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Entanglement in fermion many-body systems is studied using a generalized definition of separability based
on partitions of the set of observables, rather than on particle tensor products. In this way, the characterizing
properties of nonseparable fermion states can be explicitly analyzed, allowing a precise description of the
geometric structure of the corresponding state space. These results have direct applications in fermion quantum
metrology: Sub-shot-noise accuracy in parameter estimation can be obtained without the need of a preliminary
state entangling operation.
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I. INTRODUCTION

In trying to apply the standard definition of separability
and entanglement to systems of identical particles, one
immediately faces a problem: The indistinguishability of the
system constituents conflicts with Hilbert space tensor product
structures on which these notions are based. The point is that
the particles are identical and therefore they can be neither
singly addressed, nor their individual properties measured:
Only collective, global system operators are in fact admissible,
experimentally accessible observables [1,2].

This observation unavoidably leads to a radical change
in perspective concerning the attitude towards the notion of
entanglement in general: The presence of quantum correlations
in any physical system is less signaled by a priori properties
of the system states, than by those of the algebra of the system
observables and by the behavior of the associated correlation
functions. In other terms, the usually adopted definition of
separability based on the particle aspect of first quantization
appears to be too restrictive, leading possibly to misleading
results; rather, it should be replaced by one directly emerging
from the second quantized description, usually adopted for
studying many-body systems.1

This new approach to separability and entanglement has
been advocated before [26–29], but formalized only recently
[30–36]. So far the focus has been on bosonic systems,
with particular attention to bipartite entanglement, aiming at
specific applications to quantum metrology. Suitable criteria
able to detect nonclassical correlations in systems with a
fixed number of elementary bosonic constituents have been
discussed. In particular, it has been found that in general the
operation of partial transposition [37,38] gives rise to a much
more exhaustive criterion for detecting bipartite entanglement
than in the case of distinguishable particles [32,33]. This al-
lows obtaining a rather complete classification of the structure
of bipartite entangled states in systems composed by a fixed
number of bosons [33,34]. Furthermore, entangled bosonic

1Entanglement in many-body systems has been widely discussed
in the recent literature, e.g., see [3–25]; however, for the reasons just
pointed out, only a limited part of those results are really applicable
to the case of identical particle systems.

states turn out to be much more robust than distinguishable
particle ones against mixing with other states and an explicit
expression for the so-called “robustness” [39,40] has been
derived [34]. In this way, a general characterization of the
geometry of the space of bosonic states can be given,
that is indeed much richer than in the case of systems of
distinguishable constituents.

In the following, we shall extend the study of the notions of
separability and entanglement to the case of systems composed
of fermions following the lines previously adopted for bosons.
In this case, the elementary creation and annihilation operators
associated with the fermion system constituents satisfy an
algebra given in terms of anticommutation relations: This
poses new questions regarding the connection between the
properties of locality and commutativity of the system observ-
ables, making the theory of fermion entanglement even richer
than in the case of bosonic systems.

Application to quantum metrology using fermion systems
will also be discussed: As in the case of bosonic systems,
also in the case of fermion ones it will be explicitly shown
that sub-shot-noise accuracy in parameter estimation can be
achieved without the need of feeding the measuring apparatus
with entangled states; the required nonlocality can be provided
by the apparatus itself. These results may have practical
implications in interferometric experiments using ultracold
fermion gases.

II. ENTANGLEMENT IN MULTIMODE
FERMION SYSTEMS

We shall consider generic fermion many-body systems
made of N elementary constituents that can occupy M different
orthogonal states or modes, N < M . This is a quite general
model that can accommodate various physical situations in
atomic and condensed matter physics; in particular, it can
be used to describe the behavior of ultracold gases confined
in multisite optical lattices, that are becoming so relevant
in the study of quantum many-body phenomena (e.g., see
[20–23,41–51], and references therein).

A many-body system made of identical particles is usually
described by means of creation and annihilation operators, a†

i ,
ai , for each of the M modes that the particles can occupy,
i = 1,2, . . . ,M [52,53]. Fermion particles are characterized
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by the fact that the operators a
†
i , ai , obey the canonical

anticommutation relations,

{ai, a
†
j } ≡ ai a

†
j + a

†
j ai = δij , {ai, aj } = {a†

i , a
†
j } = 0.

(1)

The total Hilbert space H of the system is then spanned by
the many-body Fock states, obtained by applying creation
operators to the vacuum:

|n1,n2, . . . ,nM〉 = (a†
1)n1 (a†

2)n2 · · · (a†
M )nM |0〉, (2)

the integers n1,n2, . . . ,nM representing the occupation num-
bers of the different modes; due to (1), they can take only the
two values 0 or 1. Since the number of fermions N is fixed, the
total number operator

∑M
i=1 a

†
i ai is a conserved quantity and

the occupation numbers must satisfy the additional constraint∑M
i=1 ni = N ; in other words, all states must contain exactly

N particles and the dimension D of the system Hilbert space
H is then D = (MN ). In addition, the set of polynomials in all
creation and annihilation operators, {a†

i , ai | i = 1,2, . . . ,M},
form an algebra that, together with its norm closure, coincides
with the algebra A(H) of bounded operators acting on H; the
observables of the systems are part of this algebra.

