
PHYSICAL REVIEW A 89, 032332 (2014)

Dynamically corrected gates for qubits with always-on Ising couplings:
Error model and fault tolerance with the toric code

Amrit De* and Leonid P. Pryadko
Department of Physics & Astronomy, University of California, Riverside, Riverside, California 92521, USA

(Received 22 October 2013; published 27 March 2014)

We describe how a universal set of dynamically corrected quantum gates can be implemented using sequences of
shaped decoupling pulses on any qubit network forming a sparse bipartite graph with always-on Ising interactions.
These interactions are constantly decoupled except when they are needed for two-qubit gates. We analytically
study the error operators associated with the constructed gates up to third order in the Magnus expansion, analyze
these errors numerically in the unitary time evolution of small qubit clusters, and give a bound on high-order
errors for qubits on a large square lattice. We prove that with a large enough toric code the present gate set can
be used to implement fault-tolerant quantum memory.
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I. INTRODUCTION

Preserving quantum coherence is key for realizing a
quantum computer (QC). One of the ways in which this
can be achieved is with the help of quantum error correction
(QEC) [1–3], which, in theory, could enable scalable quantum
computation as long as the errors are below a certain threshold
[4–9]. Unfortunately, this threshold is very stringent and is
presently around 1% infidelity per local gate [10,11]. This
value corresponds to encoding logical qubits in individual
blocks of physical qubits using toric [12], or related surface
[10] or color [13], codes and is a huge improvement over
the original estimates based on concatenated codes where
the threshold value can be two or more orders of magnitude
smaller, depending on the details [6–9,14–19].

In spite of this progress, building a QC with hundreds or
thousands of qubits, with gates concurrently operating at the
desired level of accuracy, is a great physics and engineering
challenge. It is being pursued by a number of groups, using
different physical systems for implementing qubits. However,
the corresponding control algorithms need not necessarily be
developed from scratch, since the different physical systems
share some key properties.

In particular, qubits with always-on couplings are a natural
model for several potential QC architectures such as the
original Kane proposal [20], nitrogen vacancy centers in
diamond [21,22], superconducting phase qubits [23], and
circuit QED lattices [24,25]. Compared to their counterparts
with tunable couplings, qubits with always-on couplings can
be expected to have better parameter stability and longer
coherence times. In addition, there is much to be benefited
from the over 60 years of development in nuclear magnetic
resonance (NMR), which has resulted in an amazing degree of
control available in such systems [26,27].

Related coherent control techniques based on carefully
designed pulse sequences to selectively decouple parts of
the system Hamiltonian have been further developed in
applications to quantum computing [28–34]. While NMR
quantum computing is not easily scalable [35], it still holds
several records for the number of coherently controlled qubits
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[27]. However, some of these have been achieved with
the help of strongly modulated pulses, computer-generated
single- and multi-qubit gates tailored for a particular system
Hamiltonian [36–39]. While such gates can be used in other
QC architectures [40], they may violate scalability.

On the other hand, NMR-inspired techniques like dynami-
cal decoupling (DD) can also be used to control large systems
with local interactions, where pulses and sequences intended
for a large system can be designed to a given order in the
Magnus series [41] on small qubit clusters [42,43]. DD is also
excellent in producing accurate control for systems where not
all interactions are known, as one can decouple interactions
with the given symmetry [44,45]. Moreover, DD works best
against errors coming from low-frequency bath degrees of
freedom which tend to dominate the decoherence rates, and it
does not require additional qubits. In short, DD is an excellent
choice for the first level of coherence protection; its use could
greatly reduce the required repetition rate of the QEC cycle.

This is well recognized in the research community, and
applications of DD for quantum computation have been
actively investigated by a number of groups. However, most
publications on the subject illustrate general principles using
just a single qubit as an example, leaving out the issues of
design and simulation of scalable approaches to multiqubit
DD. While techniques for larger systems exist, they typically
require longer decoupling sequences [32,44,46].

Recently, we have suggested a universal set of high-fidelity
one-qubit and two-qubit gates for any qubit network that forms
a sparse bipartite graph with always-on Ising couplings [47].
These gates have built-in DD protection against low-frequency
phase noise and use finite-amplitude shaped pulses which
could be experimentally implemented. They can be executed
in parallel for different qubits or pairs of qubits. These features
make the suggested gate set ideal for implementing QEC with
quantum low-density parity check codes [48,49], in particular,
surface codes and their finite-rate generalizations [10,50,51].

In this work we present the details of the gate design, extend
the construction to enable simultaneous gates on a lattice with
unequal couplings, and analyze the error operators associated
with the constructed gates. Namely, we first analyze the errors
analytically up to a cubic order in the Magnus expansion. We
further study these errors numerically by explicitly integrating
the Schrödinger equation for time evolution of clusters of up to
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six qubits and give a bound on high-order errors for qubits on
a large square lattice. Using this bound, we analytically prove
that with a large enough toric code the present gate set can be
used to implement a fault-tolerant quantum memory.

The outline of the paper is as follows. In Sec. II we
review DD techniques, extend the analytical perturbation
theory [52,53] to cubic order, and illustrate it for several
single-qubit soft-pulse sequences. In Sec. III we present the
details of our universal gate set construction, generalized here
to allow simultaneous two-qubit gates on a bipartite network
with unequal Ising couplings. We analyze the associated error
operators both analytically, to elucidate the dependence on the
pulse shapes, and numerically, by the full unitary evolution of
small networks with up to six qubits. An important result is that
for our gates implemented as second-order pulse sequences,
even with very small infidelities, errors in graphs with vertex
degrees exceeding 2 predominantly involve three-qubit and
larger clusters. In Sec. IV, we give a bound on the amplitude
of errors forming large clusters on a square lattice of qubits for
gates designed perturbatively and show that such gates can be
used with the toric code to implement fault-tolerant quantum
memory. This is followed by our conclusions.

II. SEQUENCE DESIGN

In this section we present an overview of DD (Sec. II A) and
average Hamiltonian theory (Sec. II B), extend the analytical
perturbation theory [52,53] for dynamics in the presence of
a single pulse to cubic order in the average Hamiltonian
expansion (Sec. II C), and illustrate it for several single-qubit
soft-pulse sequences important for the rest of the paper
(Sec. II D).

A. Dynamical decoupling basics

DD originates from Hahn’s spin-echo experiment [54].
In the simplest version, one applies ideal, infinitely short
“hard” pulses which perform single-spin unitary rotations.
Since the corresponding field is infinite, such rotations are
independent of the system Hamiltonian. When the integrated
pulse amplitude corresponds to a π rotation of the affected
spins, the result is a reversal of some terms in the Hamiltonian.
For example, for a single spin 1/2 with the chemical-shift
Hamiltonian

HCS = 1
2�σz, (1)

the unitary for a π rotation around the x axis is P (π,x̂) ≡
−iσ x , while between the pulses the spin experiences free
evolution with the unitary U0(t) = exp(−itHCS). Throughout
this paper we use the standard notation for the Pauli matrices
σμ, μ = x,y,z. A sequence of two such πx pulses applied at
t = t1 and t = t2, respectively, corresponds to the evolution

U (t) = U0(t − t2)P (π,x̂) U0(t2 − t1) P (π,x̂) U0(t1)

= −e−i(t−t2)HCSe−i(t2−t1)σxHCSσx

e−it1HCS

= −e−i(t−2t2+2t1)HCS , (2)

where we have used the Pauli matrix identity σxσ zσ x = −σ z.
Up to an overall phase, the effect of the chemical shift is

completely suppressed when the interval between the pulses
is a half of the full evolution time, t = 2(t2 − t1).

In practice, the pulse duration cannot be chosen to be
arbitrarily short. For example, in the case of NMR, the
chemical shift Hamiltonian, (1), is written in the “rotating
frame,” the interaction representation with respect to the
Hamiltonian �ω0σ

z/2, where ω0 is the carrier frequency
of the radio-frequency field of the pulse. The actual pulse
must have a duration greater than a few cycles at this
frequency, τp � 2π/ω0. Much more stringent lower limits on
the pulse duration come about when homonuclear addressing
is needed—in this case, selectivity can be achieved when the
inverse pulse duration is small compared to the chemical-shift
difference.

Similar lower limits on the pulse duration τp also exist in the
solid-state setting. For example, in the case of superconducting
phase qubits, the qubits are formed by the two lowest levels
of a nonparabolic potential well. While the qubit frequency
is around 1010 Hz, the need to avoid the |1〉 → |2〉 transition
(typically detuned by some 3% of the qubit frequency ω01)
limits [55,56] the pulse duration by τp � 5 ns.

Generally, in order for pulse-based control to be effective,
the field of the pulse must dominate the evolution; for
Hamiltonian (1) this implies the requirement τp� � 1. For
any finite-amplitude pulse, e.g., described by the Hamiltonian
HC = 1

2Vx(t)σx , in the presence of the chemical shift �, the
actual rotation occurs around the net “magnetic-field” vector
(Vx(t),0,�). With generic pulse shapes (such as a Gaussian),
this produces unitary evolution operator with errors linear in
the pulse duration.

