0 adopted
vary from 11 to 4 over the range R = 1.4 to 5.0 bohr. The value
of the major axis of the ellipsoid varies from 7.70 to 10.00 bohr
over the same range, while the minor axis varies from 7.67 to
9.68 bohr, indicating that the ellipsoids used in this R range
deviate only slightly from spheres. The calculations have been
carried out from R = 1.4 to 5.0 bohr with a grid spacing of 0.2
bohr. Typically about 20 calculations were carried out per R

value, spanning the energy range from ε = −0.2 to +0.1 a.u.
with respect to the 1σg threshold.
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FIG. 2. (Color online) Spherical eigenquantum defects (η defects) for 3�g
+ symmetry channels in H2, plotted as functions of the electron

energy ε = E − E+(1σg) in a.u. Different panels correspond to different values of the internuclear distance R as indicated. For R = 2.0 a.u.
and ε ≈ 0 the dominant contribution to each of the four eigenchannels is as follows: (1σg)εs̃σ , full line (black online); (1σg)εd̃σ , dashed line
(red online); (1σu)εp̃σ , dot-dashed line (green online); (1σu)εf̃ σ , dot-dot-dashed line (blue online).

IV. REDUCTION TO EFFECTIVE SPHERICAL
SINGLE-CORE–MULTICHANNEL QUANTUM DEFECTS

A. Transformation from spheroidal to spherical coordinates

In order to construct spherical quantum defect matrices
we return to the R-matrix solutions �̄β of Eq. (6) and their
spheroidal asymptotic form given there. Equation (6) is valid
for any ξ � ξ0 with the coefficients Ikβ and Jkβ determined
for ξ = ξ0. We now use Eq. (6) to evaluate the R-matrix
eigensolutions on a sphere r = r0, centered on the midpoint
between the nuclei. r0 is chosen such that it encloses the
ellipsoid defined by ξ0. Then the matching procedure [Eqs. (7)
and (8)], is repeated with the difference that the asymptotic
channel functions in the summation of Eq. (6) are now

�β(E,ω,r) =
∑

k

φc(ξ1,η1,ϕ1)Y	λ(θ,φ)
1

r

× [
f

(sph)
k (εk,r)I (sph)

kβ − g
(sph)
k (εk,r)J (sph)

kβ

]
, (10)

where φc is the core wave function, still represented in
spheroidal coordinates, while Y	λ are ordinary spherical
harmonics and f

(sph)
k and g

(sph)
k are Ham’s radial functions

as defined by Seaton [32] (his “nearly analytic” functions f

and h). The relation

K
(sph)
kk′ ≡ tan πηkk′ =

∑
β

J
(sph)
kβ [I (sph)]−1

βk′ (11)

now yields spherical quantum defect matrices ηkk′ of the Ham
type [32]—so-called η defects—which are appropriate for use
in the framework of the customary quantum defect combined

with frame transformation theory. Our K(sph) corresponds to
Y in Seaton’s notation [32].

The results of the variational calculations are illustrated by
Figs. 2–4 for 3�g

+, 3�g , and 3�g symmetry, respectively. The
quantities plotted in the figures are the eigenquantum defects
defined as

ηα(E) = 1

π
tan−1

∑
kk′

UT
αk(E)K (sph)

kk′ (E)Uk′α(E), (12)

where U is the eigenvector matrix of the reaction matrix K(sph)

from Eq. (11). The evolution of the ηα as function of the
energy is displayed for selected R values. The curves provide
an overview of the channel interactions over a range of energies
that extends from strongly bound electronic states through
the 1σg threshold up into the ionization continuum. It may
be seen that the quantum defects evolve substantially with
energy and internuclear separation in the ranges shown, but
these evolutions are smooth rather than erratic. In particular,
the quantum defects exhibit a continuous variation across
threshold, demonstrating the basic physical continuity that
links the discrete range to the ionization continuum.

B. Elimination of core-excited channels

In this work we are primarily interested in bound or
quasibound molecular Rydberg states. The reaction matri-
ces K produced by the R-matrix calculation may be used
to evaluate clamped-nuclei energies equivalent to (but of
course less accurate than) those obtained by state-of-the-
art quantum chemistry. To this end we must apply the
physical boundary conditions to the multichannel radial wave
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FIG. 3. (Color online) Spherical eigenquantum defects (η defects) for 3�g symmetry channels in H2, plotted as functions of the electron
energy ε = E − E+(1σg) in a.u. Different panels correspond to different values of the internuclear distance R as indicated. For R = 2.0 a.u.
and ε ≈ 0 the dominant contribution to each of the three eigenchannels is as follows: (1σg)εd̃π , dashed line (red online); (1σu)εp̃π , dot-dashed
line (green online); (1σu)εf̃ π , dot-dot-dashed line (blue online).

functions, specifically in the bound range all components
of the electronic wave function must vanish at infinity.