As mentioned in the introductory remarks, in this frame-
work the natural interpretation of entanglement in terms of
particle correlations has to be rethought. For instance, in the
case of a system composed by two standard, distinguishable
qubits, the natural Hilbert space product structure H = C2 ⊗
C2 and the corresponding algebraic product structure for the
space of the associated observables A = M2(C) ⊗ M2(C),
with M2(C) the set of 2 × 2 complex matrices, immediately
identify the local observables as the one taking the form,

A ⊗ B = (A ⊗ 1) (1 ⊗ B), (3)

where A is an observable of the first qubit, while B that for
the second one. In other terms, local observables for the two-
qubit systems are characterized by being tensor products of
observables pertaining each to one of the two parties: They
commute and are thus algebraically independent.

Consider instead a system composed by two fermions that
can occupy two modes, and thus described by the set of
operators (a1,a

†
1,a2,a

†
2): The single particle Hilbert space is

still C2; the difference with respect to the qubit case is that
the total Hilbert space H is now one-dimensional, containing
just one Fock vector, namely a

†
1a

†
2|0〉. In the language of

first quantization, this corresponds to the fact that only
antisymmetric states are allowed due to the Fermi statistics,
and this is automatically enforced in the second quantized
language due to the algebra in (1). Furthermore, the algebra A
of operators is linearly generated by the identity together with
at most second-order monomials in a1,a

†
1 and a2,a

†
2. In this

case, the particle Hilbert space tensor product structure is lost,
reflecting the fact that the two particles are indistinguishable.
Similarly, also the usual notion of local observables, the one
based on the tensor product structure as in (3), is no longer
available and needs to be reformulated.

In dealing with systems of identical particles, it is natural
to define the notion of bipartite entanglement by the presence
of nonclassical correlations among averages of operators. It is

then convenient to start with the following general definitions,
valid for both boson and fermion systems.

Definition 1. An algebraic bipartition of the operator
algebra A(H) is any pair (A1,A2) of subalgebras of A(H)
generated by disjoint subsets of modes, namely A1,A2 ⊂
A(H), A1 ∩ A2 = 1.

In general the two subalgebras A1 and A2 need not
reproduce the whole algebra A(H), i.e., A1 ∪ A2 ⊂ A(H);
however, in the cases of partitions defined in terms of modes,
as discussed below, one has A1 ∪ A2 = A(H).

Any algebraic bipartition encodes in a natural way the
definition of the system local observables.

Definition 2. An element (operator) of A(H) is said to be
(A1,A2) local, i.e., local with respect to a given bipartition
(A1,A2), if it is the product A1A2 of an element A1 of A1 and
another A2 in A2.

From this notion of operator locality, a natural definition of
state separability and entanglement follows [30].

Definition 3. A state ω on the algebra A(H) will be called
separable with respect to the bipartition (A1,A2) if the
expectation ω(A1A2) of any local operator A1A2 can be
decomposed into a linear convex combination of products of
expectations:

ω(A1A2) =
∑

k

λk ω
(1)
k (A1) ω

(2)
k (A2),

λk � 0,
∑

k

λk = 1, (4)

where ω
(1)
k and ω

(2)
k are given states on A(H); otherwise the

state ω is said to be entangled with respect the bipartition
(A1,A2).2

Remark 1. (i) This generalized definition of separability can
be easily extended to the case of more than two partitions, by
an appropriate, straightforward generalization; specifically, in
the case of an n partition, Eq. (4) would extend to

ω(A1A2 · · · An) =
∑

k

λk ω
(1)
k (A1) ω

(2)
k (A2) · · · ω(n)

k (An),

λk � 0,
∑

k

λk = 1. (5)

(ii) As already observed before, in systems of identical
particles there is no a priori given, natural partition to
be used for the definition of separability; therefore, issues
about entanglement and nonlocality are meaningful only with
reference to a choice of a specific partition in the operator
algebra [26–35]; this general observation, often overlooked, is
at the origin of much confusion in the recent literature. �

In the language of second quantization introduced be-
fore for the description of fermion systems, these general
definitions can be made more explicit. A bipartition of the
M modes fermion algebra A(H) can be given by splitting

2In general, a state ω is a normalized, positive, linear functional on
A(H), such that the average of any observable O can be expressed
as the value taken by ω on it, 〈O〉 = ω(O); a standard representation
of this expectation value map is given by the trace operation over
density matrices.
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the collection of creation and annihilation operators into
two disjoint sets, {a†

i , ai |i = 1,2 . . . ,m} and {a†
j , aj , | j =

m + 1,m + 2, . . . ,M}; it is thus uniquely determined by the
choice of the integer m, with 0 � m � M .3

All polynomials in the first set (together with their norm
closures) form a subalgebra A1, while the remaining set analo-
gously generates a subalgebraA2. Due to the anticommutation
relations (1), the two subalgebras A1, A2 do not in general
commute. Nevertheless, from the algebraic relations,

[AB ,C] = A {B ,C} − {A ,C} B,

it follows that all even powers of elements inA1 (A2) commute
with all elements of A2 (A1). It is then convenient to introduce
the following definition:

Definition 4. Let � be the automorphism on the Fermi
algebra A defined by �(ai) = −ai , �(a†

i ) = −a
†
i for all

ai, a
†
i ∈ A(H).4 The even component Ae of A is the subset

of elements Ae ∈ A such that �(Ae) = Ae, while the odd
component Ao of A consists of those elements Ao ∈ A such
that �(Ao) = −Ao.

Notice that the even component Ae is the algebra generated
by even polynomials in creation and annihilation operators,
while the odd component Ao is just a linear space, but not an
algebra, since the product of two odd elements is even.

