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We investigate the implementation of a controlled-Z gate on a pair of Rydberg atoms in spatially separated

dipole traps where the joint excitation of both atoms into the Rydberg level is strongly suppressed (the Rydberg
blockade). We follow the adiabatic gate scheme of Jaksch ef al. [D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston,
R. C6té, and M. D. Lukin, Phys. Rev. Lett. 85, 2208 (2000)], where the pair of atoms is coherently excited
using lasers, and apply it to the experimental setup outlined by Gaétan et al. [A. Gaétan, Y. Miroshnychenko,
T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet, A. Browaeys, and P. Grangier, Nat. Phys. 5, 115 (2009)].
We apply optimization to the experimental parameters to improve gate fidelity and consider the impact of several

experimental constraints on the gate success.
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I. INTRODUCTION

Using neutral atoms for quantum information has garnered
much theoretical interest over the last decade, fueled by
advances in their experimental manipulation, particularly
trapping and cooling. Several schemes for entangling pairs of
atoms (an essential operation for quantum logic) via controlled
collisions have been developed [1,2], but schemes that make
use of the special properties of Rydberg atoms are also
very promising (see Ref. [3] for a review). In particular,
several schemes for producing quantum gates by exciting
pairs of Rydberg atoms with tuned lasers have emerged [4,5]
which capitalize on the strong dipole-dipole interaction that
prevents the simultaneous excitation of neighboring Rydberg
atoms, known as the Rydberg blockade. Several steps towards
realizing such schemes experimentally have already been
achieved, particularly the observation of the blockade [6]
and entanglement generation [7] in a system of two confined
Rydberg atoms. There has even been some early success in
producing a gate with trapped Rydberg atoms [8].

In this paper, we consider the implementation of a
controlled-Z (CZ) gate on a pair of Rydberg atoms confined
in spatially separated dipole traps subject to the Rydberg
blockade effect. We follow the scheme outlined in Ref. [4],
but with specific application to the experimental setup detailed
in Ref. [9], where the Rydberg atom is excited via a two-
photon transition. This proposal has the advantage that both
atoms are excited by the same laser, reducing the need for
single-atom addressability; the gate is also adiabatic, which
softens the experimental requirement for strong fields or
precise timings. However, the experimental considerations do
present additional challenges in the implementation of the
gate, particularly due to loss from the intermediate state of the
transition and the movement of the atoms in the dipole trap.
We attempt to address both of these issues here by applying
a direct search control algorithm to search for the ideal set of
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parameters for implementing the gate on a short timescale
(~1 ws) and with high fidelity. Our results show that the
physical system allows for a great deal of control and gate
times and fidelities approaching our desired range, providing
a positive outlook for implementing high-fidelity gates with
such systems.

The paper is arranged as follows. In Sec. II, we briefly
recount the Cz gate, followed by a description of how it may
be synthesized on a pair of Rydberg atoms. In particular, we
expose the operation of the gate by considering the effective
two-level dynamics of each atom and its interaction with a
laser field. In Sec. III, we describe how we optimize the
operation of the laser using a gradient descent to achieve the
gate with high fidelity. In Sec. IV, we consider the details
of the experiment and the constraints it imposes on the gate
operation, particularly with regards to loss and effects arising
from atomic motion. Finally, we conclude our paper in Sec. V.

II. CONTROLLED-PHASE GATE
A. Gate definition

The controlled-Z (Cz) gate is a two-qubit gate in quantum
information and belongs to the class of controlled unitary
operations [10]. Given the computational basis |0),|1), it is
defined as the unitary transformation

0

0
CZ = 1
0 (1)

—1

S oo ~
S o= O
O = O O

This gate is of particular importance because it can generate
entanglement between two unentangled qubits depending on
the initial states of the qubits. In addition, together with a
finite set of single-qubit operations, one can construct any
desired gate operation simply by taking combinations of these
operations with the CZ gate. This is known as a universal set
for quantum computation [11].