This procedure has been followed in Refs. [15,16] for the
singlet ungerade and gerade states. The secular equation
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FIG. 4. (Color online) Spherical eigenquantum defects (η defects) for 3�g symmetry channels in H2, plotted as functions of the electron
energy ε = E − E+(1σg) in a.u. Different panels correspond to different values of the internuclear distance R as indicated. For R = 2.0 a.u. and
ε ≈ 0 the dominant contribution to each of the two eigenchannels is as follows: (1σg)εd̃δ, dashed line (red online); (1σu)εf̃ δ, dot-dot-dashed
line (blue online).
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of MQDT,

det
∣∣tan βk(εk)δkk′ + K

(sph)
kk′ (E)

∣∣ = 0, (13)

is solved separately for each R value and total energy E

and yields discrete electronic eigenenergies En(R) which
are converted into potential energy curves by adding the
internuclear repulsion energy. βk in Eq. (13) is the accumulated
phase of the external electron in channel k, characterized by
the channel energy εk = E − E+

k , where E+
k is the core energy

as before. In the one-center Coulombic problem at hand the
quantity βk/π + 	 is simply the familiar Rydberg effective
principal quantum number νk = (−εk)−1/2 (where εk is in
Rydbergs) equivalent to n∗ in Eq. (1). When η defects are
used such as here, one has to set

tan βk(εk) = tan πνk

A(εk,	k)
, (14)

where A is Ham’s scaling factor [32].
Here, instead, we seek to evaluate smooth quantum defect

curves such as those displayed in Figs. 2–4, but where the
core-excited channels have been “eliminated” and their effect
incorporated into the effective ground-state core quantum
defects. We achieve this by applying the physical boundary
condition Eq. (14) to the core-excited channels only, while
treating the channels associated with the ground-state core
artificially as open regardless of the sign of the corresponding
ε. In practice, this means that for these latter channels the
accumulated radial phase βk in Eq. (13) is simply replaced by
−πη(red). Equation (13) then yields the reduced eigenquantum
defects η(red)

α as functions of the continuous energy variable E,
where α is a solution index. This type of MQDT procedures
is explained in detail, e.g., in Refs. [33] or [34]. In the course
of this operation the number of channels is reduced from 4
to 2, 3 to 1, and 2 to 1, respectively, for the 3�g

+, 3�g , and
3�g symmetries [cf. Eq. (9)]. Their number corresponds now
to the sets of effective quantum defect curves shown in the
right column of Fig. 1. The reduced eigenquantum defects
η(red)

α along with the eigenvector matrices U(red) define the
reduced spherical reaction matrices K(sph,red). In the following
we always refer to the reduced spherical matrices unless
explicitly indicated, and therefore we drop the corresponding
superscripts. At the same time the channel index k now
coincides with the partial wave component 	 of the outer
electron associated with the ground-state core and is denoted
accordingly [see Eq. (9)].

A further subtlety involves the following. As in previous
work [35]—and justified there—we have found it advanta-
geous to determine quantum defect matrix elements η̄		′ in-
stead of the usual η		′ . The latter are related to the reaction ma-
trix K as usual by K		′ = tan πη		′ (with the tangent taken ele-
ment by element), while the former are related to the latter by

η̄		′ = (π−1)U arctan[UT tan πη		′U]UT , (15)

where U is the (unitary) eigenvector matrix of K.
The reduced η̄ quantum defect matrix elements thus

obtained are plotted in Figs. 5 and 6 as functions of the energy
for various values of R as indicated. They are seen to exhibit
smooth energy dependencies in the bound range, but develop
a resonant behavior at higher energies. The resonances are
due the 	 = 1 and 3 Rydberg series associated according to
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FIG. 5. (Color online) Reduced spherical quantum defect matrix
elements η̄ss , η̄sd , and η̄dd for 3�g

+ symmetry channels in H2, obtained
by elimination of the closed core-excited (1σu)εpσ and (1σu)εf σ

channels. The defects are plotted as functions of the electron energy
ε = E − E+(1σg) in Rydbergs. Thick lines (black online) correspond
to R = 2, 3, 4, and 5 bohr, respectively, as indicated. Thin lines (color
coded online) represent intermediate R values with increments of
0.2 bohr.