The situation gets more complicated in the presence of an
environment. Most importantly, DD is not effective against
relaxation due to fast degrees of freedom. For example, in
NMR, the nuclear spins have a large energy splitting �ω01, and
the relaxation dynamics is nearly Markovian and is described
by the transverse and longitudinal relaxation times, T1 ≡
γ −1

1 and T2 ≡ γ −1
2 . While hard π pulses commute with the

relaxation superoperator, sequences of soft pulses can modify
the structure of the relaxation and, in particular, redistribute
relaxation rates between different channels, preserving the
combination of 2γ1 + γ2 [57].

DD is much more effective against decoherence caused by
the low-frequency environmental modes. The corresponding
evolution is commonly modeled by the general Hamiltonian

H = HC + H0, H0 ≡ HB + HS + HSB, (3)

where H0 is the Hamiltonian of the qubits and the environment
in the absence of control. In this work we assume that qubits
with always-on Ising couplings form a bipartite graph G ≡
(V,E) with vertex and edge sets V and E respectively. Namely,
we write the “system” Hamiltonian as

HS = 1

2

∑
〈ij〉

Jijσ
z
i σ z

j , (4)

where the two points are neighboring (coupling Jij �= 0) if
the corresponding edge is present in the graph G, (i,j ) ∈ E.
We consider decoherence due to slow dephasing of individ-
ual qubits, with the bath and bath-coupling Hamiltonians,
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respectively,

HB =
∑

i

Bi, HSB = 1

2

∑
i

Aiσ
z
i . (5)

We assume that each qubit has its own individual bath, meaning
that the bath operators Bj commute with each other, and the
coupling operators Ai commute with all Bj , j �= i.

We also assume the ability to control the qubits individually,

HC ≡
∑

i

H
(i)
C , H

(i)
C = 1

2

∑
μ=x,y,z

Viμσ
μ

i , (6)

where the control signals Viμ ≡ Viμ(t) are arbitrary, except for
some implicit limits on their amplitude and spectrum.

For DD to work, the control Hamiltonian HC must be
dominant. Hence, we assume that higher energies have already
been eliminated from the system HS and system-bath coupling
HSB Hamiltonians by going into the corresponding rotating
frame (interaction representation) and keeping only the slow
parts. While the norm of the bath Hamiltonian HB need not
be finite, the evolution it produces in the Hamiltonian HSB

must be, in some sense, slow. We assume an upper limit on
the norms of the bath coupling operators, ‖Ai‖ � ωc, and also
limit the p-times repeated commutators [B, . . . ,[B,Ai] . . . ]
by ω

p
c ‖Ai‖, where ωc is the upper cutoff frequency of the

bath. For a bath of harmonic oscillators (e.g., phonons), these
assumptions imply a cutoff for the allowed occupation number
of each oscillator. This approximation can be ensured if the
phonon modes do not have sharp resonances and by providing
sufficient cooling.

The bath model, (5), can be viewed as an effective descrip-
tion of qubits operating well above the bath frequency cutoff
to eliminate direct spin-flip transitions, with dephasing caused
by phonon scattering. Similarly, the system Hamiltonian, (4),
can be generally obtained as an effective Hamiltonian for any
set of couplings as long as the transition frequencies of the
neighboring qubits differ sufficiently.

While this is not the most general bath model, it is
a convenient first approximation. Additional errors due to
interactions leading to spin-flip transitions [42,43], resonant
modes easily driven out of equilibrium [52], fast degrees of
freedom in the bath leading to Markovian decoherence [57],
and various pulse errors [53] have to be considered separately.
Depending on their relative importance, one would have to
either rely on the error correction to deal with such errors or
identify the leading error terms and then suppress them by
modifying the pulse shapes and sequences [42,43,52,53,57].
The corresponding analysis is beyond the scope of this work.

B. Average Hamiltonian theory

A general approach is to treat the control Hamiltonian, (6),
exactly and to analyze the time evolution due to the system,
(4), and bath, (5), Hamiltonians using the average Hamiltonian
theory—an improved version of the time-dependent perturba-
tion theory. One introduces the exact unitary

U0(t) ≡ Tt exp

(
−i

∫ t

0
dt ′HC(t)

)
, (7)

associated with the control operator, and the interaction
representation

H̃i(t) ≡ H̃S(t) + H̃SB(t) + HB (8)

for the remaining parts of the original Hamiltonian. Here, the
interaction representation of, e.g., the system Hamiltonian, (4),
is defined as

H̃S(t) ≡ U
†
0 (t)HSU0(t). (9)

Then the entire time evolution operator U (t) ≡ U0(t)R(t) is
decomposed into a product of the unperturbed operator U0(t)
and the unitary R(t) for the slow evolution, which obeys the
integral equation

R(t) = 1 − i

∫ t

0
dt ′H̃i(t

′)R(t ′). (10)

The equation is formally solved in terms of the time-ordered
exponent

R(t) = Tt exp

(
−i

∫ t

0
dt ′ H̃i(t

′)
)

, (11)

and we also need the corresponding expansion,

R(t) =
∞∑

m=0

(−i)m

m!
Tt

m∏
j=1

∫ t

0
dtj H̃i(tj ). (12)

The time-ordered exponent, (11), can also be rewritten in terms
of an average Hamiltonian [58,59],

R(t) ≡ exp(−itH̄ (t)). (13)

The leading-order term in the expansion H̄ (t) = H̄ (0) +
H̄ (1) + · · · in powers of the interaction Hamiltonian H̃i(t) [see
Eq. (8)] is given by its average,

H̄ (0) = 1

t

∫ t

0
dt0 H̃i(t0), (14)

while higher order terms are given by multiple time integrals
[60] of the sums of commutators of H̃i(t) evaluated at different
time moments tj . For the order-m average Hamiltonian, H̄ (m),
one has the sum of commutators of (m + 1) terms evaluated at
time moments 0 � t0 � t1 � · · · tm � t . When the interaction
Hamiltonian is a sum of local terms, as H0 in Eq. (3), the
average Hamiltonian H̄ can be written as a sum of terms with
support on different connected clusters. In particular, with the
pairwise qubit couplings following a connectivity graph G
as in Eqs. (4) and (9), the clusters correspond to connected
subgraphs of G. Explicitly, two bonds belong to the same
cluster if they are connected either directly (i.e., share a qubit)
or via a continuous chain of connected bonds.

Note that, when dealing with the slow bath, it is common
to include the bath Hamiltonian HB = H̃B(t) as a part of
the interaction Hamiltonian. It appears unchanged in the
leading-order average Hamiltonian, H̄ (0) = HB + · · · , while
higher order terms of the expansion contain only multiple
commutators of HB with other perturbing terms.

C. Average Hamiltonian of a pulse

DD is perturbative in nature. An analytical perturbation
theory expansion convenient for analyzing the effect of pulse
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shaping on the sequences has been constructed by one of
the present co-authors in Refs. [52,53]. Here we extend the
expansion to include the terms up to third order for the
spin-in-dephasing-bath Hamiltonian

H0 = B + Aσz, (15)

where A and B are c numbers or operators acting on the bath
degrees of freedom. The precise form of these operators is
not important, as we are going to ensure exact cancellation of
the corresponding error terms in the first orders of the average
Hamiltonian expansion.

The one-dimensional pulse (here we assume a rotation
around the x axis) is given by a single-qubit version of the
control Hamiltonian, (6), with an arbitrary function Vx(t) ≡
V (t), 0 < t < τp. The results of this section can be trivially
generalized to a rotation around an arbitrary direction n̂ =
x̂ cos θ + ŷ sin θ in the x-y plane with the help of the unitary
Uθ ≡ 1 cos(θ/2) − iσ z sin(θ/2).

The expansion is formulated with respect to the control
evolution alone, with the unitary [cf. Eq. (7)]

U0(t) ≡ exp

(
−i

∫ t

0
dt ′HC(t ′)

)
= e−iφ(t)σx/2, (16)

where the time-dependent phase

φ(t) ≡
∫ t

0
dt ′ V (t ′). (17)

If we denote the net rotation angle φ0 ≡ φ(τp), in the case of a
symmetric pulse shape, V (τp − t) = V (t), the rotation angle
has the property φ(τp − t) = φ0 − φ(t). For such cases it is
convenient to introduce the symmetrized rotation angle, ϕ(t) ≡
φ(t) − φ0/2. This function is odd under the pulse-reflection
symmetry, ϕ(τp − t) = −ϕ(t).

Using the explicit form, (16), of the evolution matrix due to
the pulse, the interaction representation of the spin-in-a-bath
Hamiltonian, (15), is just a spin rotation around the x axis,

H̃0(t) ≡ U
†
0H0U0 = B + A(σ z cos φ + σy sin φ). (18)

The “slow” evolution is described by the unitary R(t) ≡
U

†
0 (t)U (t), which obeys the equation

iṘ(t) = H̃0(t)R(t), R(0) = 1. (19)

The net evolution over the duration of the pulse is given in
terms of the corresponding average Hamiltonian H̄0,

U (τp) = U0(τp)R(τp), R(τp) ≡ e−iτpH̄0 , (20)

where H̄0 = H̄
(0)
0 + H̄

(1)
0 + · · · . Given that the interaction

Hamiltonian H̃0(t) [see Eq. (18)] at time moment tj is a sum of
constant operators multiplied by the functions cj ≡ cos ϕ(tj ),
sj ≡ sin ϕ(tj ) and a constant ej ≡ 1, the average Hamiltonian
can be computed order by order for an arbitrary pulse shape,
in terms of the integrals of products of cj , sj , and ej .