Similarly, given the algebraic bipartition (A1,A2), one can
define the even Ae

i and odd Ao
i components of the two subal-

gebras Ai , i = 1,2. Only the operators of the first partition be-
longing to the even component Ae

1 commute with any operator
of the second partition and, similarly, only the even operators
of the second partition commute with the whole subalgebraA1.

Coming now back to the notion of separability introduced in
Definition 3, one may notice that there is a difference between
bosonic and fermionic systems. In the bosonic case, the two
subalgebras A1, A2 defining the algebraic bipartition (A1,A2)
naturally commute, i.e., that each element A1 of the operator
algebra A1 commutes with any element A2 in A2. Instead,
in the case of fermion systems, as already observed the two
subalgebras A1, A2 do not in general commute. Nevertheless,
in such systems only self-adjoint operators belonging to the
even components Ae

1, Ae
2 qualify as physical observables and

these do commute.
At this point, two different attitudes are possible regarding

the definition of separability expressed by the condition (4):
(i) use in it all operators from the two subalgebras A1, A2, as
assumed in Definition 3 above; (ii) restrict all considerations to
observables only. The first approach is in line with the notion of
“microcausality” adopted in constructive quantum field theory
[54,55], where the emphasis is on quantum fields, which are
required either to commute (boson fields) or anticommute
(fermion fields) if defined on (causally) disjoint regions. On the
other hand, the second point of view reminds one of the notion

3There is no loss of generality in assuming the modes forming the
two partitions to be contiguous; if in the chosen bipartition this is not
the case, one can always relabel the modes in such a way to achieve
this convenient ordering.

4In other terms, � is a linear map on A preserving the algebra
relations, i.e., �(AB) = �(A)�(B).

of “local commutativity” in algebraic quantum field theory
[56,57], where only observables are considered, assumed to
commute if localized in disjoint regions.

These two points of view are not equivalent, as it can be
appreciated by the following simple example. Let us consider
the system consisting of just one fermion that can occupy two
modes, i.e., N = 1, M = 2, with the bipartition defined by the
two modes. The following state:

ω = |φ〉〈φ|, |φ〉 = |1,0〉 + |0,1〉√
2

, (6)

where the combination of the two Fock basis states |1,0〉, |0,1〉
introduced in (2) appears to be entangled.5 Nevertheless, in the
second approach mentioned above, it is found to satisfy the
condition (4), hence to be separable. Indeed, only observables,
i.e., self-adjoint, even operators, can be used in this case as
A1 and A2; in practice, only the two partial number operators
a
†
1a1 and a

†
2a2 together with the identity are admissible, and for

these observables the state (6) behaves as the separable state
(|0,1〉〈0,1| + |1,0〉〈1,0|)/2. Different is the situation within
the first approach: In this case, all operators are admissible,
for instance, A1 = a

†
1 and A2 = a2, which indeed prevent the

separability condition (4) to be satisfied.
In view of this, here we advocate and adopt the first

point of view, i.e., point (i) above: It gives a more general
and physically complete treatment of fermion entanglement.
Nevertheless, it should be stressed that the fermion algebra
put stringent constraints on the form of the fermion states that
can be represented as a product of other states, as the ones
appearing in the decomposition (4). Specifically, any product
ω

(1)
k (A1) ω

(2)
k (A2) vanishes whenever A1 and A2 both belong

to the odd components of their respective subalgebras. This
fact comes from the following result [58], whose proof we
explicitly give for it is a direct illustration of the effects of the
anticommutative character of the fermion algebra.

Lemma 1. Consider a bipartition (A1,A2) of the fermion
algebra A and two states ω1, ω2 on A. Then, the linear
functional ω on A defined by ω(A1A2) = ω1(A1) ω2(A2) for
all A1 ∈ A1 and A2 ∈ A2 is a state on A only if at least one
ωi vanishes on the odd component of Ai .

Proof. Suppose both states ω1 and ω2 do not vanish when
acting on the odd components Ao

1,2. Then, there exist odd
elements Ao

i ∈ Ao
i , such that ωi(Ao

i ) �= 0, i = 1,2. The same
is true for the self-adjoint combinations (Ao

i + (Ao
i )†)/2 and

(Ao
i − (Ao

i )†)/(2i): We can then assume (Ao
i )† = Ao

i , so that
ωi(Ao

i ) = ωi(Ao
i ) �= 0, where the overline signifies complex

conjugation. But then, due to the anticommutativity of the odd
elements Ao

i , one finds

ω
(
Ao

1A
o
2

) = ω
(
Ao

2A
o
1

) = −ω
(
Ao

1A
o
2

) = ω1
(
Ao

1

)
ω2

(
Ao

2

) �= 0,

which is a contradiction. �
In other terms, given a mode bipartition (A1,A2) of

the fermion algebra A, i.e., a decomposition of A in the
subalgebra A1 generated by the first m modes and the

5As we shall see in Sec. IV, an N -fermion generalization of this
state can be used in quantum metrology to achieve sub-shot-noise
accuracy in parameter estimation.
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subalgebra A2, generated by the remaining M − m ones, the
decomposition (4) is meaningful only for local operators A1A2

for which [A1, A2] = 0, so that, at this stage, the definition of
separability that it encodes appears similar to the resulting one
for bosonic systems.