©2014 American Physical Society
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FIG. 1. The level scheme for a single Rydberg atom. The atom is
driven to the Rydberg state via a two-photon transition, which couples
the ground state |g) to the excited state |r) through the intermediate
state |i). The effective Rabi frequencies of the transitions are Qg(#)
for the red laser (which is blue-detuned by A) and 25 for the blue
laser (which is red-detuned by A + §).

B. Blockaded Rydberg atoms

The physical system we are considering for the
implementation of the gate is a pair of trapped Rydberg
atoms [6], specifically 8’Rb. The atoms are trapped a distance
r apart in two separate microscopic dipole traps [6]. For
our purposes, we need only consider a small number of the
internal states on which the dynamics take place.

A pair of hyperfine states of the atom encode the compu-
tational basis and are labeled |e) = |0), |g) = |1). Each atom
has its |g) state coupled to a highly excited Rydberg state
(which we label |r)) via a two-photon transition through an
intermediate state |i). The internal level scheme with state
transitions for a single atom is shown in Fig. 1. If two
neighboring atoms are excited to the |r) state, then they
interact. For the work presented we have taken a dipole-dipole
potential with energy U (r) = C3/r>. However, the conclusion
of the work is independent of this functional form and only
the strength of the interaction at a given fixed distance of the
two atoms is relevant. As a consequence our conclusions are
valid also for a van der Waals interaction. The interaction
energy shifts the energy of the state where both atoms are
excited. When this shift is much larger than the two-photon
detuning &, the two-photon transition is far off-resonant with
the doubly excited state, leading to a strong suppression of both
atoms becoming excited. This effect is known as the Rydberg
blockade and has been observed experimentally [6,12]. The
effect is shown schematically in Fig. 2.

The important point about the blockade mechanism in our
case is that it is state dependent: only if both atoms are in
the ground state |g) will they be subject to the blockade. The
potential use of this as a mechanism for performing a quantum
gate has been explored in several papers [4,5,13,14], also with
Krotov pulse shape optimization [15,16], but here we follow
the adiabatic (model B) scheme of Jaksch et al., where the gate
is performed by adiabatically driving the two-atom system [4].

C. Gate operation in outline

There are two critical elements that allow us to synthesize
the gate with our system. The first is the blockade mechanism,
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FIG. 2. The level scheme for the two-atom system (neglecting
the internal level |i)). The transition from the joint ground state |gg)
to the super-radiant state |W") = (|gr) + |rg))/ﬁ is enhanced by
a factor of +/2, while there is no coupling to the subradiant |¥~) =
(lgry —1Irg))/ /2 state. The excitation of both atoms to the Rydberg
state |rr) is forbidden, since the interaction energy U (r) has shifted
the level far off-resonant with the incident lasers.

which prevents excitation to the doubly excited |rr) state
(where we have used the shorthand notation |r) ® |r) = |rr)
for the tensor product of the state of the two atoms, which is
used throughout). This avoids unwanted mechanical effects
stemming from the strong interaction of the two Rydberg
atoms, as well as reducing the time spent in the Rydberg
state, which is subject to loss. The second crucial aspect
is the super-radiant enhancement of excitation from |gg) as
compared with the states |ge) and |eg). In other words the Rabi
frequency of this transition is enhanced by a factor /2; see
Fig. 2. This results in a higher rate of phase accumulation on
the |gg) state during excitation in comparison to |ge) and |eg).
By carefully choosing the excitation profile of the incident
lasers, we can control these two different accumulated phases
to produce the Cz gate.