For a symmetric pulse, the only nontrivial coefficient in the
leading order is

υ ≡ 〈cos ϕ〉 =
∫ τp

0

dt

τp

cos ϕ(t), (21)

which gives the leading-order average Hamiltonian [53],

H̄
(0)
0 = B + υA

(
σy sin

φ0

2
+ σ z cos

φ0

2

)
. (22)

NMR-style first-order self-refocusing pulses [42,53,61] have
υ = 0.

Similarly, there are only two independent coefficients in the
next order,

β ≡ 1

2τ 2
p

∫ τp

0
dt ′

∫ t ′

0
dt sin(φ(t ′) − φ(t)), (23)

ξ ≡
∫ τp

0

dt

τp

(
t

τp

− 1

2

)
sin ϕ(t), (24)

so that the first-order average Hamiltonian reads

H
(1)
0 = βτpσ xA2 + iξτp[B,A]

(
cos

φ0

2
σy − sin

φ0

2
σ z

)
.

(25)

NMR-style second-order pulses [42,53] have υ = β = 0,
which guarantees no error to subleading order with the
chemical shift system Hamiltonian, (1). More complicated
second-order pulses constructed in Ref. [62], in addition,
have ξ = 0, which suppresses the entire linear-order average
Hamiltonian, (25).

Finally, in the third order, of 27 combinations of ci , si , and
ei with i = 1,2,3, only 5 are independent:

δ1 ≡ 〈c3e2e1〉 − υ

8
, (26)

δ2 ≡ 〈s3s2e1〉, (27)

δ3 ≡ 〈c3c2e1〉, (28)

δ4 ≡ 〈s3s2c1〉, (29)

δ5 ≡ 〈s3c2c1〉, (30)

where, e.g.,

〈s3c2c1〉 ≡
∫∫∫

0<t1<t2<t3<τp

dt3dt2dt1

τ 3
p

sin ϕ3 cos ϕ2 cos ϕ1. (31)

With the Ising system Hamiltonian, (15), only the first four
coefficients enter the second-order average Hamiltonian:

H̄
(2)
0 = τ 2

p

(
υ2

6
− δ2 − δ3

)
[A,[A,B]]

+ τ 2
p

(
σy sin

φ0

2
+ σ z cos

φ0

2

)

×
{(

υ

24
− δ1

)
[B,[B,A]] − 4δ4 A3

}
. (32)

D. Eulerian-cycle dynamical decoupling

Alternatively, or in addition to designing the pulse shapes,
one can compensate for the evolution errors associated with
arbitrary pulse shapes by designing special sequences of
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such pulses. At the leading-order average Hamiltonian level,
a universal prescription can be formulated simply in terms
of Eulerian cycles in the Cayley graph associated with the
decoupling group [31].

For a single qubit, the decoupling group is G =
{1,σ x,σ y,σ z} up to a phase factor. It can be generated by
the unitaries g1, g2, corresponding to π rotations about a
pair of orthogonal directions, e.g., for x and y, respectively:
G = 〈gx,gy〉. The corresponding Cayley graph has a separate
vertex for each group element, and directed edges from each
s ∈ G to sg, for every group generator g.

Following the notation in Sec. II C, the two rotations can
be implemented using the pulse shapes Vx(t), Vy(t), with the
nominal rotation angles π . Then the corresponding unitaries
can be written as Ux ≡ −iσ xRx , Uy ≡ −iσ yRy , where

Ri = 1 + δi0 + σxδix + σyδiy + σ zδiz, (33)

i = x,y, and the errors δiμ, μ = 0,x,y,z, are a combined
result of the system-bath Hamiltonian H0 and inaccuracies
associated with the pulse duration, amplitude, and phase. Its is
assumed that the pulses can be implemented consistently, so
that δiμ are the same for identical pulses applied at different
times.

A Eulerian cycle is a sequence of generators (directed
edges) such that every edge of the graph is visited.
For a single qubit, the sequence can be chosen, e.g., as
{gx,gy,gx,gy,gy,gx,gy,gx}; so that the corresponding unitary
is given by the product UEuler = UxUyUxUyUyUxUyUx . The
key observation [31] is that UEuler does not contain terms
linear in δiμ, μ �= 0; this follows from the fact that the Cayley
graph has edges of each type starting from every group
element. Thus, the leading-order average Hamiltonian H̄

(0)
0

is independent of the spin variables σμ.
In the absence of any pulse errors [errors associated only

with the system-bath Hamiltonian, Eq. (15) are preserved], the
first three terms of the average Hamiltonian for the single-qubit
Eulerian cycle are

H̄
(0)
0 = B, (34)

H̄
(1)
0 = iτp

κ

2
(σx − σy)[B,A], (35)

H̄
(2)
0

τ 2
p

= iκ2σ z[B,A2] −
(

κ2

4
+ γ2 + γ3

)
[[B,A],A]

− ζ

2
σ z[B,[B,A]], (36)

where κ ≡ υ|φ0=π , ζ ≡ ξ |φ0=π , and γj ≡ δj |φ0=π , j =
1, . . . ,5, are the coefficients defined in Eqs. (21), (24), and
(26)–(30) for the special case of π pulses. As expected from
general theory [31], for any pulse shape, the leading-order
average Hamiltonian, (34), does not contain spin operators
σμ. The accuracy of the sequence can be increased by pulse
shaping, e.g., by choosing a pulse shape with κ = 0.

Generally, for an n-qubit system, the decoupling group
has 2n generators and dimension |G| = 4n; thus a Eulerian
path consists of n22n+1 elements. Because of this exponential
scaling, the Eulerian cycle construction is not directly useful
for large multiqubit systems [31].

A generalization of the Eulerian cycle construction which
allows the generation of arbitrary gates has been suggested by
Khodjasteh and Viola [46] referred to as dynamically corrected
gates (DCGs). More complicated sequences which allow for
cancellation to an arbitrary order are also available (see
Ref. [63]). The main idea in Ref. [46] is to construct a nontrivial
“identity” operator that shares the leading-order error terms δiμ

[cf. Eq. (33)] with those of the gate one is trying to construct.
For a one-dimensional rotation with the pulse shape V (t/2)/2,
0 � t � 2τp (note the stretching and amplitude reduction),
such an identity operator is a combination of the unstretched
pulse and antipulse [46]:

V (identity)(t) =
{
V (t), 0 � t � τp;

−V (2τp − t), τp � t � 2τp.
(37)

If we denote the unitary of the identity operator UI , and the
unitary of the stretched pulse UV , then the modified Euler
sequence [46] corresponds to the unitary (of total duration
τ = 16τp):

UEuler
V = UV UxUyUxUyUxUIUyUIUxUIUy. (38)

Then if we introduce the unitary corresponding to the ideal gate
U

(0)
V and the sequence-error unitary RV , UEuler

V ≡ U
(0)
V REuler

V ,
sequence (38) produces REuler

V = 1 − 16iτpB + O(τ 2
p) for any

set of pulse shapes implementing the unitaries in Eq. (38).
Alternatively, the leading-order average Hamiltonian of the
gate error is just the bath Hamiltonian, H̄

(0)
0 = B, and is

independent of the degrees of freedom associated with the
spin being decoupled.

Explicitly, for the system Hamiltonian, (15), when symmet-
ric pulse shapes are used to implement the DCG corresponding
to a rotation of φ0 about the y axis, the two subleading-order
terms of the average Hamiltonian are

H̄
(1)
0

τp

= i
κ

2
σy[A,B] + β

4
σyA2 − i

4
[A,B][(2κ − ξC − 2υS)σx + (5υC − ξS)σ z], (39)

H̄
(2)
0

τ 2
p

∣∣∣∣
κ,υ→0

= i

(
α

4
σx − 4α + 29β

16
σy

)
[A2,B] +

(
29ξS − 6δ1C − 8ζ

16
σ z + 29ξC + 6δ1S

16
σx

)
[B,[B,A]]

− 1

2

(
γ2 + γ3 + 7

4
(δ2 + δ3)

)
[A,[A,B]] + 3δ4

2
(Sσx − Cσz)A3, (40)
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where we have introduced C ≡ cos φ0/2, S ≡ sin φ0/2 and as-
sumed κ = υ = 0 in the second-order effective Hamiltonian,
(40).