As a further consequence of Lemma 1, the following
criterion for entanglement holds:6

Corollary 1. Given the bipartition (A1,A1) of the fermion
algebraA, if a state ω is nonvanishing on a local operator Ao

1A
o
2,

with the two components Ao
1 ∈ Ao

1, Ao
2 ∈ Ao

2 both belonging
to the odd part of the two subalgebras, then ω is entangled.

Indeed, if ω(Ao
1A

o
2) �= 0, then, by Lemma 1, ω cannot be

written as in (4), and therefore it is nonseparable.
The case of pure states, i.e., states that cannot be written

as a convex combination of other states, deserves a separate
discussion. Indeed, in this case the separability condition (4)
simplifies and the following result can be proven.

Lemma 2. Pure states ω on the fermion algebra A are
separable with respect to a given bipartition (A1,A2) if and
only if

ω(A1A2) = ω(A1) ω(A2), (7)

for all local operators A1A2.
Proof. The if part of the proof is trivial: According to

Definition 3, states as above are manifestly (A1,A2) separable,
since they are of the form (4) with just one element in the the
convex sum.

For the only if part of the proof, recall that, in the case
of mode bipartition we are considering, the (A1,A2)-local
operators generate the whole fermion algebra A. Therefore,
any element A ∈ A can be written as a combination of
local operators, A = ∑

ij Cij A
(i)
1 A

(j )
2 , with A

(i)
1 ∈ A1 and

A
(j )
2 ∈ A2. As a consequence, if by hypothesis a state ω is

separable, i.e., it can be written as in (4) on all (A1,A2)-local
operators, then one has

ω(A) =
∑
ij

Cij

∑
k

λk ω
(1)
k

(
A

(i)
1

)
ω

(2)
k

(
A

(j )
2

) =
∑

k

λk �k(A),

in terms of other states, defined on the whole algebraA through
the relation: �k(A) = ∑

ij Cij ω
(1)
k (A(i)

1 ) ω
(2)
k (A(j )

2 ).7 But since
ω is pure by hypothesis, only one term in the above convex
combination must be different from zero. By dropping the
now superfluous label k, we have then found that ω(A1A2) =
ω(1)(A1) ω(2)(A2). The final form (7) is obtained by separately
taking A1 and A2 to coincide with the identity operator. �

III. STRUCTURE OF ENTANGLED FERMION STATES

The above discussion shows that, for many-body systems
formed by N fermions that can occupy M modes, the notion of
entanglement cannot be given once for all, but needs to be re-
ferred to the choice of a partition of the modes into two disjoint

6This criterion precisely detects the entanglement of the state |�〉
in (6); indeed, with the odd elements Ao

1 = a
†
1 and Ao

2 = a2, one has
〈�|Ao

1A
o
2|�〉 = 1/2.

7Notice that, by Lemma 1, �k(A1A2) is different from zero only
when A1 and A2 are not both odd elements.

sets, the first containing the first m modes, while the second
the remaining M − m ones. In short, we will henceforth refer
to such a choice as the (m, M − m) partition. It turns out that,
once the partition (m, M − m) is fixed, the general structure
of entangled N -fermion states can be explicitly described.

Let us first consider the case of pure states; their complete
characterization is given by the following.

Proposition 1. A pure state |ψ〉 in the fermion Hilbert space
H is (m, M − m) separable if and only if it is generated out of
the vacuum state by a (m, M − m)-local operator, i.e., it can
be written in the form,

|ψ〉 = P(a†
1, . . . ,a

†
m) · Q(a†

m+1, . . . ,a
†
M )|0〉, (8)

where P , Q are polynomials in the creation operators relative
to the first m modes and the last M − m modes, respectively.
Otherwise, the state is entangled.

Proof. First of all, recall that in the present situation the
condition of separability reduces to the simpler expression (7);
clearly, the state in (8) satisfies it by taking for the expectation
value of a generic fermion operator A ∈ A the usual state
average, ω(A) ≡ 〈ψ |A|ψ〉.

In order to prove the converse, i.e., that from the separability
condition (7) the expression (8) follows, we start decomposing
|ψ〉 in the Fock basis given in (2); taking into account the
(m,M − m) bipartition of the modes, one can write

|ψ〉 =
∑

{k},{α}
C{k},{α} |k1, . . . ,km ; αm+1, . . . ,αM〉,

∑
{k},{α}

|C{k},{α}|2 = 1, (9)

where {k} = (k1,k2, . . . ,km), respectively, {α} =
(αm+1,αm+2, . . . ,αM ), is the vector of occupation numbers of
the first m, respectively, second M − m modes, and

|k1, . . . ,km; αm+1, . . . ,αM〉
= (â†

1)k1 · · · (â†
m)km(â†

m+1)αm+1 · · · (â†
M )αM |0〉.