D. Hamiltonian

The two-photon transition is driven via two lasers: one
blue-detuned on the transition from |g) to |i) by an amount A
with a Rabi frequency Q2z(¢), and the other red-detuned on the
transition |7) to |r) by an amount A + § with a Rabi frequency
Qp (see Fig. 1). In addition there is loss from the states [i)
and |r). The general form of the effective Hamiltonian for our
two-atom system can be written as

H=H'+ A+ Hy,. 2)
The single-atom Hamiltonians are composed of both the

internal and external dynamics, such that (after the rotating-
wave approximation)

AJ = A + A} + A, (3)
A = (A —iy)li)(i] + S — iy)Ir)(rl, 4)

” AQr(1) . hQp .
Hj =—$e"‘“‘”lg><il —TBe"‘“'rf|i><r|+H.c., (5)

1) = (T + Vaap)(lg) (g] + le) (] + [i) (| + 1r)(r]),  (6)
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where i = 1,2 labels the two atoms. Hs describes the energy
splitting of the internal states along with the effective decay
from those states. This description of the loss is valid for small
loss, which is the case for the optimized version of our gates.
(It is a bad description in the unoptimized cases with low
fidelity and high loss, but this does not affect the results in this
paper.) H; describes the laser coupling between the internal
states, and Hy contains the kinetic and potential energy terms.
The factors y;, y, account for an effective loss of population
from the intermediate and Rydberg levels, respectively. The
exponential terms in Eq. (5) are phases accumulated by the
atoms as they move through the light field of the laser; kg
and kg are the wave vectors of the red and blue laser fields,
k = kg + kg is the wave vector of the effective two-photon
transition, and r; is the position vector of the jth atom. The
interaction Hamiltonian is given simply by the dipole-dipole
interaction: Hin = U (r)|rr)(rr|.

Note that in Eq. (6) we have neglected the difference in the
trapping potentials for the different internal states (in any case
we turn off the trap when the gate is performed). Since there
are no state-dependent terms in Eq. (6), we can neglect it in
our treatment.

E. Effective two-level system dynamics

By performing an adiabatic elimination [17] of the state |i),
we can examine the effective three-level dynamics of the sys-
tem. This leads to the condition that Q3 (7), 2z,8 < A.Inaddi-
tion, we make a change of basis in the subspace span{|gr),|rg)}
such that the new basis vectors in this subspace are

)

(€T gr) + e Irg)).

S-Sl

(7

) (€ |gr) — e rg)).

We can now rewrite the
H = Hy + Hjy, where

system Hamiltonian as

R= ,+~,2+ I (®)

.. 2 hQ,
H;Z_ﬁ(’ﬂgxgw(a —B—iyr>|r><r|, ©)

. Q . .
H] _ _h 2(0 (e_lk..-] |ge)(re| + e—zk~rz|€g> (er| + H.C.)
Rt
—IJ(Igg (W] + W) (ggl), (10)

with the effective Rabi frequency of the two-level dynamics
Q1) = QpQr(t)/2A. (11)

The magnitude of the dipole matrix elements

[(ggl Hily )| =

. . [19)
{gelHylre)| = |(eg|Hiler)| = —=

X h
HgglHily )| = ~/§7,

show that the state |W~) is not coupled to any of the
other states via the laser interaction; in other words, it is
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subradiant [18]. In addition, the state |[¥*) is a super-radiant
state, so that the coupling between the ground state |gg) and
| W) is enhanced by a factor of /2 compared to the transition
lge) — |re) (leg) — ler)).

Finally, note that since |i) is never populated in this
approximation, we neglect the loss term y;. We also for the
moment assume that the atoms are stationary, and so the phases
accumulated from their movement in the light field can be
neglected.

F. Gate operation in full

Now we describe the operation of the gate in more detail.
We start with the initial state

[W(t = 0)) = 3(1gg) + Ige) + leg) + |ee)) (12)
and define the target state at final time 7,

W6) = 3(—lgg) + ge) + leg) + lee)). 13)

Note that while this seems to be a specific state transformation,
as opposed to the unitary transformation from Eq. (1), they
are in this case equivalent by virtue of the basis states
{lgg).lge),leg),|ee)} notbeing directly coupled to one another.
Hence any initial state-dependent phases will not affect the
final outcome of the gate.