It is important to note that even though the noise Hamil-
tonian, (15), can be formally decoupled with a smaller group
(e.g., {1,σ x}), the corresponding Eulerian DCG would not
be sufficient with generic finite-width pulses. We confirmed
this with an explicit calculation for the partial-group Eulerian-
sequence unitary [cf. Eq. (38)],

UEuler′
V = UV UxUxUxUIUx. (41)

The corresponding effective Hamiltonian gets corrected al-
ready in the leading order:

H̄
(0)
0 = B − 1

2υσxA sin(φ0/2). (42)

This can be compensated for by using self-refocusing pulses
with κ = υ = 0. Then, in the next order we obtain

H̄
(1)
0

τp

∣∣∣∣
κ,υ→0

= 1

2
(ασx + βσy)A2 + i

ξ

2
(Cσx + Sσ z)[A,B].

(43)

This in turn can be compensated for by using the second-order
self-refocusing pulses, in which case we are left only with the
second-order Hamiltonian:

H̄
(2)
0

τ 2
p

∣∣∣∣
κ,υ,α,β→0

= (5σxSδ4 − 3σ zCδ4)A3

−
(

γ2 + γ3

2
+ 5

δ2 + δ3

4

)
[A,[A,B]]

−
((

11ξC

8
+ 5δ1S

4

)
σx

−
(

ζ

2
− 13ξS

8
+ 3δ1C

4

)
σ z

)
[B,[B,A]]. (44)

Note that the pulse shapes from Ref. [62] have υ = β =
ζ = 0 (κ = α = ξ = 0 for φ0 = π/2); the use of such pulses
completely suppresses the subleading Hamiltonian, (43). In
Eqs. (43) and (44) we kept ξ and ζ nonzero, as for NMR-style
self-refocusing pulses [42,53,61].

III. UNIVERSAL GATE SET FOR BIPARTITE
ISING LATTICES

In this section we continue using the Hamiltonian specified
by Eqs. (3) to (6). An important property of this Hamiltonian
is that even in the presence of control on non-neighboring
qubits (e.g., one of the two sublattices of a bipartite graph), it
separates into small commuting pieces. These include a “tuft”
Hamiltonian for every controlled qubit j : a combination of the
on-site bath coupling Hamiltonian, (5), with index j and all
of the nodes, (4), from that vertex. It is easy to see that the
corresponding single-tuft unitary can be expressed in terms of
the single-qubit average Hamiltonian [see Eqs. (22), (25), and
(32) for the first three orders].

V
a(t

)

0

20

V
b(t

)

0

20

V
c(t

)

time ( units of 
p
 )

0 4 8 12 16

0

20

FIG. 1. (Color online) An example of executing a single-qubit
π/2 rotation along the y axis (shaded region) using a DCG
construction on a bipartite lattice such as a star graph. One or
both of the sequences of π pulses along x, Va(t) and Vb(t), are
executed globally on the idle qubits of the two sublattices. The
single-qubit (π/2)Y rotation is implemented as a DCG by adding
three pulse-antipulse combinations and the stretched pulse along the
y axis to the sequence Va(t) or Vb(t), depending on sublattice [Vc(t) is
executed on sublattice a]. Pulse shapes used are Q1(π/2) and Q1(π )
from Ref. [53].

A. Single-qubit operations

We construct the single-qubit rotations using a version of
the partial-group Eulerian path prescription (see Sec. II D).
The qubits in a bipartite graph are separated into four groups:
idle qubits on sublattices A and B and qubits on the same
two sublattices which we want to rotate. The latter should
not be neighboring each other. In a typical application, one-
dimensional rotations can be applied to every qubit on one
of the two sublattices, which guarantees the absence of direct
coupling.

The sequence is illustrated in Fig. 1. The entire sequence
lasts τ = 16τp, where τp is the nominal single-pulse duration,
with the entire interval split into 16 equal intervals of duration
τp. For idle qubits on sublattice A, four identical symmetric
πx pulses are executed during the intervals 4, 10, 11, and 13
[Va(t) in Fig. 1]. For idle qubits on sublattice B, πx pulses of
the same shape are executed during the intervals 1, 7, 12, and
14 [see Vb(t) in Fig. 1]. On controlled qubits, additional pulses
are inserted during the remaining intervals: a symmetric pulse
V (t) during the intervals 2, 5, 8, the same but inverted pulse
−V (t) during the intervals 3, 6, 9, and the double-duration
half-amplitude pulse V (t/2)/2 during the intervals 15 and 16.
All of these pulses should be applied in the direction of the
desired rotation. The curve Vc(t) in Fig. 1 illustrates a (π/2)Y
rotation on a qubit of sublattice A.

The average Hamiltonian corresponding to such a sequence
depends on the chosen graph G and on the direction of the
applied pulse. For an open four-qubit chain, the desired rotation
around the Y axis for qubits 1 and 3, and assuming that all
pulses are symmetric, the leading-order average Hamiltonian
reads

H̄
(0)
0 = B − 1

2
υ sin(φ0/2)

∑
i=1,3

σx
i Ai. (45)

This is similar to the case of the partial-group single-qubit
DCG [see Eq. (42)]: to achieve leading-order decoupling, one

032332-6



DYNAMICALLY CORRECTED GATES FOR QUBITS WITH . . . PHYSICAL REVIEW A 89, 032332 (2014)

needs to use NMR-style self-refocusing pulses with υ = 0 like
those developed in Refs. [42,53,61]. The first-order average
Hamiltonian is a lengthy expression containing the coefficients
υ, β, and ξ (corresponding to the angle-φ0 pulses) and two of
their counterparts for the π pulses, κ and α. Unfortunately, the
first-order average Hamiltonian remains nonzero even when
the second-order pulses similar to those constructed in Ref.
[62] are used, with υ = β = ξ = 0, as well as the regular
NMR-style second-order π pulses with κ = α = 0. When such
pulses are used, we have

H̄
(1)
0

∣∣∣∣
κ=α=υ=β=ξ=0

= i
τp

4

4∑
i=1

σ z
i [Bi,Ai], (46)

where we used the assumption of independent environment
acting on different qubits, [Ai,Bj ] = 0, [Ai,Aj ] = 0 for i �= j .

In order to suppress such error terms, one can use a
symmetrized version of the sequence. Namely, the pulses in
Fig. 1 are first executed in reverse order, then directly, for the
total duration of 32τp. Since the desired rotation is repeated
two times, the two φ0 pulses in the symmetrized DCG sequence
produce a rotation of 2φ0. The corresponding leading-order
average Hamiltonian is just H̄

(0)
0 = B, while in the first order

(when using second-order pulses with κ = υ = α = β = 0),
the average Hamiltonian is proportional to ξ ,

H̄
(1)
0

∣∣
κ=α=υ=β=0 = i

τpξ

4
C

{(
C2σ

x
1 + S2σ

z
1

)
[A1,B1]

+ (
C2σ

x
3 + S2σ

z
3

)
[A3,B3]

}
, (47)

where C ≡ cos(φ0/2), S ≡ sin(φ0/2), as before, and C2 ≡
cos φ0, S2 ≡ sin φ0.

B. ZZ rotation

With Ising couplings, the natural two-qubit gate is the ZZ

rotation, exp(−iασ z ⊗ σ z). To implement such a gate between
two neighboring qubits on a bipartite lattice with always-
on Ising couplings, one just has to suppress the unwanted
couplings. We design the corresponding sequences starting
first with the sequences of hard pulses.

Consider two doubled partial-group Eulerian sequences,
each constructed as four equally spaced πx pulses, followed
by an exactly reversed sequence; see lines A and B in Fig. 2.
Taking the time interval between the pulses to be τ1 (see
Fig. 2), the A sequence has first four pulses centered at the
odd-numbered intervals of duration τ1 (intervals 1, 3, 5, and
7), and the trailing four pulses centered at even-numbered
intervals (10, 12, 14, and 16), for the total sequence duration
τ = 16τ1. The B sequence has this pattern reversed, with
pulses centered at intervals 2, 4, 6, 8, 9, 11, 13, and 15.
These sequences provide decoupling of both the single-qubit
and the Ising Hamiltonians [see Eqs. (5) and (4)], as can be
deduced from the shading in lines A, B, and AB in Fig. 2.
Due to the sequence symmetry, with δ pulses, all odd orders
in the Magnus series are suppressed, which guarantees the
second-order cancellation.

Now, any similarly constructed double-interval sequence
(e.g., sequence B ′ in Fig. 2) decouples the corresponding qubit
from those on lines A and B and, also, provides the decoupling
of the single-qubit Hamiltonian, (5). We use this freedom to

A

B

A′

B′

AB

BA′

A′B′

AB′
2

1

FIG. 2. (Color online) Schematic design of the ZZ-rotation gate
on a bipartite Ising network using δ pulses. Pulses are indicated
by vertical red lines (all of them are π pulses around the x axis).
Sequences A and B are applied on idle qubits of the two sublattices.
The regions shaded in light gray correspond to time intervals where
the sign of σ z on the corresponding sublattice is not inverted, while
the darker (yellow) shading along the intermediate line labeled AB

represents the sign of the coupling term σ z ⊗ σ z. All of these
occupy exactly half of the total cycle duration, indicating that the
corresponding leading-order average Hamiltonians are all 0. Lines
A′ and B ′ correspond to a pair of qubits to be coupled. They are
decoupled both from the on-site noise and from the neighboring
dual-sublattice qubits, as can be seen from the shading along lines
A′, B ′, AB ′, and BA′. On the other hand, the mutual coupling (line
A′B ′) does not average to 0 [see Eq. (48)].

construct sequences A′ and B ′ that provide continuously varied
coupling,

H̄
(0)
A′B ′ = f

1

2
J12σ

z
1 σ z

2 , f = 8τ1 + 8τ2

16τ1
, (48)

where the prefactor f is the result of the averaging. With ideal
δ pulses and no dead-time intervals, the time shift between
the sequences must satisfy the condition −τ1 � τ2 � τ1; this
gives full control over values of the prefactor, 0 � f � 1. Note
also that the leading-order average Hamiltonian, (48), becomes
exact to all orders, H̄A′B ′ = H̄

(0)
A′B ′ , when the bath couplings

[see Eq. (5)] are replaced with time-independent energy shifts,
Ai → �i , or when the individual bath Hamiltonians are
dropped, Bi → 0.