The condition of separability of Lemma 2 assures that
〈�|A1A2|�〉 = 〈�|A1|�〉 〈�|A2|�〉 for all fermion opera-
tors A1, A2 belonging to the first, second partition, respec-
tively.8 We will use this request to force the coefficients C{k},{α}
to be in product form, C{k},{α} = C{k} C ′

{α}, through suitable
choice of A1 and A2. To this aim, let us consider the following
operators:

A1 = (a†
1)p

′
1 . . . (a†

m)p
′
m

(
1

2πi

∮


dz

z − N1

)
apm

m . . . a
p1
1 , (10)

A2 = (a†
m+1)β

′
m+1 . . . (a†

M )β
′
M

(
1

2πi

∮


dz

z − N2

)
a

βM

M . . . a
βm+1
m+1 ,

(11)

A1A2 = (a†
1)p

′
1 . . . (a†

m)p
′
m (a†

m+1)β
′
m+1 . . . (a†

M )β
′
M

×
(

1

2πi

∮


dz

z − N

)
a

βM

M . . . a
βm+1
m+1 apm

m . . . a
p1
1 , (12)

8Note again that, due to Lemma 1, at least one of the two operators
A1, A2 needs to be even.
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where pi , p′
i , βj , β ′

j are either 0 or 1, N1 = ∑m
k=1 a

†
k ak ,

N2 = ∑M
j=m+1 a

†
j aj are the number operators relative to

the two subsets of modes, while N = N1 + N2 is the total
number of fermions in the system; furthermore,  is a contour
around z = 0 excluding all other integers. The choice of
contour forces the three integrals above to vanish unless
z = 0, whence the first two project onto the subspaces with
no particles in the first, second partition, respectively, while
the third one projects onto the vacuum.9 With a slight abuse
of language, the three operators above can be represented
in short as A1 = |{p}〉〈{p′}|, A2 = |{β}〉〈{β ′}|, and A1A2 =
|{p},{β}〉〈{p′},{β ′}|. Then, using (9), one easily obtains

〈�|A1|�〉 =
∑
{α}

C{p′},{α}C{p},{α}, (13)

〈�|A2|�〉 =
∑
{k}

C{k},{β ′}C{k},{β}, (14)

〈�|A1A2|�〉 = C{p′},{β ′}C{p},{β}, (15)

and the assumed separability of |ψ〉 yields the condition:

C{p′},{β ′}C{p},{β}

=
⎛
⎝∑

{α}
C{p′},{α}C{p},{α}

⎞
⎠

⎛
⎝∑

{k}
C{k},{β ′}C{k},{β}

⎞
⎠ . (16)

For p′ = p and β ′ = β this expression becomes

|C{p},{β}|2 =
⎛
⎝∑

{α}
|C{p},{α}|2

⎞
⎠

⎛
⎝∑

{k}
|C{k},{β}|2

⎞
⎠ .

Setting D{p} = ∑
{α} |C{p},{α}|2 and D′

{β} = ∑
{k} |C{k},{β}|2,

one can rewrite

C{p},{β} =
√

D{p}
√

D′
{β} eiθ{p}{β} . (17)

Inserting this expression in (16), we obtain

ei(θ{p′ }{β′ })−θ{p}{β}) =
∑
{α}

D′
{α}e

i(θ{p}{α}−θ{p′ }{α})

×
∑
{k}

D{k}ei(θ{k}{β}−θ{k}{β′ }).

Since due to the state normalization condition
∑

{p} D{p} =
1 = ∑

{β} D′
{β}, by setting β ′ = β one sees that θ{p}{β} −

θ{p′}{β} = φpp′ for all β, i.e., this phase difference is a function
of the set of indices p and p′, but not of β. Fixing an arbitrary
p′ and inserting this expression into (17) yields

C{p},{β} =
√

D{p} eiφpp′
√

D′
{β} eiθ{p′ }{β} , (18)

which is of the required form. �

9Since the number operators are sums of quadratic monomials,
by series expansion the three integrals provide operators that are
elements of even subalgebras.

Remark 2. In the proof of the previous proposition nothing
depended on having a finite number m of modes in the first
partition and a finite number M − m of modes in the second
partition. The result thus extends to the case of infinite disjoint
sets of modes for all normalized pure states |ψ〉. �

Examples of N fermion pure separable states are the Fock
states; indeed, recalling (2), they can be recast in the form (8),

|k1, . . . ,km; αm+1, . . . ,αM〉 = [(â†
1)k1 · · · (â†

m)km]

× [(â†
m+1)αm+1 · · · (â†

M )αM ]|0〉,
(19)

where P and Q are now monomials in the creation operators
of the two partitions. By varying ki,αj ∈ {0,1} and the integer
k = ∑m

i=1 ki , such that 0 � k � N , these states generate the
whole Hilbert space H. This basis state can be relabeled in a
different, more convenient way as

|k,σ ; N − k,σ ′〉, σ = 1,2, . . . ,Dk ≡
(

m

k

)
,

σ ′ = 1,2, . . . ,D′
N−k ≡

(
M − m

N − k

)
; (20)

the integer k gives the number of fermions occupying the
first m modes, k � m, while σ counts the different ways
in which those particles can fill those modes; similarly, σ ′
labels the ways in which the remaining N − k fermions can
occupy the other M − m modes.10 In this new labeling, the
property of orthonormality of the states in (20) simply becomes
〈k,σ ; N − k,σ ′|l,τ ; N − l,τ ′〉 = δkl δστ δσ ′τ ′ .