To perform the gate, the blue laser is always switched on,
while the red laser is modulated in a time-dependent fashion
using an acousto-optic modulator. If this modulation is slow
on the timescale given by (¢) and §, then the system will
adiabatically follow the dressed states of the Hamiltonian H.
Performing the same treatment as in Ref. [4] for our system, we
similarly find that the energy of the dressed levels adiabatically
connected to |gg) and |ge) (|eg)) are

Eoo(t) = 1[8" — 4ER() + (8 +20%(1))7],  (14)

£got) = L[ — 2Ex() + (87 + Q2(1)7], (15)

respectively, where 8’ = § — Ep + Eg(t) is the effective two-
photon detuning including the Stark shifts from the adiabatic
elimination of |i):

Q2(1) Q2

Er()= R~ Ep=28. 16
r(?) A B= o0 (16)
and
Q2(¢
8" =8 — Q) a7
2u + 45 — 4ER(r)

includes the additional Stark shift from the adiabatic elimina-
tion of the |rr) state. The final state is

[Y(T)) = e "¥|gg) + e "% (|ge) + leg)) + lee),  (18)

where

T T
bo= [ ewit, g = [ euwar. 9
0 0

By performing state-selective qubit operations, we can realize
the Cz gate. To see this, we first apply a state-selective phase
on the first atom: if the first atom is in the state |g), then it
receives a phase e %« Similarly, we then apply the same phase
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rotation on the second atom. After these operations, the state
becomes

[U(T)) = e @729 gg) + |ge) + leg) + lee).  (20)

We can now define the gate phase

¢ = ¢gg — 2ge- 2y

The operation of the gate is now clear: we seek to modulate
Qgr(t) such that ¢ = (2k+ 1), k € Z, and there is no
remaining population in the excited states of either atom (this
is taken for granted in the adiabatic limit). The next step is to
design Q2z(7) to achieve these conditions.

III. OPTIMIZATION OF THE GATE
A. Simulation

The system evolves in accordance with the Schrodinger
equation (h = 1):

0 ~
i (@) = Hy @) (22)

Since the Hilbert space dimension |H|= N is relatively
small, we can simulate the gate by directly diagonalizing the
Hamiltonian and using discrete time steps d¢, such that the
solution of Eq. (22) can be written as

[y (1)) = Pe  PU Pyt — db)), (23)

where P = [x,x;,...,xy] is the square matrix constructed
from the eigenvectors x; of H,and D = diag(hi,Az2, ..., AN)
is a diagonal matrix whose elements are the eigenvalues
)\i of I:I

B. Optimization method

Many tools exist for numerical optimization that we could
employ here to design the Rabi frequency Q2z(¢) that produces
the gate. We start by making a guess for the form of Qg(t),
so that the evolution is characterized by only a handful of
parameters. One particular choice is a Gaussian:

Qp(t) = Qo e, (24)

where we choose T = 0.27, with total gate operation time 7.
The constant 2 is a parameter which we can, in principle,
choose arbitrarily (in reality there are constraints on this
value, which we come to later). There are also parameters
associated with the system that one may vary, namely the
atom separation r, the Rabi frequency 25, and the detunings
6 and A. We begin by choosing a set of reasonable values,
and then we numerically optimize each of the parameters
to achieve the desired gate with a high fidelity. The nu-
merical method used to optimize the parameters is gradient
descent.

As an example, we start with the set of parameters in
Table I. The total time for the gate is fixed at T = 500 ns,
and the detuning § = 0. The interaction strength is chosen as
U = 118 GHz, corresponding to a separation of the atoms at a
distance of 0.3 um, when assuming dipole-dipole interaction
U(r) = 3200 MHz/r3 as in Ref. [6] was still valid at this
small distance. This is a particularly strong interaction due to
the existence of a Forster resonance [19,20], a point which we
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TABLE I. A set of initial parameters that produces a gate with
fidelity of around 89%, and the optimized parameters that produce
a gate with fidelity better than 99.9%. All values are in units of
2w MHz.