When δ pulses are replaced with soft pulses of duration
τp centered at the same positions, the corresponding leading-
order average Hamiltonian remains parametrically the same
[see Eq. (48)]. However, since the allowed range of the time
shift must be reduced to avoid pulse overlaps, |τ2| � τ1 − τp,
the prefactor f can only be tuned in the range τp/2τ1 � f �
1 − τp/2τ1. When used with the NMR-style second-order
pulses (κ = α = 0), the first-order average Hamiltonian is 0,
while the second-order average Hamiltonian is a complicated
expression depending on the graph that describes the interqubit
couplings.

The actual soft-pulse implementation of these sequences
used in our simulations is shown in Fig. 3. We used τ2 = 0
and the minimum allowed τ1 = τp. Note that in this particular
implementation the prefactor f = 1/2 is not adjustable.

C. Other gates

The constructions described in the previous two sections,
the single-qubit rotations and the adjustable two-qubit ZZ

gate, form a universal set, meaning that an arbitrary unitary
transformation in n-qubit Hilbert space can be expressed as
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FIG. 3. (Color online) Pulse sequences used to implement the
two-qubit exp(−iασ z

i σ z
j ) rotations in any bipartite graph with equal

Ising interactions. The sequences of π pulses along the x axis,
VA(t) and VB (t), are run on all idle qubits of sublattices A and
B, respectively. which decouple the qubit-qubit interactions as well
as the low-frequency phase noise. For the qubits to be coupled, we
replace these with VA2 and VB2, respectively. Overall this produces an
effective Hamiltonian with half the Ising coupling remaining only for
the chosen pairs of qubits, which allows one to implement two-qubit
gates. The Q1(π ) second-order self-refocusing pulses have been used
in this plot [53].

their composition [64]. In particular, a single-qubit Hadamard
gate can be constructed as a combination of two rotations:

U (H) = −i exp

(
i
π

4
σy

)
exp

(
i
π

2
σx

)
. (49)

Each of these can be implemented using a single-qubit DCG
construction (see Sec. III A).

Similarly, the controlled-not (CNOT) gate can be imple-
mented using the identity [65,66]

U
(CNOT)
12 = eiπ/4 Y1X2X̄1Ȳ1Ȳ2 exp

(
− i

π

4
σ z

1 σ z
2

)
Y2 (50)

= eiπ/4 Z1X2Ȳ2 exp

(
− i

π

4
σ z

1 σ z
2

)
Y2, (51)

where the gate is applied on qubit 1 with the control qubit 2, Xj

and Yj , j = 1,2, are the unitaries for single-qubit π/2 rotations
around the corresponding axes, e.g., Xj ≡ exp(−i π

4 σx
j ), and

X̄j , Ȳj are the conjugate rotations. With the two-qubit ZZ

rotation implemented as Nrep repetitions of the sequence
in Fig. 3, where the average coupling Hamiltonian is H̄ =
J
4 σ z

1 σ z
2 , the required time interval is �t = π/J . With a single

sequence in Fig. 3 of duration 16τp, this gives the following
crucial design equation:

Jτp = π

16Nrep
. (52)

Larger values of Nrep improve the decoupling accuracy and
the gate fidelity in the limit of low noise, but also increase the
cost in terms of the number of pulses. For our calculations we
used values of Nrep from 1 to 5.

Other two-qubit controlled gates, such as the controlled-Z
(C-Z), and controlled-Y (C-Y ) gates, can be similarly imple-

mented by applying suitable transformations to the CNOT (or
C-X) gate. We implemented these using the identities

U
(C-Y )
12 = e−iπ/4X̄2Z̄1Z̄2 exp

(
− i

π

4
σ z

1 σ z
2

)
X2, (53)

U
(C-Z)
12 = e−iπ/4Z̄1Z̄2 exp

(
− i

π

4
σ z

1 σ z
2

)
. (54)

Further, two neighboring qubits can be swapped with three
CNOT gates [64].

We emphasize again that our construction allows parallel
execution of similar gates on sets of qubits which do not share
neighboring pairs. For example, any set of simultaneous single-
qubit rotations on the same sublattice of a bipartite lattice, or
simultaneous two-qubit ZZ rotations between any set of pairs
which do not include neighboring qubits, can be implemented
in parallel.

D. Gate characterization

We have verified our analytical arguments for building
quantum gates by exact numerical simulations of the single-
qubit and the two-qubit gates. Specifically, we numerically
calculated the unitary evolution matrices U corresponding to
each of the pulse sequences discussed in the previous sections.
Pulses were applied using the control Hamiltonian, (6), in
the presence of the Ising couplings, (4), and a simplified
time-independent bath, (5), with Bi = 0 and the coupling
operators Ai replaced with chemical shifts represented by c

numbers, Ai → �i [cf. Eq. (1)].
Given the “ideal” unitary Uideal for each gate, we calculated

the gate fidelity averaged over initial conditions using the
equation (see the Appendix in Ref. [53])

F (Uideal,U ) = N + |Tr V |2
N + N2

, V ≡ U
†
idealU, (55)

where N is the dimension of the Hilbert state, N = 2n for the
case of n qubits. Specifically, we used two graph families with
n � 6: a star graph and a qubit chain (see Fig. 4). In both cases,
we considered the Ising interaction Hamiltonian, Eq. (4), with
fixed coupling values Jij = J .

All numerical simulations in this paper were done with
a custom C++ program using a fourth-order Runge-Kutta
algorithm for explicitly integrating the unitary time evolution
dynamics. We used the EIGEN3 library [67] for matrix arith-
metics and we used 1000 integration steps per pulse (τp);

Q1

Q2

Q3

Q4

A

A

B

B(a) (b)

Q1

Q3

Q2

Q4

Q5

A

B

A

AA

A

Q6

FIG. 4. (Color online) Two bipartite qubit arrangements (with
sublattices as indicated) used for the numerical simulations: (a) n = 6
star graph and (b) n = 4 chain. Bonds correspond to Ising couplings.
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FIG. 5. (Color online) Pulse sequences used to implement the CNOT gate between qubit Q5 and qubit Q6 in a star graph [see Fig. 4(a)]. It
is a combination of four DCG gates and a ZZ-coupling sequence [cf. Figs. 1 and 3]. Second-order self-refocusing pulses Q1(π ) and Q1(π/2)
from Refs. [42,53] are used. The direction of the applied pulses is indicated by the shading. The unit enclosed by light vertical (red) lines,
16τp � t � 32τp , should be repeated Nrep times, for the total sequence duration 16(Nrep + 4)τp .

further reducing the step size did not improve the accuracy
with standard double-precision arithmetic.

Here we discuss the accuracy of the constructed CNOT gate
(see Fig. 5). It is implemented in terms of Nrep repetitions of
the ZZ-decoupling sequence in Fig. 3 and four single-qubit
operations like the one illustrated in Fig. 1 [see Eq. (51)]. With
the disorder given by chemical shifts only and second-order
NMR-style self-refocusing pulses where υ = β = 0 (κ = α =
0 for π pulses), only the second-order average Hamiltonian
H̄ (2) is nonzero. This gives the error of the unitary scaling as
∝[max(�rms,J ) τp]3, where �rms is the r.m.s. chemical shift.
The corresponding infidelity should scale as

1 − F ∝ [max(�rms,J )τp]6 (56)

on any lattice. Note that we have omitted the dimensionless
factors dependent on the gate duration, τCNOT = 9 ∗ 16τp =
144τp (the sequences in Figs. 1 and 3 both have a duration of
16τp), or dependent on the lattice size. The corresponding
scaling and fault tolerance of this gate set, when used to
implement quantum memory with the toric code, are discussed
in Sec. IV.

The scaling given in Eq. (56) is confirmed in Fig. 6, where
the infidelities 1 − F for two lattices are plotted on log-log
scale as a function of the r.m.s. chemical shift �rms. For larger
�rms, where the infidelities are dominated by the chemical
shifts �i , the two graphs are very close and they both have
slopes ∼6, which is in agreement with Eq. (56). Similarly,
for small values of �rms, the infidelities are dominated by the
decoupling accuracy of the qubit-qubit interactions Jij . Using
variants of the same gate with different J [and different Nrep;
see Eq. (52)], we verified that in this limit the infidelity also
scales as expected from Eq. (56).