For fixed k, the basis vectors {|k,σ ; N − k,σ ′〉} span a
subspace Hk of dimension Dk D′

N−k; the union of all these
orthogonal subspaces give the whole fermion Hilbert space
H, recovering its dimension D [59]:

N∑
k=0

Dk D′
N−k = D =

(
M

N

)
. (21)

Remark 3. Note that the space Hk is naturally isomorphic
to the tensor product space CDk ⊗ CD′

N−k ; through this isomor-
phism, the states |k,σ ; N − k,σ ′〉 can then be identified with
the corresponding basis states of the form |k,σ 〉 ⊗ |N − k,σ ′〉.
This observation will be useful below in the classification of
entangled fermion states. �

Using the above notation, a generic fermion mixed state ρ

can then be written as

ρ =
N+∑

k,l=N−

∑
σ,σ ′,τ,τ ′

ρkσσ ′,lτ τ ′ |k,σ ; N − k,σ ′〉〈l,τ ; N − l,τ ′|,

N+∑
k=N−

∑
σ,σ ′

ρkσσ ′,kσσ ′ = 1, (22)

10In order to completely identify the basis states, two extra labels
σ and σ ′ are needed for each value of k, so that these labels (and
the range of values they take) are in general k dependent: In order
to keep the notation as a simple as possible, in the following these
dependencies will be tacitly understood.
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where N− = max{0,N − M + m} and N+ = min{N,m} are
the minimum and maximum number of fermions that the first
partition can contain, due to the exclusion principle.

The set of all states form a convex set, whose extremals
are given by the pure ones. Proposition 1 can then be used to
characterize separable mixed states.

Corollary 2. A mixed state ρ as in (22) is (m,M − m)
separable if and only if it is the convex combination of
projectors on pure (m,M − m)-separable states; otherwise, the
state ρ is (m,M − m) entangled.

In general, to determine whether a given density matrix ρ

can be written in separable form is a hard task and one is
forced to rely on suitable separability tests, that, however, are
in general not exhaustive.

One of such tests has already been introduced through
Corollary 1, and is peculiar to fermion systems: If there exists
a local operator Ao

1A
o
2 , with both components odd under the

action of the involution � (cf. Definition 4), such that the
expectation value 〈Ao

1A
o
2〉 = Tr[ρAo

1A
o
2] is nonvanishing, then

the state ρ is surely entangled. This entanglement criterion
turns out to be exhaustive in the case of bipartitions of type
(1,M − 1), i.e., when the first partition contains just one mode,
while the second the remaining M − 1 ones.

Proposition 2. An M-mode state of an N -fermion system
is entangled with respect to the bipartition into one mode and
the rest if and only if its expectation value is nonvanishing on a
local operator whose components both belong to the odd part
of the corresponding operator algebras.

Proof. A generic state of the system can be written in
as in (22), though dropping the unnecessary primed Greek
labels:

ρ =
1∑

k,l=0

∑
σ,τ

ρkσ,lτ |k; N − k,σ 〉〈l; N − l,τ |,

1∑
k=0

∑
σ

ρkσ,kσ = 1. (23)

It can be further decomposed into a “diagonal” and “off-
diagonal” part,

ρ = ρd + η, (24)

with

ρd =
1∑

k=0

∑
σ,τ

ρkσ,kτ |k; N − k,σ 〉〈k; N − k,τ |, (25)

η =
1∑

k=0

∑
σ,τ

ρkσ,(1−k)τ |k; N − k,σ 〉〈1 − k; N + k − 1,τ |.

(26)

Clearly, only η can give a nonvanishing contribution to
the expectation value Tr[ρAo

1A
o
2], where Ao

1A
o
2 is a local

operator whose components are both odd.11 Therefore, the
proposition is proven once we show that the state ρd can

11Note that η is not a state, since in general it is not positive; it is
the difference of two density matrices.

be written in separable form. In order to prove this, let
us make a change of basis in the second M − 1 partition
passing from the Fock states to another set of separable states
adapted to ρ, such that its components along this new basis
satisfy ρkσ,kτ = ρkσ,kσ δστ ; notice that this is always possible
through suitable local, unitary transformations diagonalizing
the two matrices M(k)

στ ≡ [ρkσ,kτ ], k = 0,1. In this new basis,
ρd results a convex sum of projections on separable pure
states and therefore it is itself separable. In conclusion,
ρ is entangled if and only if its “off-diagonal” part η is
nonvanishing. �

Another very useful entanglement criteria involves the
operation of partial transposition [37,38]: A state ρ for which
the partially transposed density matrix ρ̃ is no longer positive
is surely entangled. This lack of positivity can be quantified
by the so-called negativity [60,61]:

N (ρ) = 1
2 (Tr[

√
ρ̃†ρ̃] − Tr[ρ]), (27)

which is nonvanishing only in the presence of a nonpositive ρ̃.
In the case of the (1,M − 1) bipartition considered above,

the partial transposition operation applied to the first partition
gives results that are completely equivalent to the ones obtained
in Proposition 2. Indeed, explicit computation shows that the
negativity of the state in (23) is nonvanishing if and only if at
least one of the off-diagonal components ρkσ,(1−k)τ , k = 0,1,
are nonzero.

Although not exhaustive, the partial transposition criterion
results more powerful than the one based on Corollary 1,
allowing a complete characterization of the structure of
entangled N -fermion states.