Eq. (9) with the 1σu excited core, which now appear because
the physical boundary conditions have been applied to the
core-excited channels. The zigzag patterns seen in Figs. 5
and 6 are due to the fact that we use a coarse energy grid in
our calculations. On a fine grid the full pole-type structure
would emerge. However, the purpose here is not to study those
resonances in detail: It is indeed their absence that determines
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FIG. 6. (Color online) Reduced spherical quantum defect matrix
elements η̄dd for 3�g (top panel) and 3�g (bottom panel) symmetry
channels in H2, obtained by elimination of the closed core-excited
(1σu)εpπ and (1σu)εf π (εf δ) channels. The defects are plotted
as functions of the electron energy ε = E − E+(1σg) in Rydbergs.
Thick lines (black online) correspond to R = 2, 3, 4, and 5 bohr,
respectively, as indicated. Thin lines (color coded online) represent
intermediate R values with increments of 0.2 bohr.
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how far the reduced quantum defect matrices remain smooth
and retain their usefulness. It may be seen that the 3�g

+ chan-
nels are most strongly perturbed, with the resonance patterns
setting in below threshold, whereas the 3�g channels are least
perturbed and the resonance pattern sets in above threshold.
Further, it appears clearly that the larger R, the earlier occurs
the onset of the resonances, a fact which is not surprising in
view of the repulsive character of the 1σu ion core state which
comes down as R increases, see the left column of Fig. 1.

C. Explicit energy dependencies

The results displayed in Figs. 5 and 6 are intended for use
in the bound range, i.e., ε < 0, in the framework of rovibronic
molecular MQDT. To this end it is convenient to represent the
smooth portion of each quantum defect matrix element by an
expansion in energy around ε = 0,

η̄		′(ε,R) = η̄		′(R) + ∂η̄		′(R)

∂ε
ε + 1

2

∂2η̄		′(R)

∂ε2
ε2 + · · ·

≡ η̄(0)(R) + η̄(1)(R)ε + 1

2
η̄(2)(R)ε2 + · · · . (16)

In practice, we retain only terms up to second order. Figures 7
and 8 display the result of this procedure (black circles). These
curves contain the first-principles dynamical information on
channel couplings in the triplet gerade Rydberg manifolds
of H2 in condensed form. They are designed for use in a
rovibronic quantum defect treatment that involves only the
ground-state ion explicitly, but implicitly takes account of
the effects of CIs involving core-excited channels. Figures 5
and 6 allow one to assess over which range of energy ε

and internuclear separation R the expansion Eq. (16) remains
meaningful.

Finally, since the ab initio R-matrix points of Figs. 7 and 8
exhibit some slight scatter (e.g., the values for R = 3.8 a.u. for
3�g

+ symmetry), we have subjected them to a smoothing pro-
cedure by fitting their R dependence to polynomials of order 4
to 6, as appropriate for each curve. These smoothened curves
are represented by full lines (red online) and contain the final
R-matrix information that we combine below with standard
MQDT techniques to calculate the rovibronic fine structure
of the triplet gerade channels in H2. A last step, described
in Sec. V, involves adjusting the curves by fitting them to
experimental data in order to achieve spectroscopic accuracy.

V. REFINEMENT OF THE QUANTUM DEFECTS BY
FITTING TO EXPERIMENTAL ENERGY LEVELS

A. Rovibronic MQDT and frame transformation

In order to calculate the rovibronic structure of the triplet
gerade Rydberg states in the framework of MQDT we must
solve the MQDT determinantal system Eq. (13) once again,
but now by taking account of rovibrational motion. First, the
phase parameters βk(ε) ≡ β	(ε) in Eqs. (13) and (14), instead
of being taken with ε for any fixed R value, must now be taken
with respect to the rovibrational thresholds of the X 2�g

+ ion
ground state. One therefore uses εv+N+ = E − E+

v+N+ , where
the quantum numbers v+ and N+ refer to the vibrating and
rotating ion core. Second, the clamped-nuclei reaction matrix
elements K

(sph)
		′ (E,R) of Eq. (13) are replaced by rovibronic

reaction matrix elements K
(sph)(N,p)
	v+N+,	′v+′

N+′ (E), with p = 0 or 1
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FIG. 7. (Color online) Energy dependencies of η̄ss , η̄dd η̄sd quantum defects for 3�g
+ symmetry channels in H2 at ε = 0, plotted as functions

of the internuclear distance R. (Top row) η̄ij ; (middle row) 0.1 × ∂η̄/∂ε; (bottom row) 0.01 × ∂2η̄/∂ε2. Circles, raw R-matrix values; full lines
(red online), smoothened R-matrix values. Energies are in Rydbergs.
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referring to the total parity (−1)p of the rovibronic channel (not
to be confused with the purely electronic index p introduced
in Sec. III) and N the total angular momentum exclusive of
spins of the system. It has been discussed in many places (see,
in particular, Refs. [33,34,36]) how the rovibronic reaction
matrix can be constructed from the clamped-nuclei matrices
by means of the frame transformation approach. The building
blocks are vibrational integrals of the type