R Qp A )
Initial 300 300 1000 0
Optimized 304.7 292.6 974.8 0

come back to later when we describe the experimental setup
in more detail. But again only the value of the interactions
enters the simulations, not the distance dependency. We define
the fidelity of the gate operation as F = |(y(T)|¥c)|>. The
resultant fidelity of the gate with these initial parameters is only
around 89%. Now we apply our optimization algorithm to the
parameters 29, 25, and A. After 1600 iterations, we achieve
a fidelity of better than 99.9%, or, more precisely, an infidelity
I =(1—F) < 3.8 x 107 If the experimental precision of
the Rabi frequencies and detuning is limited to integer
megahertz this infidelity slightly increases to 4.2 x 10~*. The
decrease in infidelity as the algorithm progresses is shown
in Fig. 3. Table I shows the final set of parameters that
produced the optimized gate. The resulting time-dependent
phase accumulations ¢,, and ¢, are shown in Fig. 4. We see
that the phase accumulated by the &,, (&.,) is exactly zero.
This can be understood by calculating Eq. (15) for our set
of parameters: since § = 0, it is straightforward to show that
£g.(t) = 0. The populations of the relevant levels during the
gate operation are shown in Fig. 5.

It might be worrisome that the parameters in Table I do
not seem to strongly fulfill the condition Qx(#),Qg,6 K A
required for the validity of the adiabatic elimination. We
have, however, confirmed that even when we consider the full
evolution under A in Eq. (2) the population in i) is heavily
suppressed, such that it may be neglected. In what follows,
we abandon the effective model given by Hy (which provided
insight into the gate mechanism) in favor of the full treatment
by H as given by Eq. (2). This means that we include all
four levels of each atom and treat the effective loss by the
non-Hermitian term in Eq. (5).

1071 E
| 1072 | ]
1073 L 4
10*4 L L L
0 500 1000 1500 2000
Iterations

FIG. 3. (Color online) The decrease in infidelity of the quantum
gate for the set of initial parameters given in Table I. One sees that
the infidelity decreases monotonically until saturating in a local
minimum of the optimization. The final achieved infidelity was
1—F=38x10"
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FIG. 4. (Color online) The dashed (green) line is the phase
accumulation of the states |gg) (given by ¢,,), the dotted (blue)
line is that of |ge) (given by ¢,.), and the solid (red) line is the total
entanglement phase ¢, which at the final time reaches 3.0 (note that
the dashed green line and the solid red line overlap almost exactly).
The parameters used are given in Table I. The time is in units of
nanoseconds, and so the duration of the gate is 500 ns.

IV. EXPERIMENTAL CONSIDERATIONS

A. Level description

We have now demonstrated the optimization method, but
we must also consider the experimental conditions which will
have an effect on the gate fidelity. We consider the setup given
in Ref. [6]. The gate is well suited to this system because
we do not require single atoms to be addressable, and the
Rydberg blockade is relatively strong. The reason for this is
the use of a Forster resonance that exists in 8’Rb [20], which
comes about due to the quasidegeneracy of the two-atom states
(58d3/2, 58d32) and (60p1 /2, 56 f5/2). This enhances the dipole
interaction, leading to an interaction energy U (r) o< 1/r3.

The choices of states for the levels are |g) = [5s51,2, F =1,
Mp =1), le) = 5812, F =2, Mg =2), and |i) = [5p1,2,
F =2, Mg =2),asinRef. [7].