Proposition 3. A generic (m,M − m)-mode bipartite state
(22) is entangled if and only if it cannot be cast in the following
block diagonal form:

ρ =
N+∑

k=N−

pk ρk,

N+∑
k=N−

pk = 1, Tr[ρk] = 1, (28)

with

ρk =
∑

σ,σ ′,τ,τ ′
ρkσσ ′,kττ ′ |k,σ ; N − k,σ ′〉〈k,τ ; N − k,τ ′|,

∑
σ,σ ′

ρkσσ ′,kσσ ′ = 1, (29)

(i.e., at least one of its nondiagonal coefficients ρkσσ ′,lτ τ ′ , k �= l,
is nonvanishing), or, if it can, at least one of its diagonal blocks
ρk is nonseparable.12

Proof. Assume first that the state ρ cannot be written
in block diagonal form; using techniques similar to the one
adopted in dealing with boson systems [33], one can show that
it is not left positive by the operation of partial transposition
and therefore it is entangled. Next, take ρ in block diagonal
form as in (28) and (29) above. If all its blocks ρk are separable,
then clearly ρ itself results separable. Then, assume that at
least one of the diagonal blocks is entangled. Mixing it with
the remaining blocks as in (28) will not spoil its entanglement

12For each block ρk , separability is understood with reference to the
isomorphic structureCDk ⊗ CD′

N−k mentioned before (see Remark 3).
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since all blocks ρk have support on orthogonal spaces; as a
consequence, the state ρ results itself nonseparable. �

Using this result, one can now study characteristic proper-
ties and geometry of the space F of N -fermion states.

The first question that naturally arises concerns the strength
of the entanglement content of a fermion state ρ against
mixing with other states. This is measured by the so-called
“robustness of entanglement” R(ρ) [39,40,61,62]: It is the
smallest, non-negative value the parameter t can take so that
the (un-normalized) combination ρ + tρsep is separable, where
ρsep span all separable fermion states.

Proposition 4. The robustness of entanglement of a generic
(m,M − m)-mode bipartite N -fermion state ρ is given by

R(ρ) =
N∑

k=0

pk R(ρk), (30)

for states that are in block diagonal form as in (28) and (29),
while it is infinitely large otherwise.

The proof is very similar to the one given in [34] for bosonic
states, so that it will not be repeated here. Nevertheless, it
is worth stressing that, as in the case of bosons, fermion
entanglement is in general much more robust than the one
found in systems of distinguishable particles. Indeed, recalling
the previous Proposition 3, one has that separable N -fermion
states must necessarily be in block diagonal form. If the state
ρ is not in this form, it can never be made block diagonal
by mixing it with any separable one; therefore, in this case,
the combination ρ + t ρsep will never be separable, unless t

is infinitely large, giving infinite robustness to the entangled
state ρ.

A similar argument allows one to conclude that the
structure of the space S of separable fermion states is rather
special: There always exist small perturbations of separable,
necessarily block diagonal states that make them not block
diagonal, hence entangled. This result should be compared to
the one valid in the case of distinguishable particles, where
instead almost all separable states remain separable under
sufficiently small arbitrary perturbations [63,64].

Among the separable N -fermion states, the totally mixed
one,

ρmix = 1

D

N+∑
k=N−

∑
σ,σ ′

|k,σ ; N − k,σ ′〉〈k,σ ; N − k,σ ′|, (31)

stands out because of its special properties. First of all, it
lays on the border of the space S of separable states, since
in its vicinity one can always find nonseparable states of the
form ρmix + ε ρent, ε > 0, with ρent any entangled state not in
block-diagonal form.13 Furthermore, ρmix is the only state that
remains separable for any choice of bipartition. Indeed, for any
state ρsep �= ρmix, separable in a given M-mode bipartition, it is
possible to find a unitary Bogolubov transformation, defining
a new M-mode bipartition, that maps it into an entangled one
[34]. Only the state proportional to the unit matrix remains
unchanged under any unitary transformation.

13On the contrary, recall that in the case of distinguishable particles,
ρmix always lies in the interior of S [60,63].

These results allows a rather precise description of the
geometrical structure of the space F of N -fermion states.
As discussed above, by fixing a bipartition one selects the
set S of separable states, which forms a subspace of the
convex spaceF . Changing the bipartition through a Bogolubov
transformation produces a new separable subspace, having in
general only one point in common with the starting one, ρmix.
Therefore, the global geometrical structure of the state space
F presents a sort of starlike shape formed by the various
separable bipartition subspaces, all sharing just one point, the
totally mixed state.

As a final comment, notice that all above results can be
generalized to the case of systems where the total number
of particles is not fixed, but commutes with all physical
observables.14 In such a situation, a general density matrix
ρ can be written as an incoherent mixture of states ρN with
fixed number N of fermions:

ρ =
∑
N

λNρN, λN � 0,
∑
N

λN = 1. (32)

The state ρ is a convex combination of matrices ρN having
support on orthogonal spaces, and therefore all previous
arguments and results hold true for each component ρN .

IV. APPLICATIONS TO QUANTUM METROLOGY

One of the most promising developments in quantum
technology, i.e., the application of quantum physics to practical
technological realizations, is the possibility of achieving
measurements of physical parameters with unprecedented
accuracy.15 In a generic detection scheme, the parameter θ

to be measured, typically a phase, is encoded into a state
transformation occurring inside a measurement apparatus,
generally an interferometric device. In the most common case
of linear setups, this transformation can be modeled by a
unitary mapping, ρ → ρθ , sending the initial state ρ into the
final parameter-dependent outcome state:

ρθ = eiθJ ρ e−iθJ , (33)

where J is the devices-dependent, θ -independent operator
generating the state transformation. The task of quantum
metrology is to determine the ultimate bounds on the accuracy
with which the parameter θ can be obtained through a
measurement of ρθ and to study how these bounds scale with
the available resources.