η̄
(i)(N,p)
	v+N+,	′v+′

N+′ =
∑


〈N+|〉(	,N,p)
∫

χ
(N+)
v+ (R) η̄

(i)()
		′ (R)

×χ
(N+′

)
v+′ (R)dR 〈|N+′〉(	′,N,p) (17)

over the clamped-nuclei electronic functions η̄
(i)
		′(R) from

Eq. (16) as kernels. We add a superscript  to these here
because the frame transformation expression (17) combines
several  components together. The frame-transformation
expression links the molecule-fixed representation of the wave
function to the space-fixed one. The ion ground-state core
vibrational wave functions χ

(N+)
v+ (R) play here the role of the

vibrational transformation, while the rotational transformation
is encoded in the brackets 〈N+|〉(	,N,p), which are expressed
analytically in terms of symmetrized combinations of 3j

symbols [37].
As a result of the frame transformation the rovibronic

reaction matrix has a vastly increased dimension (in principle
infinite), which effectively replaces the continuous dependence
on R of its clamped-nuclei precursors. We have typically used
a basis of 15 ion core vibrational levels v+ for each value of
the rotational quantum number N+. The sum over  in the

frame transformation expression (17) runs over  = 0–2 for
c-type levels [+ Kronig symmetry with total parity +(−1)N ]
and over  = 1 and 2 for d-type levels [− Kronig symmetry
corresponding to total parity −(−1)N ]. In practice, the rovi-
bronic MQDT determinantal system Eq. (13) takes dimensions
of the order of 40 to 60 in the present application and involves
more than 1000 independent reaction matrix elements. The
remarkable power of the frame transformation concept is
that all of these are generated from the functions η̄

(i)()
		′ (R)

which are smooth and may be specified by a small number of
parameters, as we have seen in the preceding sections.

Smaller effects such as the “normal” and the “specific”
mass-dependent contributions to the quantum defect matrices
have been included exactly as in the previous paper [19], but
are not in the focus here as we consider only one isotopomer
in this paper.

B. Input data set and fitting procedure

We have refined the quantum defect functions determined in
Sec. IV C by adjusting them to a set of experimental rovibronic
levels of triplet gerade H2. In the spirit of Ref. [19], we included
in our least-squares fitting procedure basically the complete set
of currently known experimental triplet gerade levels of H2,
extending over a range of nearly 5 eV and including rotational
levels of both parities for 0 � N � 4. Information on the n = 2
levels stems from Dieke and Crosswhite [38] and from Jungen
et al. [39], for n = 3 from Bailly et al. [40], and for n = 4
from Eyler and Pipkin [41] and Ross et al. [42]. For n = 2 and
n = 3 our data set is more complete than that used in Ref. [19]
as we have included the levels v = 3–6 of the 2sσa3�g

+ state
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and the levels with v = 3 of the 3d 3�g
+,3�g,

3�g complex
of states which were omitted in the earlier work.

For energies above the H(1s) + H(n = 2) dissociation limit
the triplet gerade levels are subject to predissociation, and for
energies higher than the H2

+(v+ = 0) + e− threshold they
are in addition subject to autoionization; that is, they are
broadened by interaction with the dissociation and ionization
continua and are, in fact, resonances. Extensive information on
these higher Rydberg structures has been gathered by Bjerre
et al. [43] and Lembo et al. [44,45] and most recently by
Sprecher et al. [19]. Numerous broad predissociation and/or
autoioionization resonances corresponding to triplet gerade
upper state symmetry with widths �/hc up to ≈ 50 cm−1 have
been observed in Refs. [43–45], and many of them were later
interpreted theoretically in the MQDT study of Matzkin et al.
[46]. However, for the purpose of the present fit we retain here
only the levels listed in Ref. [19] which are “sharp” in the sense
that their natural widths are smaller than the experimental
resolution width, �E/hc ≈ 0.2 cm−1, achieved in that work.
This allows us to treat these levels in our calculations as bound
levels, by omitting the open fragmentation continua and by
setting the phase parameter βk for the remaining channels in
the determinant Eq. (13) equal to the values appropriate for
closed channels given by Eq. (14). In all, we have included
449 experimental rovibronic levels in our least-squares fit.