B. Correspondence to experimental results

As mentioned earlier, we describe the loss from both
the intermediate state |i) and the excited Rydberg state
|r) phenomenologically through the decay rates y; and y,,

e

[\]
ot

o
- <
IS

0.1
0.05
0

Population Density

(a)

(b)

-250-125 0

t (ns)

125

250 -250-125 0 125 250

t (ns)

FIG. 5. (Color online) (a) The solid (red) line is the population
of the state |gg) and the dashed (green) line is the population of the
state |W™T) over the duration of the gate. (b) Similarly to (a), the solid
(red) line is the population of the state |ge) and the dashed (green)
line is the population of the state |re) over the duration of the gate.
The populations of |eg) and |er) are respectively the same.
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FIG. 6. (Color online) (a) The solid (red) line is the simulated
probability to excite |ge) to |re), with the experimental results for
the same transition shown as a dashed (green) line. (b) Similarly, the
solid (red) line is the simulated probability to excite |gg) to | W), with
the experimental results for the same transition shown as a dashed
(green) line.

respectively. Examining the literature [9,21], we find for our
setup that y; = 27 x 5.75 MHz and y, = 27 x 4.8 kHz.

We have verified that the simulation corresponds to the ex-
perimental results from Ref. [6]. Figure 6 shows the agreement
between the simulated Rabi oscillations of the %(|er) + |re))
state and the |W*) state. While the fit is not exact, we do
reproduce the correct frequency of oscillation, as well as an
indication of the typical decay from the intermediate level.
We also find a relative difference in frequency of the two
oscillations of a factor Nﬁ, as expected from the theory.
The discrepancies between theory and experiment arise from
experimental imperfections which are not taken into account
in our model, namely laser fluctuations in both power and
frequency of the lasers, which lead to some dephasing. Our
phenomenological loss model also does not account for the
possibility that an atom can decay to |g) from where it may
be repumped, which partially accounts for the discrepancy in
total population.

C. Typical experimental parameters

While it would be ideal if the gate parameters described
in the previous section could be immediately applied in the
experiment, the reality is that there are certain experimental
limitations that prevent us from doing so. First, the powers of
both lasers have certain maximum values: €2 has a maximum
operating value of 1 GHz, while Q5 is limited to 120 MHz.
Second, we do not have the freedom to modulate the laser
power as we like; acousto-optic modulators (AOMs) control
the power of the laser beams incident on the atoms, and they
have limits on the rate at which the intensity of the beam
can be changed. (In any case, since the gate is adiabatic,
we expect that the final result will not depend very strongly on
the exact shape of the excitation as long as the area of the pulse
is preserved.) The “rise time” (the time it takes to increase the
laser power from zero to its maximum) is typically in the range
200400 ns. We take the profile of this rise time to be Gaussian,
in agreement with the measured pulse shape on the experiment.
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FIG. 7. (Color online) The decrease in infidelity of the quantum
gate for the set of initial parameters given in Table II. The stepwise
decrease of the current minimum illustrates how restarting the simplex
can result in finding another (deeper) local minimum until it reaches
the (supposed) global minimum. The final achieved infidelity was
1-F=18x1072

Finally, due to the separate dipole traps, the minimum distance
between the two Rydberg atoms is limited to 3 wm or greater.
A final condition is put on the detuning A of the red laser: this
should be less than 500 MHz due to experimental constraints
(although this is not a stringent condition).

There is also an additional probability of loss when an atom
is excited to the Rydberg level: when excited, the motional
wave packet starts to spread, so that when the dipole trap is
reapplied, there is a finite probability that the atom is lost (this
is actually used as a method of detection in the experiment).
This motivates us to limit the time spent in the Rydberg state.

D. Optimizing the gate for experiment

With these limitations, we now see that the gate parameters
from Table I are not feasible in our chosen experimental setup.
We must now start with a new set of parameters and run
the optimization again to see to what extent the gate is still
implementable. Given the discussion above, we are motivated
to make the following changes to our parameters.