Note that a chain where each vertex has at most two
neighbors, in the limit of small �, has an infidelity which
is smaller by almost three orders of magnitude than that for
the star graph of the same size, n = 6 (Fig. 6). A more detailed

look into the error distribution associated with such an increase
in infidelity is given in Fig. 7, where the relative and absolute
contributions of one- and two-qubit errors to the total gate
infidelity are plotted for star graphs with different numbers of
leaves. To reduce the relative contribution of the numerical
errors, we used sequences similar to those in Fig. 5 with
Nrep = 1. For small �rms, the infidelity is dominated by the
errors in decoupling the interqubit couplings, J . While for a
three-qubit chain (star S2), one- and two-qubit errors contribute
about a quarter each to the total infidelity in this regime, the
relative contribution of single-qubit errors drops precipitously
with the increased number of leaves.

Such a dependence is easily explained if we note that
the leading- and subleading-order average Hamiltonians are
suppressed in these calculations, H̄ (0) = H̄ (1) = 0. The con-
tribution of the higher-order terms is dominated by errors of
larger weight: on a star with z leaves, there are

(
z

3

)
four-qubit

clusters which give contributions to H̄ (2),
(
z

2

) ≡ z(z − 1)/2
three-qubit clusters, and only z two-qubit clusters. While these
terms are strongly suppressed due to the smallness of Jτp, in
our simulations it is the errors of weights w = 2, 3, and 4 that
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FIG. 6. (Color online) Comparison of (a) average infidelities and
(b) respective slopes for the CNOT gate in an n = 6 star graph vs
an n = 6 chain. Calculations are averaged over 50 sets of random
chemical shifts �i drawn from a 0-average Gaussian distribution.
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FIG. 7. (Color online) Relative (left) and absolute (right) contri-
butions of single- and two-qubit errors to the total infidelity for CNOT
gates implemented in star graphs with different numbers of leaves (see
the insets). Sequences similar to those shown in Fig. 5 with Nrep = 1
were used to reduce the relative contribution of the numerical errors.

are most likely to happen. In particular, for z = 5 (six-qubit
star), less than 5% of the total infidelity for small �rms is due
to single-qubit errors.

The effect of pulse shape is illustrated in Fig. 8. With
first-order pulses, only one coefficient is suppressed, υ = 0
(κ = 0 for π pulses). This gives only the leading-order average
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FIG. 8. (Color online) Comparison of (a) average infidelities and
(b) respective slopes for the CNOT gate in an n = 6 star graph for
different pulse shapes. We used Gaussian pulses, first-order NMR-
type self-refocusing pulses (S1 from Ref. [53]), and second-order
pulses (Q1 from Ref. [53]).

Hamiltonian zero (K = 1st order decoupling). Similarly,
with Gaussian pulses, none of the expansion coefficients
introduced in Sec. II C vanishes, so that even the leading-order
effective Hamiltonian is nonzero (K = 0th order decoupling).
The corresponding unitaries have errors which scale as
∝[max(�,J ) τp]K+1 with K = 1 and K = 0, respectively,
which gives the infidelities 1 − F ∝ [max(�,J ) τp]2K+2.
Numerically, we see a dramatic loss of fidelity associated with
these pulses.

IV. SCALING TO LARGE SYSTEM SIZES

In star graphs with up to six qubits, and also in chains of
different lengths (not shown), we saw that for small �rms the
infidelity associated with a single CNOT gate is dominated
by errors of weight 2 and larger, while single-qubit errors
are relatively suppressed (Fig. 7). Such a suppression of few-
qubit errors is a typical error distribution expected with any
control scheme relying on decoupling sequences to remove the
unwanted couplings Jij . Indeed, with finite-duration pulses,
generally, one can hope to suppress the average Hamiltonian
only up to some fixed order. It is the remaining higher-order
terms that are predominantly contributing to multiqubit errors.
An important question is whether such a control scheme can
be directly scaled to large systems.

Superficially, it is difficult to imagine how this can be the
case. Indeed, the coupling Hamiltonian, (4), is diagonal; its
spectral norm equals the magnitude of the biggest eigenvalue,

‖HS‖ =
∑
ij

Jij ≡ n〈zJ 〉, (57)

where n is the total number of qubits, and the second equality
defines the average product of the vertex degree z and the cou-
pling strength J . Then, even though formally the convergence
radius of the time-dependent perturbation theory is infinite for
any finite n and t , with n large, the series is dominated by high
orders which are not easily tractable in this form.

Nevertheless, the pulse-based control scheme can, indeed,
be scalable to large system sizes, when it is combined with an
error-correcting code. Here we consider the scalability only
for the specific case of a toric code implemented on a square
lattice, with one sublattice used for ancillae and the other to
encode the state to be protected (Fig. 9). An analysis applicable
to more general lattices and quantum error-correcting codes
will be given elsewhere.

A. Decoupling sequence with pulses applied in parallel

As discussed at the beginning of Sec. III, the analysis of a
collection of pulses simultaneously applied at non-neighboring
sites of an Ising network is simplified by the structure of
the Hamiltonian. The coupling Hamiltonian in the interaction
representation [see Eq. (4)] remains a sum of commuting
terms: bonds connecting the qubits that are not controlled
and, for every controlled qubit, a “tuft” composed of the sum
of the operators for the bonds incident to the corresponding
vertex. The errors on these two kinds of clusters will involve
at most 2 and z + 1 qubits, respectively. Assuming that the
phase errors on sites and bonds are properly compensated by
the sequences, we are left with the errors due to the individual
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FIG. 9. (Color online) Layout for the [[41,1,5]] surface (toric)
code with 41 qubits and 40 ancillae. Filled (red) circles indicate
qubits, while (blue) crosses and open (green) squares, respectively,
indicate the ancillae used for measuring vertex (X-type) and plaquette
(Z-type) stabilizer generators. Neighboring qubits are connected in
an Ising network as indicated by horizontal and vertical lines.

tuft Hamiltonians with the norm limited as

‖Htuft‖ = ‖H̃tuft(t)‖ � 1
2zJ. (58)

The perturbation theory on a single tuft is well controlled when
the expansion parameter

αp ≡ 1
2zJ τp (59)

is small. The norm of the sth term in the time-dependent
perturbation theory can be upper-bounded by αs

p/s!, and for
αp � 1 the first nonzero term dominates the expansion. More
precisely, with order-K self-refocusing pulses, we have the
following upper bound on the total norm of the error operator
on a single tuft [cf. Eq. (55)],

dp ≡ ‖V − 1‖ � eαp −
K∑

s=0

αs
p

s!
� eαp

αK+1
p

(m + 1)!
. (60)

When such simultaneous pulse sets are executed repeatedly in
a large system, roughly, dp is the probability amplitude that
an error is picked up on a given tuft during a given pulse. At
the end of an error correction cycle, after the measurements
of all stabilizer generators are done, the system is projected
to a particular error configuration with a probability given by
the square of the sum of all of the amplitudes which give
equivalent errors. While this configuration will contain a finite
density of errors, for successful error correction with the toric
code [10] (as well as generally for codes with limited-weight
stabilizer generators; see Ref. [68] for details) it is important
that these errors do not form large clusters.

The cluster formation after a cycle involving Ncyc individual
pulses can be analyzed using percolation theory argument,
by estimating the total amplitude that a given qubit gets an
error. This quantity is analogous to the average covered volume
fraction [69], except that we use the amplitudes instead of
the probabilities [70]. Then the condition for the absence of
large clusters in a typical configuration can be stated as the
requirement that the total amplitude that a given qubit gets an

error during a single cycle be small,

(z + 1)Ncycdp � 1, (61)

where the factor (z + 1) accounts for the tuft size. With the
help of the inequality, (60), this gives

αK+1
p

(K + 1)!
� [(z + 1)Ncyc]−1, (62)

where we have dropped the term eαp assuming αp � 1.
While this is a valid argument, (a) it is only applicable

in the quantum memory setting, where all terms associated
with the coupling Hamiltonian, (4), are suppressed in the
average Hamiltonian; (b) it requires that the parts of the
system Hamiltonian commute, as is the case for the Ising
couplings; and (c) the upper bound (z + 1) on the typical
cluster size contributing to the average Hamiltonian is too
loose and non-sequence-specific. In the following sections,
we first construct a different version of the argument, looking
at contributions of clusters of different sizes and keeping an
accurate track of their count, and then extend the argument to
sequences forming nontrivial two-qubit gates.

B. Clustering for single-qubit gates

Here we consider a typical pulse sequence of duration τseq

designed to produce a single-qubit gate or a collection of
single-qubit gates on some subset of qubits. We assume a
construction similar to that of the DCGs in Sec. III A, where
the sequence of a given order K (K = 2 for the sequence of
duration τseq = 16τp in Fig. 1 when second-order NMR-style
self-refocusing pulses are used) becomes exact in the limit of
infinitely short pulses, τp → 0. Basically, this means that the
full unitary of interest is given entirely by the nonperturbed
unitary U0(τseq), while all systematic errors are contained in
the slow unitary R(τseq).