The least-squares fitting procedure implemented here is
similar to that employed in Ref. [19]. The measurements
of triplet gerade rovibronic levels reported in Ref. [19]
extend from v+ = 0 up near the v+ = 4 H2

+ vibrational
threshold with a gap remaining only between 124 100 and
125 500 cm−1. The v+ = 4 threshold is indicated in Fig. 1,
and it may be seen that the classically allowed region for
the corresponding ion vibrational level is restricted to R < 4
bohr. It is therefore appropriate to fit the functions η̄

(i)()
		′ (R)

in the range 1.4 � R � 4 bohr. As was done previously in
Ref. [19], we have determined the corrections to the initial
quantum defects rather than the functions themselves. In our
case the initial parameters are the R-matrix results obtained
in Secs. III and IV, whereas the fitting procedure of Ref. [19]
started out from initial quantum defects extracted from the
quantum-chemical potential energy curves of Wolniewicz,
Kolos, and collaborators [17–21]. While in Ref. [19] it proved
sufficient to correct each η̄(i)() (i = 0–2) from Eq. (16) by a
constant plus a linear term in R, we found it necessary to use

a larger set of correction terms, of the form

c
(0)
		′ , c

(1)
		′ sin(πx), c

(2)
		′[cos(πx) − 1],

(18)
c

(3)
		′ sin(2πx), c

(4)
		′[cos(2πx) − 1],

for each value of . Here x = (R − Rm)/�, where Rm =
1
2 (Rend + Rbeg) and � = Rend − Rbeg, with Rbeg and Rend the
boundaries of the fitting range. The geometric functions in
Eq. (18) are chosen in order to avoid unrealistically large
correction terms near the boundaries of the fitting range as
they would occur in a polynomial expansion.

C. Results and discussion

Table I summarizes the results of the fitting procedure and
compares them with the previous fit made in Ref. [19]. Not sur-
prisingly, the initial ab initio quantum defect functions derived
in the previous paper from quantum-chemical potential energy
curves constitute a far better starting point than our initial R-
matrix predictions. However, the present fit by and large com-
pensates this drawback, as it produces final root-mean-square
deviations that are only about a factor two to three worse than
those obtained previously and remain well below 1 cm−1. Our
initial predictions of rovibronic levels are seen to be distinctly
better for the d-Kronig symmetry levels which are derived
uniquely from 3�g

− and 3�g
− Born-Oppenheimer levels than

for the full set that includes also the c-Kronig symmetry levels
which in addition depend on the 3�g

+ quantum defects. This
is a consequence of the fact that, owing to the nonlinear
relationship between energies and quantum defects, the largest
deviations occur for n = 2 where only c levels are present.

More detailed information on the rovibronic calculations is
provided by Table II, which lists the deviations observed minus
those calculated for a representative subset of N = 2 levels
with n ranging from 2 to 17 (columns 5 and 8 of the table).
The table demonstrates once again that the quantum defects
extracted from accurate potential energy curves provide overall
a far better starting point than those calculated by our present
implementation of R-matrix theory. However, it is also clear
that the superiority of the quantum-chemical approach is
limited to the lowest n values, essentially n = 2 to 4—the
region for which quantum-chemical potential curves exist—
whereas for higher energies/n values the two approaches
become quickly equivalent. It also turns out that some of the

TABLE I. Root-mean-square errors of calculated rovibronic energies from MQDT; Ref. [19] and present work (cm−1).

Symmetrya Numberb Range ab initioc rms ab initiod Range fit rms fit

d levels Previouse 206 −0.6:2.6 0.73f −0.4:0.4 0.13
Present 209 −26.5:54.6 12.0g −3.0:0.9 0.40

c and d levels Previouse 419 −5.1:2.3 0.71f −1.2:2.6 0.29
Present 449 −215.3:57.9 53.2g −3.0:3.2 0.53

aKronig symmetry.
bNumber of rovibronic levels included in the fit and used in calculating the rms error.
cRange of deviations (Eobs − Ecalc)/hc (cm−1).
dRoot-mean-square error of initial first-principles calculation (cm−1).
eReference [19].
fQuantum defects extracted from potential energy curves of Ref. [17].
gQuantum defects calculated with the present R-matrix approach.
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TABLE II. Energy deviations observed-calculated for selected N = 2 triplet gerade Rydberg levels of H2 (cm−1).

Previousa Present

Approximate Experimental Obs.-calc. Obs.-calc. Obs.-calc. �n∗ Obs.-calc.
Parityb descriptionc energyd initiale fit initialf initialf,g fit