(a) The gate should be performed as quickly as possible,
meaning that the effective Rabi frequency Q o Qz, Q5 should
be made large. This implies that we should choose 2z and
Qp close to their maximum values. (This has the additional
advantage that we spend less time in excited Rydberg levels,
improving the probability of recapture.) Since the constraint is
stricter for Q25 and we want to fully exploit the experimentally
feasible maximum power, we set Q5 to 120 MHz and instead
optimize the gate operation time 7.

(b) To avoid excitation of the lossy |i) state, we need to
keep the red laser far detuned, ideally around 500 MHz. How-

TABLE II. A set of initial parameters, within experimental
constraints, that produces a gate with fidelity of around 52%, and
the optimized parameters that produce a gate with fidelity better than
98%. Rabi frequencies are in units of 2z MHz, time in units of 1 ps.

Q T A )
Initial 50 1 500 —1
Optimized 129.6 1.1 —703.7 0.1
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FIG. 8. (Color online) The dashed (green) line is the phase
accumulation of the states |gg) (given by ¢,,), the dotted (blue)
line is that of |ge) (given by ¢,.), and the solid (red) line is the
total entanglement phase ¢, which at the final time reaches —1.0.
The parameters used are given in Table II. The time is in units of
nanoseconds, and so the duration of the gate is 1.0922 us.

ever, as can be seen in Eq. (11), increasing the detuning will
reduce the effective Rabi frequency, which makes achieving
the gate in a short time more difficult.

(c) To make maximum use of the laser power, we change
the shape of the pulse from a simple Gaussian to a “flat top,”
given by

2
Qo exp [- 57 ] 1<,

Qr =10, exp [_ (z—g/—sw)z] t>T -1, (25)
Qo otherwise.

Here, the Rabi frequency increases with a Gaussian profile to
the maximum €2y in a time 7 (the rise time), followed by a
period of constant Rabi frequency for a time T — 27, and then
finally a reduction along a Gaussian profile to zero, again in
a time 7. This gives us the freedom to have the laser at full
power for the longest time possible, which in turn causes us
to accumulate the time-dependent phase more rapidly. It turns
out, however, that the best choice for 7 is to extend the rise
time to T = T/2, thus choosing a Gaussian profile.

(d) Since the minimum distance between the atoms in the
experiment is i, = 3.0 wm, we use this value in what follows
to ensure we are as deep in the blockade regime as possible.

120

100
80
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40

Qp (1) (MHz)

20 t

0 1 1 1 1
0 200 400 600 800 1000

t (ns)

FIG. 9. (Color online) The pulse shape for the Rabi frequency
Qg(¢) for the parameters in Table II. The shape is a “degenerated flat
top,” as given in Eq. (25), i.e., a Gaussian profile.
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FIG. 10. (Color online) The solid (red) line is the population of
the state |gg) and the dashed (green) line is the population of the
super-radiant state |U+) over the duration of the gate.

Based on these considerations, we try the set of parameters
given in Table II. This time we use the Nelder-Mead simplex
algorithm to optimize the gate parameters since the physics
here makes it more challenging to perform a high-fidelity gate
and we want to avoid local minima. As before, we can examine
the convergence of the optimization (Fig. 7), the accumulation
of the entanglement phase (Fig. 8), and the shape of the Rabi
frequency Qg(¢) (Fig. 9). The final gate fidelity is only around
98%, mainly due to losses, resulting in a final population norm
0f 0.983. This loss mainly occurs in the time-evolved |gg) state
as can be seen in Fig. 10, while the results in Fig. 11 show that
there is less loss when time-evolving |eg), since here only one
atom is excited. Reducing the precision of Rabi frequencies
and detunings to integer megahertz increases the infidelity
from 1.8 x 1072 t0 2.2 x 1072,

We believe that this result is close to the optimal case for this
system and gate implementation given the experimental limi-
tations. Only if we release the constraint on 2 can we further
improve the fidelity. We have checked that we can cross the
99% fidelity threshold at about 25 = 200 MHz which at the
moment still needs improvement of experimental equipment.