For the toric code, the undetectable errors are formed
by products of same-kind Pauli operators along continuous
topologically nontrivial chains [10]. While the error distri-
bution over (irreducible) clusters is given by the average
Hamiltonian, (13), we find it more convenient to use directly
the expansion of the slow evolution operator R(τseq) [see
Eq. (11)]. Namely, we further expand each term by writing
the interaction Hamiltonian H̃i(tj ) as a sum of the bond
operators. Generally, each term in the resulting expansion can
be separated into a product of connected clusters according
to which bond operators are present. The terms in different
clusters always commute, and therefore, the corresponding
time integrations can be rearranged in the integral, (11).
Then, for any decomposition of the original lattice into a
set of disconnected clusters, the corresponding terms in the
expansion of R(t) factor into a product of terms corresponding
to individual clusters. The net contribution to a cluster Q

involving s bonds can be written as

RQ(t) =
∑
ni>0

Tt

∫ t

0
dt1 . . .

∫ t

0
dtm

B
n1
1

n1!

B
n2
2

n2!
· · · Bns

s

ns!
, (63)

where B
ni

i represents the product of ni terms for bond i

evaluated at a subset of time moments {t1, . . . ,tm}, and m =
n1 + · · · + ns is the total number of terms in the product. The
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condition ni > 0 is needed to ensure that the entire cluster
is covered. Given the spectral norm for each bond operator,
‖Bi‖ = J/2, we have the following bound for the contribution
of an s-bond cluster:

‖Rs(t)‖ � [exp(tJ/2) − 1]s . (64)

We replaced the subscript Q [see Eq. (63)] with s since the
bound, (64), depends only on the number of bonds s in the
cluster.

Note that for small tJ , the obtained expression scales
as ∝(tJ/2)s . The effect of DD is to suppress any terms of
order m � K in the expansion of R(τseq). As a result, when
expanding Rs(τseq), the bound, (64), remains accurate for
clusters of size s > K , but there is an additional reduction
for low-weight clusters. In particular, with K = 2, the bounds
for one- and two-bond clusters become modified as

‖R1(τseq)‖ � eα − 1 − α − α2

2
� eα α3

6
, (65)

‖R2(τseq)‖ � (eα − 1)2 − α2 � e2αα3, (66)

where α ≡ αseq = τseqJ/2. Overall, for α � 1, we can write
the upper bound for the amplitude of a given s-bond cluster as

‖Rs(τseq)‖ � (eα)max(s,K+1), α � 1, (67)

where e is the base of the natural logarithm; this factor can
be dropped for α � 1. With this result, an upper bound of the
amplitude that a given point x is in an s-bond cluster can be
written as

‖Ms‖ � Ns(x)‖Rs(τseq)‖, (68)

where Ns(x) is the number of connected clusters of size s

which include point x.
For any regular lattice, the number Ns grows at most

exponentially with s, Ns � Cμs , where C > 0 and μ > 0 are
constants that depend on the lattice. A general upper bound on
μ for a degree-limited graph is given by Eq. (A2). Overall,
for small enough α, this gives an exponential tail of the
cluster size distribution. The basic conclusion is that errors
from parallel single-qubit gates stay local as long as they are
executed rapidly enough.

C. Second interaction Hamiltonian

Now, consider a sequence of pulses similar to those in
Figs. 3 and 5, where the leading-order average Hamiltonian
H̄

(0)
S is intentionally nonzero, in order to implement a part of

some multiqubit gate. At the same time, this is an order-K
sequence: any correction terms appear only in the order K and
higher of the average Hamiltonian expansion, so that H̄

(m)
S =

0, 0 < m < K .
Now, the actual gate has a duration of τgate = Nrepτseq, and

we want to distinguish between the “wanted” effect of the
leading-order Hamiltonian H̄

(0)
S and the remaining “unwanted”

terms resulting in errors. To this end, we use the decomposition

[R(τseq)]Nrep = R0(τgate) Tt exp

(
−i

∫ τseq

0
dt δ̃H (t)

)
, (69)

where R0(t) ≡ exp(−itH̄ (0)(τseq)) corresponds to the
“wanted” portion of the unitary generated by the sequence
leading-order average Hamiltonian H (0)(τseq), and δ̃H (t) is the
remaining part of the interaction Hamiltonian in the interaction
representation [see Eq. (8)], additionally rotated by R0(t):

δ̃H (t) ≡ R
†
0(t) [H̃i(t) − H (0)(τseq)]R0(t). (70)

We are interested in the specific case where the “wanted”
unitary is a product of two-qubit gates on pairs of qubits
corresponding to the edges of the connectivity graph, with each
term in the Hamiltonian H (0)(τseq) of the form of (48), with
|f | � 1. Then the difference Hamiltonian H̃i(t) − H (0)(τseq)
is a sum of individual two-qubit bond operators B̃i forming
the same connectivity graph G, with the norm no more than
doubled, ‖B̃i‖ � J . While the unitary transformation, (70),
does not change the norm of individual bond operators, it
can change their structure. A single-qubit operator σx or σy

on a qubit from a pair included in H (0)(τseq) is transformed
into a two-qubit operator; and an Ising bond with one of its
qubits driven can be transformed into a three-qubit operator
[we assume that only non-neighboring bonds are included in
H (0)(τseq)].

We can now repeat the arguments in Sec. IV B about the
bound, (68), on the total amplitude of clusters of a given size
s, connected to a given point x. Namely, we treat the extended
bonds generated by the transformation, (70), as regular bonds
with increased z. In a square lattice, this amounts to an increase
from z = 4 to z = 6; this nearly doubles the upper bound for
the cluster-number scaling exponent, (A2), to μmax ≈ 12.21.
In addition, we have to double the value of αseq to account
for possible increased norms of bond operators; we have α =
Jτseq.

Now that we have an analog of Eq. (68) for a single order-
K sequence of duration τseq, we estimate errors after Nrep

repetitions of the sequence simply by scaling the amplitude
of each cluster and using a percolation theory argument to
account for possible superposition of different clusters.

An amplitude that a given point is connected to a size-s
cluster is bounded as

‖Ms‖ � NrepNs‖Rs(τseq)‖ ∝ CNrep(eαμ)min(s,K+1), (71)

which is exponentially small at large s for K � 1 and
sufficiently small α since we assume Nrepα ∼ NrepτseqJ � π .
After Nrep repetitions of the basic sequence, clusters may
overlap. However, in spite of these overlaps, very large clusters
will not form as long as the cluster density is sufficiently far
below the percolation threshold.

Note that the exponential tail in Eq. (71) guarantees
the existence of a finite percolation threshold. Indeed, an
s-bond cluster can always be covered with a circle of area
As = π�s/2�2 � πs2. For coverage by random circles, a finite
percolation threshold exists iff the radius distribution is such
that the average disk area 〈A〉 is finite [69]. Moreover, in a given
dimension, the percolation threshold in terms of the average
covered fraction has a uniform lower bound which depends on
the dimension but not on the details of the radius distribution
function [69].
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In our case, we can give the following upper bound for the
average covered fraction f ≡ fgate:

f � Nrep

∞∑
s=1

‖Rs(τseq)‖AsNs

s
(72)

� πCNrep(eα)K+1μ
∂

∂μ

[
μ(μK − 1)

μ − 1
+ μK+1

1 − eαμ

]

� πCNrep(K + 1)(eαμ)K+1

[
μ

(μ − 1)2
+ 1

(1 − eαμ)2

]
.

(73)

Since Nrep ∝ α−1, one needs to ensure at least first-order
decoupling, K � 1, to be able to scale fgate down under the
percolation threshold, fgate < fperc, and K � 2 to be able to
do it efficiently. Once below the percolation threshold, the
amplitude to encounter an error forming a single large cluster
becomes exponentially small.

We note that with small eαμ � 1, series (72) is dominated
by clusters of size s = K + 1; these involve K + 2 qubits and
have an r.m.s. linear size of order s1/2, which corresponds to
area As ∼ s. With this estimate, we can make a somewhat
less conservative estimate of the average covered area frac-
tion,(72):

fgate � 2CNrep(αμ)K+1, αμ � 1. (74)

D. Scaling to large systems with the toric code

The subsequent discussion requires some familiarity with
operation of the toric code (see Fig. 9); we recommend
Ref. [71] for an excellent introduction.

For a toric code implemented on a plane with separate
ancillae for measurement of the plaquette and the vertex
stabilizer generators, the entire measurement cycle can be
performed in six basic steps: ancilla preparation, four CNOT
gates, and projective ancilla measurement. Each ancilla for
measuring a product of the Z stabilizer generator has to be
prepared in the |0〉 state and measured in the Z basis, while each
ancilla for measuring a product of the X stabilizer generator
has to be initialized in the |+〉 state and measured in the Z

basis.
We make rather specific (although not necessarily realistic

for every qubit implementation) simplifying assumptions
about the measurement. Namely, we assume (a) that a
projective measurement in the Z basis can be done near
instantaneously and (b) that after the measurement the qubit
appears in the |0〉 or |1〉 state according to the measurement out-
come. Assumption a allows us to avoid additional assumptions
about measuring qubits which are coupled, while assumption b
allows us to avoid additional assumptions regarding the ancilla
preparation circuit. Note that the ancillae need not be restored
to the |0〉 state after the measurement. One limitation of the
present scheme is that CNOT gates can only be executed on
pairs of qubits that do not share neighbors; effectively this
doubles the number of required CNOT gates to eight per
measurement cycle. As a result, the duration of the entire
measurement cycle for the toric code is the time it takes to

execute two Hadamard gates on the ancillae measuring the
X-stabilizer generators and eight CNOT gates.