c 2sσ a 3�g
+,v = 0 95 275.79 −1.10 0.05 −119.33 −0.0043 −0.07

c 2sσ a 3�g
+,v = 6 108 388.55 0.36 2.17 −144.86 −0.0053 0.80

c 3dσ g 3�g
+,v = 0 111 826.48 0.23 0.04 −62.44 −0.0077 −0.03

c 3sσ h 3�g
+,v = 0 112 049.97 0.01 0.21 −67.01 −0.0082 −0.14

d 3dπ i 3�−
g ,v = 0 112 140.80 −0.23 0.05 −16.21 −0.0020 0.04

c 3dπ i 3�+
g ,v+ = 0 112 310.88 0.12 −0.28 −78.76 −0.0097 −0.22

d 3dδ j 3�−
g ,v = 0 112 513.90 0.17 −0.19 44.22 0.0054 −0.30

c 3dδ j 3�+
g ,v = 0 112 529.55 0.26 −0.08 −3.82 −0.0005 −0.12

c 4dσ 3�g
+,v = 0 117 417.64 −0.61 0.08 −16.24 −0.0006 −0.20

d 4dπ r 3�−
g ,v = 0 117 599.44 −0.17 −0.14 8.52 0.0025 −0.52

c 4sσ 3�g
+,v = 0 117 609.61 −0.52 −0.43 −19.75 −0.0058 −0.21

c 4dδ s 3�+
g ,v = 0 117 718.98 −0.33 −0.35 −6.42 −0.0019 −0.82

d 4dδ s 3�−
g ,v = 0 117 830.35 0.09 0.05 9.35 0.0027 −0.09

c 4dπ r 3�+
g ,v = 0 117 958.40 −0.48 0.16 −24.61 −0.0072 0.40

d 10dπ,v+ = 1 125 561.75 0.79 0.22 −0.43 −0.0020 −0.37
d 10dδ,v+ = 1 125 576.44 1.45 0.16 0.16 0.0007 0.06
c 11d0,v+ = 1 125 698.83 0.64 0.04 0.07 0.0004 −0.01
c 6d2,v+ = 2 125 760.15 0.20 0.04 −0.82 −0.0008 0.32
c 11d2,v+ = 1 125 864.49 0.31 −0.23 −0.04 −0.0002 0.23
c 12d2,v+ = 1 126 007.72 −0.36 −0.30 −0.02 −0.0002 0.41
c 17d2,v+ = 1 126 434.79 0.02 −0.03 0.21 0.0048 −0.20
d 6d3,v+ = 3 127 799.29 2.06 0.23 −1.27 −0.0012 −0.46
c 13d2,v+ = 2 128 174.56 −0.32 −0.02 −0.21 −0.0021 0.02
d 11d1,v+ = 3 128 417.43 0.73 0.08 −0.89 −0.0054 −0.78
d 5dδ,v+ = 5 129 922.84 3.77 0.07 8.25 0.0047 −0.24
d 13d1,v+ = 4 131 833.29 1.05 0.19 0.37 0.0037 0.32

aReference [19].
bKronig symmetry: c/d refer to total parity ±(−1)N , respectively.
cHund’s case b Born-Oppenheimer description n	λ 3g,v. Hund’s case d description n	N+,v+.
dE/hc (cm−1) above X 1�g

+,v = 0,N = 0.
eQuantum defects extracted from ab initio potential energy curves.
fQuantum defects calculated by R-matrix theory.
g�n∗ = n∗

obs − n∗
calc, error of the effective principal quantum number, with n∗ corresponding to the approximate description of the level.

levels for n = 2 and 3 which were not included in the fit of
Ref. [19] are not too well reproduced by the quantum defects
determined there (cf. Table II).

The second-to-last column of Table II lists the errors
�n∗ = n∗

obs − n∗
calc of the effective principal quantum numbers

as obtained with the initial R-matrix quantum defects. These
quantities have been evaluated on the basis of the dominating
channel component indicated in the second column for each
level. Note that they are just the negatives of the effective
quantum defects in the sense of Eq. (1). Not surprisingly,
the errors �n∗ are seen to be more evenly distributed among
the sequence of the selected Rydberg levels than the energy
deviations themselves. It turns out that the ab initio R-matrix
approach provides predictions of rovibronic level energies that
are correct, on a quantum defect scale, to better than 0.01.

The main final result of the least-squares fitting procedure is
a set of adjusted quantum defect functions η̄

(i)()
		′ (R) (i = 0–2).

From these the quantum defects η̄		′(ε,R) can be evaluated

by means of Eq. (16) for any arbitrary energy. This is
demonstrated in Figs. 9 and 10, where the final functions
(orange curves) are confronted with the initial R-matrix values
(blue circles) for different energies. The comparison of the two
sets of curves is gratifying: The adjustments required to bring
the observed and predicted rovibronic levels into agreement are
minor on the absolute quantum defect scale used in the plots.
The most obvious deviation occurs for the ddσ channel where
the R-matrix prediction lies consistently nearly 0.04 lower
than the adjusted value. Somewhat surprisingly, this value is
considerably larger than all of the deviations �n∗ listed in the
second-to-last column of Table II. The reason must be that
the observable levels for the most part have mixed character
owing to the rovibronic interactions affecting them. Therefore,
the quantum defect errors are averaged out to some extent, an
effect that is enhanced, no doubt, by the vibrational motion
and, as the energy increases, also by the high density of levels
which diminishes the energy shifts that can arise from vibronic
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FIG. 9. (Color online) η̄ss , η̄dd η̄sd quantum defects for 3�g
+ symmetry channels in H2 plotted as functions of the internuclear distance R

in bohr. (Top row) Values at threshold (ε = 0); (middle row) values for n = 3 (ε = −1/9 Ry); (bottom panel) values for n = 2 (ε = −1/4 Ry).
Circles (blue online), ab initio R-matrix values; full lines (orange online), fitted to experiment.