E. Movement of the atoms in the light field

Until now, we assumed that the atoms were stationary in
the dipole traps. In reality, the atoms are Doppler-cooled to

0.25

02

0.15

Population Density

0 L ! ! !
0 200 400 600 800 1000

t (ns)

FIG. 11. (Color online) The solid (red) line is the population of
the state |ge) and the dashed (green) line is the population of the state
|re) over the duration of the gate. The populations of |eg) and |er)
are respectively the same.
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FIG. 12. (Color online) The effect of the motional phases of the
atoms on the final gate fidelity for the parameters in Table 1. Here,
the effect of the motional phases is not too large, since we perform
the gate over a very short time and we do not significantly excite the
atoms.

around 75 pK. During the laser excitation, the trapping fields
are switched off, allowing the atoms to move freely in any
direction in the plane perpendicular to the trapping field. The
terms ¥; = arccos(k - r;) € [0,7] from Eq. (10) then produce
additional independent phases on each atom. Since we do not
know a priori in which direction the atoms will move with
respect to the light field, the phase difference between the two
atoms is essentially random.

Figures 12 and 13 show the effect of this phase on the final
fidelity of the gate for the sets of optimal parameters in Tables I
and II, respectively. In the first implementation of the gate, we
see that the effect of the motional phase on the gate fidelity is,
at worst, a drop in infidelity from 1 x 10™*to I x 1072, In the
second case, the effect is about from 1 x 1072 to 1 x 10~".

To actually perform the gate in practice under these
conditions, we would have to cool the atoms much closer
to the motional ground state. This would reduce the distance
that the atoms move in the light field and, hence, the amount

0.08

0.02

FIG. 13. (Color online) The effect of the motional phases of the
atoms on the final gate fidelity for the parameters in Table II. Here,
the effect of the motional phases is detrimental to the gate fidelity.
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FIG. 14. (Color online) The final fidelity of the gate plotted
against the average temperature of the atoms. Each (green) point
is an average over 10 000 realizations of ¥, and ¥, chosen randomly
in the range [0, ]. The (red) solid line is a linear fit to the points. The
(blue) dashed line shows the current temperature of 75 K.

of phase that they collect. The dependence of the fidelity on
the average temperature of the atoms is given in Fig. 14. Thus
reducing the temperature by a factor of around 5 will increase
the fidelity to around 97%. This is experimentally realistic as
demonstrated in Ref. [22].

V. CONCLUSION

We have investigated the implementation of the Rydberg
two-qubit entangling gate from Jaksch er al. [4] in the

PHYSICAL REVIEW A 89, 032334 (2014)

experiment outlined in Ref. [6]. We applied a direct search
(gradient descent and Nelder-Mead simplex) control algorithm
to find optimal sets of experimental parameters that produced
a gate with low loss from the intermediate level while still
achieving a fidelity of around 98%. The main source of error
was found to be the random phase accumulated by the atoms
in the light field.

While the system seems ideally suited for this scheme,
the experimental constraints still limit the fidelity of the
gate. The most notable source of error comes from the
movement of the atoms in the light field, which could be
minimized in future experiments by cooling the atoms further.
Eliminating this source of error should allow gate fidelities of
around 99% which, while not quite good enough to allow
quantum computation (even with error correction), would
be a significant step forward for the realization of quantum
computation with neutral atom systems.

It is worth pointing out that while we investigated the gate
scheme of Ref. [4], there are some alternative schemes that
could be implemented in our setup, most notably perhaps the
scheme of Ref. [5] which uses a STIRAP pulse sequence to
excite the atoms and also the individual addressing of atoms
as analyzed in detail in Ref. [23]. We have also not investigated
allowing the Rabi frequency of the blue laser, 25, to modulate
in time which could lead to a more robust gate implementation.
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