With the gates implemented as in Sec. III, a Hadamard gate
has a duration of 32τp, and a CNOT gate 16(Nrep + 4)τp. The
overall cycle duration τcyc ≡ Ncycτp is

τcyc = 2 × 32τp + 8 × 16(Nrep + 4)τp

= 16(8Nrep + 36)τp � 16τp × 12Nrep, (75)

where we have assumed Nrep � 5. This implies that the
expected error-covered area fraction computed for a single
CNOT gate [see Eq. (72)] is increased by an additional order
of magnitude.

As a result of the measurement done at the end of each
cycle, the error operator is projected to a state with well-defined
stabilizer. This does not make the error entirely classical, as
contributions from error configurations differing by a product
of some stabilizer generators have to be added coherently
(these correspond to all deformations of error chains with their
ends fixed).

Note that while the probabilities of various error configu-
rations are, as usual, proportional to the magnitude squared
of their amplitudes, a typical outcome will have an error-
covered fraction scaling linearly and not quadratically with
the estimate in Eq. (72). Judging from the convergence of
the series, for αμ � 1, the likely error configuration will
have a spatial structure corresponding to superposition of
randomly placed connected clusters involving up to K + 1
qubits each, with the dominant contribution coming from the
biggest size. In the present model where all of the errors
come from incomplete suppression of the unwanted couplings
[see Eq. (4)], we expect to see no correlations between
the error patterns encountered in subsequent measurement
cycles.

In the discussed model, the number of ancilla qubits equals
that of qubits in the code; the corresponding per-cycle error
probabilities of a qubit error or a measurement error are
thus expected to be equal. In the absence of correlations, the
error positions can be efficiently recovered from repeatedly
measured syndromes using the minimal matching algorithm,
which gives a threshold error probability of around pc � 5%
per qubit per cycle (corresponding to per-gate threshold
infidelities ranging from 1.1% to 1.4%; see Ref. [72]). While
correlations tend to favor error chains, with K = 2, a typical
cluster involves four qubits, and it has the linear size of
about two lattice constants. Simple scaling suggests that the
threshold should not be reduced by more than a factor of 4,
to about pc = 1% per qubit per cycle. Using the area-based
estimate pc � 10fgate [see Eq. (74)], with K = 2, C = 1,
and μ = 10, we obtain the lower bound for the threshold,
αc � 3 × 10−4, which corresponds to Nrep � 104.

Note that this bound is loose, as we added the amplitudes
of all errors which can happen in the system and have not
made any attempt to account for the reduction in the number
of error patterns resulting from the projective measurement.
While this estimate proves that the presented universal gate set
based on decoupling pulse sequences in a network of qubits
with always-on Ising couplings can, in principle, be scalable
when used with the toric code, more detailed analysis is
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needed to optimize the construction and to establish the actual
threshold.

V. CONCLUSIONS

In this work we have presented the construction of and
carefully analyzed the errors associated with a universal gate
set based on soft-pulse DD sequences. The gates are designed
to work in an idealized network of qubits with always-on Ising
couplings forming a sparse bipartite graph G. The construction
is based on the universal gate set presented by us earlier [47],
with the difference that now they allow for simultaneous two-
qubit gates even in a system where Ising couplings are not
identical.

The single-qubit gates are based on the DCG construction
[46]; they allow arbitrary single-qubit rotations. Any com-
bination of single-qubit gates can be executed in parallel
on non-neighboring qubits (e.g., the entire sublattice of a
bipartite graph). When used with second-order NMR-style
self-refocusing pulses, the constructed sequences eliminate the
inte-qubit couplings to second order and, in addition, decouple
time-independent on-site Ising terms (chemical shifts) also to
second order. Fluctuating Ising terms (low-frequency phase
noise) are decoupled to linear order; second-order decoupling
of such terms can also be achieved using a symmetrized version
of the same construction.

The basic two-qubit gate is an arbitrary-angle ZZ rotation.
It can be viewed as a continuous family of doubled Eulerian
sequences [31] which allow flexibility of the effective cou-
pling: the same average rotation rate can be achieved for qubit
pairs with differing Ising couplings. These gates can also be
executed in parallel in an arbitrary number of qubit pairs, with
the restriction that qubits from different pairs cannot be directly
connected to each other. In addition to providing controlled
removal of unwanted Ising couplings to quadratic order (when
used with second-order NMR-style self-refocusing pulses),
these sequences also decouple low-frequency phase noise to
the same order.

We have characterized the accuracy of the constructed gates
in few-qubit systems using an extension of the analytical
average-Hamiltonian expansion [52,53] and, also, numerically
by integrating full quantum dynamics of clusters of up to six
qubits in the presence of control pulses, a coupling Hamil-
tonian, and additional on-site Ising terms. These simulations
confirmed that the gates are working as designed, with the
systematic portion of the average infidelity of a CNOT gate
as small as 10−11 in a chain and 10−8 in an n = 6 star graph
with Nrep = 5 repetitions of the basic sequence (see Figs. 5
and 6).

We have also gone beyond the fidelity and analyzed the
weight distribution of systematic errors generated by our
sequences. It turns out that single- and two-qubit errors are
relatively suppressed, while errors of larger weights dominate
the evolution. Such an error distribution is expected in any
control scheme based on perturbation theory.

Scalable quantum computation being the primary target
of the present construction, we have also analyzed the error
patterns that would be expected when this or similarly
constructed gate sets are used in a large system. It turns out that
for sequences suppressing the interqubit couplings to order K ,

when the couplings are small compared to the inverse sequence
duration, dominant errors are formed by clusters involving up
to K + 1 bonds (up to K + 2 qubits). While such clusters can
sometimes merge, forming higher-weight errors, we show that
one can choose the parameters so that large error clusters do
not form during a measurement cycle that involves several
CNOT and single-qubit gates. We have analyzed specifically
the measurement cycle of the toric code, and the corresponding
planar layout of qubits and ancillae, and demonstrated that
fault-tolerant quantum memory can indeed be implemented
using our gate set.

A complete analysis of fault tolerance, e.g., for the toric
code, is beyond the scope of this work. We note, however,
that the exponential bound, Eq. (71), for the amplitude of
a large error cluster is also compatible with the threshold
analysis for concatenated codes with noise that involves long-
range temporal and spatial correlations [8,9]. Fault tolerance
with a concatenated code using the present gate set can be
demonstrated by choosing a suitable qubit network, e.g., a
linear qubit chain [16,17,73].

The most important parameter that governs the likelihood
of a runaway high-weight error formation is the sparsity of
the coupling network. It can be characterized by the maximum
degree z of the corresponding graph. In a chain with z = 2,
there are only s + 1 clusters with s bonds involving a given
qubit; with z > 2, the cluster number grows exponentially
with s. This growth has to be overcome by the small
expansion parameter α ≡ Jτseq: the amplitude of an error
cluster involving s bonds scales as αs .

On the other hand, when a large number of qubits are
coupled to a single qubit or other quantum system like a
harmonic oscillator, it would be much more difficult to control
the runaway high-weight error formation. We believe that this
applies not only to the present gate set based on decoupling
sequences, but generally to any kind of control scheme where
perturbation theory is used, e.g., controlled coupling schemes
based on tuning qubits in and out of resonance.
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APPENDIX: CLUSTER SIZE DISTRIBUTION

Here we derive an upper bound on the number of distinct
clusters connected to a given point x in a graph G with vertex
degrees limited by z. First, we note that a size-s cluster
containing x on G, after cutting any loops, can be mapped
to a size-s cluster on z-regular tree Tz (Bethe lattice), with
x mapped to the root. Such a mapping can only increase the
perimeter (size of the boundary, i.e., number of sites outside
the cluster but neighboring a site inside it). Any size-s cluster
on Tz has the perimeter tz(s) ≡ s(z − 2) + 2; for a cluster on
G we have t � tz(s).
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Second, the number of weight-s clusters which contain x

on Tz is [74]

Ns = sz [(z − 1)s]!

s! [(z − 2)s + 2]!

= sz

[(z − 2)s + 2][(z − 2)s + 1]

(
(z − 1)s

s

)
. (A1)

For large s the binomial can be approximated in terms of
the binary entropy function, log2

(
n

k

) = nH2(k/n), H2(x) ≡
−x log2(x) − (1 − x) log2(1 − x). The prefactor in Eq. (A1)
is <1 for any s � 1 and z > 2; we obtain

Ns � μs
max, μmax = 2(z−1)H2(1/(z−1)), z > 2. (A2)

For a square lattice Eq. (A2) gives μmax = 27/4 = 6.75.
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