perturbations and/or quantum defect inaccuracies. A smaller
systematic deviation occurs for the ddδ channel where the
R-matrix prediction lies 0.02 higher than the adjusted value.
The ddδ channel corresponds to a nonpenetrating Rydberg
electron and its small quantum defect is determined essentially
by the asymptotic field outside the core or reaction zone
(quadrupole field and dipole electron-core polarization). The
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FIG. 10. (Color online) η̄dd quantum defects for 3�g (left col-
umn) and 3�g (right column) symmetry channels in H2, plotted as
functions of the internuclear distance R in bohr. (Top row) Values
at threshold (ε = 0); (bottom row) values for n = 3 (ε = −1/9 Ry).
Circles (blue online), ab initio R-matrix values; full lines (orange
online), fitted to experiment.

failure of the R-matrix calculation to account accurately for
the quantum defect in this case probably reflects an inadequacy
of the asymptotic field used in the halfium approximation; see
Sec. III A.

Finally, Table III compares the final clamped-nuclei quan-
tum defect matrix elements η̄

()
		′ (ε,R) with those determined

previously in Ref. [19] on the basis of the same experimental
data. The comparison is made for a selected range of R values
around the equilibrium internuclear distance of the H2

+ core,
and values are given for two energies, namely ε = −1/32

(n = 3) and ε = 0 (n = ∞).
The table shows the following.
(i) For the set of R values chosen the average of the

deviations between our values and those of Ref. [19] is about
a factor 100 smaller for n = 3 than at threshold, and the mean
deviation of these differences still is a factor of three smaller
for n = 3 than for n = ∞. This is not surprising because
the starting values at threshold were obtained in Ref. [19]
by extrapolation from n = 2–4 to n = ∞, whereas we have
calculated them directly with the R-matrix method. It appears
likely that our values at threshold are more accurate than the
previously determined ones (cf. also Figs. 9 and 10), but in
any case a mean deviation <0.01 can be considered as small
from the perspective of scattering theory.

(ii) Turning to the comparison for n = 3, we see that the
average of the deviations (≈0.2 cm−1) is of the order of the
quality of the fits obtained here and in the previous paper,
which is satisfactory agreement.

(iii) However, the mean deviation of the differences is more
than two orders of magnitude larger and amounts to 25 cm−1.
This mean deviation reflects the erratic occurrence of positive
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TABLE III. Previous and present body-frame quantum defects for triplet gerade symmetry in H2.a

n = 3 n = ∞ (Threshold)

Matrix R η̄ η̄ η̄ η̄

element value Previous fitb Present fit Difference Previous fitb Present fit Difference

ssσ 1.6 0.094 97 0.090 03 −0.004 94 0.084 70 0.088 71 0.004 01
2.0 0.048 05 0.048 37 0.000 32 0.036 79 0.036 85 0.000 06
2.4 0.005 90 0.007 47 0.001 57 −0.006 70 −0.010 42 −0.003 72
2.8 −0.031 38 −0.027 36 0.004 02 −0.045 77 −0.052 69 −0.006 92
3.2 −0.063 37 −0.058 62 0.004 75 −0.079 97 −0.088 89 −0.008 92

ddσ 1.6 0.072 49 0.074 80 0.002 31 0.045 30 0.050 60 0.005 30
2.0 0.113 46 0.113 25 −0.000 21 0.064 04 0.066 60 0.002 56
2.4 0.166 69 0.166 88 0.000 19 0.092 37 0.084 10 −0.008 27
2.8 0.230 38 0.230 04 −0.000 34 0.136 25 0.133 07 −0.003 18
3.2 0.298 67 0.296 45 −0.002 22 0.200 44 0.210 69 0.010 25

ddπ 1.6 0.048 13 0.041 11 −0.007 02 0.026 84 0.034 54 0.007 70
2.0 0.073 35 0.072 51 −0.000 84 0.040 87 0.053 98 0.013 11
2.4 0.106 87 0.110 26 0.003 39 0.060 62 0.053 17 −0.007 45
2.8 0.151 27 0.154 36 0.003 09 0.089 17 0.062 62 −0.026 55
3.2 0.210 21 0.211 70 0.001 49 0.139 11 0.138 40 −0.000 71

ddδ 1.6 −0.018 06 −0.013 13 0.004 93 −0.007 74 −0.006 40 0.001 34
2.0 −0.030 53 −0.030 62 −0.000 09 −0.013 17 −0.011 76 0.001 41
2.4 −0.044 54 −0.046 36 −0.001 82 −0.019 40 −0.018 11 0.001 29
2.8 −0.059 23 −0.061 75 −0.002 52 −0.026 20 −0.025 19 0.001 01
3.2 −0.073 68 −0.075 74 −0.002 06 −0.033 47 −0.032 53 0.000 94

sdσ 1.6 −0.007 35 −0.005 52 0.001 83 −0.001 91 −0.015 28 −0.013 37
2.0 −0.011 33 −0.011 35 −0.000 02 −0.006 34 −0.016 21 −0.009 87
2.4 −0.016 21 −0.015 50 0.000 71 −0.011 57 −0.025 53 −0.013 96
2.8 −0.021 98 −0.022 69 −0.000 71 −0.017 62 −0.033 22 −0.015 60
3.2 −0.028 65 −0.034 04 −0.005 39 −0.024 47 −0.013 14 0.011 33

Mean difference/
deviation η̄ 0.000 02 ± 0.003 03 −0.002 33 ± 0.009 31

Mean difference/
deviation energyc 0.2 ± 24.6 cm−1

aThese quantum defects include the mass-dependent contribution of the “specific” mass effect; see [19] for a detailed discussion.
bSprecher et al. [19].
cEvaluated using the scaling relation �E = (2R/33) �η̄ where R is the Rydberg constant.

and negative deviations and is probably due to the fact that
the correction functions of Eq. (18) are gross approximations
to the required corrections. The vibrational motion washes
these deviations out and allows nevertheless a good fit of the
experimental data to be obtained.

(iv) Once again, however, from the perspective of scatter-
ing theory and accuracy of phase shifts the agreement is really
excellent, considering that even the largest deviations never
exceed a few multiples of 0.001.

VI. CONCLUSION

In this work we have demonstrated how by starting from
ab initio R-matrix calculations, it is possible to produce e− ∼
H2

+ reaction matrices that may be applied to the calculation
of high-resolution molecular spectroscopy data on the scale
<1 cm−1. While in the bound range, for n = 2 and n = 3, our
initial R-matrix quantum defects are less accurate than those
extracted from state-of-the-art quantum-chemical potential
energy curves by one to two orders of magnitude, they retain
their validity at higher energies, far above the ionization

threshold where the methods of customary quantum chemistry
fail. Figures 9 and 10 show that in units of π radians our
R-matrix code yields electron-ion scattering phase shifts that
are correct to <0.02 in most cases and accurate to 0.05 in
all cases, despite the fact that in the R-matrix computations
reported here we have used minimal angular and radial basis
sets. We may thus be confident that this degree of accuracy is
maintained in the electronic continuum.

We stress once again that only minor adjustments, which
do not alter the overall behavior, have been necessary to bring
the initial quantum defect functions into agreement with the
high-resolution spectroscopic data from Ref. [19]. Moreover,
the initial discrepancies occur almost exclusively for the lowest
states, with n = 2 and 3 as demonstrated by Table II, where
they are due to the highly nonlinear relationship between the
quantum defect and the energy. The capability of quantum
defect theory—or “multichannel spectroscopy,” as it has been
called [2]—to provide a global quantitative interpretation of
complex experimental data over a considerable energy domain
is not invalidated by this fact. Whether a treatment purely
from first principles is sufficient or a fit to experimental data
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is necessary depends on the accuracy of the experimental data
at hand.

In view of the above statements the calculations presented
here may be considered as exploratory. It appears desirable
to improve future clamped-nuclei R-matrix calculations on all
symmetries in H2 by vastly increasing the basis sets employed.
This is technically possible with available computers, and work
in this direction is under way. From a conceptual point of view,
however, it appears already at this point that a better definition
has been achieved of the meaning of quantum defect matrices
such as they are extracted empirically from spectroscopic
data.

A further planned improvement of our R-matrix approach
concerns the refinement beyond the halfium approximation
of the field used in the asymptotic zone. Finally, a limitation
of the rovibronic MQDT calculations presented here is that
they cannot be extended meaningfully beyond the energy
range defined by the plots of Figs. 5 and 6, where the
reduced clamped-nuclei matrices remain smooth. For higher
energies one has to return to the full reaction matrices
that explicitly include core-excited channels such as those

evaluated in Sec. III B. However, in doing this we wish
to preserve the high accuracy attained in the bound range,
while recovering the smoothness and generality at higher
energy. This extension is deferred to a future publication
and will involve “working backward” from the reduced
clamped-nuclei quantum defect matrices fitted in Sec. V to
the higher-dimension multicore matrices required at higher
energy.
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