General quantum estimation theory allows a precise deter-
mination of the accuracy δθ with which the phase θ can be
obtained in a measurement involving the operator J and the
initial state ρ; one finds that δθ is limited by the following

14In other terms, we are in the presence of a superselection rule
[65]. For a similar reason, i.e., the conservation of the fermion
“charge,” and in contrast with the boson case, fermion systems with
a fluctuating number of particles result unphysical [66,67], so that
density matrices that are coherent mixtures of states with different N

are not admissible.
15The literature on the subject is vast; for a partial list, see [68–92]

and references therein.
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inequality [93–96]:

δθ � 1√
F [ρ,J ]

, (34)

where the quantity F [ρ,J ] is the so-called “quantum Fisher
information.” It can be defined through the symmetric loga-
rithmic derivative L, ∂θρθ |θ=0 = (ρ L + Lρ)/2 = −i [J, ρ],
as

F [ρ,J ] := tr[ρ L2]. (35)

Given a spectral decomposition of the input state, ρ =∑
j rj |rj 〉〈rj |, one explicitly finds

F [ρ,J ] = 2
∑

i,j ; ri+rj �=0

(ri − rj )2

ri + rj

|〈ri |J |rj 〉|2, (36)

which explicitly shows that F [ρ,J ] is independent from the
parameter θ to be estimated. Furthermore, the quantum Fisher
information is a continuous, convex function of the state ρ,
and in general satisfies the inequality [97,98],

F [ρ,J ] � 4 �2
ρJ, (37)

where �2
ρJ ≡ [〈J 2 〉 − 〈J 〉2] is the variance of the operator J

in the state ρ, the equality holding only for pure initial states.
As a consequence of (34), better resolution in θ estimation

corresponds to a larger quantum Fisher information. Therefore,
once the measuring apparatus is given, i.e., the operator J

is fixed, one can optimize the precision with which θ is
determined by choosing an initial state ρ that maximizes
F [ρ,J ].

In the case of devices using a system of N distinguishable
particles, it has been shown that for any separable state ρsep

the quantum Fisher information is bounded by N [88]:

F [ρsep,J ] � N. (38)

This means that by feeding the measuring apparatus with
separable initial states, the best achievable precision in the
determination of the phase shift θ is bounded in this case by
the so-called shot-noise limit:

δθ � 1√
N

. (39)

This is also the best result attainable using classical (i.e.,
nonquantum) devices: The accuracy in the estimation of θ

scales at most with the inverse square root of the number
of available resources. Instead, quantum equipped metrology
allows one to go below the shot-noise limit and in principle
construct a new generation of sensors reaching unprecedented
precision. And indeed, various detection protocols and input
states ρ have been proposed, all able to yield sub-shot-noise
sensitivities. Notice that, in view of the inequality (38), these
input states need to be entangled.

This conclusion holds when the metrological devices used
to estimate the physical parameter θ are based on systems
of distinguishable particles. When dealing with identical
particles, the above statement is not strictly correct and needs
to be rephrased. Indeed, in the case of bosonic systems it has
been explicitly shown that sub-shot-noise sensitivities may be
obtained also via a nonlocal operation acting on separable input
states [30]. In other terms, although some sort of nonlocality

is needed in order to go below the shot-noise limit, this can
be provided by the measuring apparatus itself and not by the
input state ρ, that indeed can be separable. This result has
clearly direct experimental relevance, since the preparation of
the suitable entangled input state may require in practice a
large amount of resources.

When dealing with systems of N fermions, the situation
may appear more problematic, since, due to the exclusion
principle, a single mode can accommodate at most one
fermion; therefore, the scaling with N of the sensitivity
in the estimation of the parameter θ may worsen when
compared to the boson case employing similar resources. In
the case of bosons, a two-mode apparatus, e.g., a double-well
interferometer, filled with N particles is sufficient to reach sub-
shot-noise sensitivities. Instead, with fermions, a multimode
interferometer [99–104] is needed in order to reach comparable
sensitivities.

As an example, consider a system of N fermions in M

modes, with M even, and let us fix the balanced bipartition
(M/2,M/2), in which each of the two parts contain m = M/2
modes, taking for simplicity N � m. As generator of the
unitary transformation ρ → ρθ inside the measuring apparatus
let us take the following operator:

J (1)
x = 1

2

m∑
k=1

ωk (a†
kam+k + a

†
m+kak), (40)

where ωk is a given spectral function, e.g., ωk � kp, with p

integer. The apparatus implementing the above state trans-
formation is clearly nonlocal with respect to the chosen
bipartition: eiθJ

(1)
x cannot be written as the product A1A2 of

two components made of operators referring only to the first
and second partition, respectively. It represents a generalized,
multimode beam splitter, and the whole measuring device
behaves as a multimode interferometer.

Let us feed the interferometer with a pure initial state,
ρ = |ψ〉〈ψ |,
|ψ〉 = | 1, . . . ,1︸ ︷︷ ︸

N

, 0, . . . ,0︸ ︷︷ ︸
m−N

; 0, . . . ,0︸ ︷︷ ︸
m

〉 = a
†
1a

†
2 · · · a†

N |0〉, (41)

where the fermions occupying the first N modes of the first
partition; |ψ〉 is a Fock state and therefore it is separable, as
discussed in the previous section. The quantum Fisher infor-
mation can be easily computed since it is now proportional to
the variance of J (1)

x :

F
[
ρ,J (1)

x

] = 4�2
ρJ

(1)
x =

N∑
k=1

ω2
k . (42)

Unless ωk is k independent, F [ρ,J (1)
x ] is larger than N and

therefore the interferometric apparatus can beat the shot-noise
limit in θ estimation, even starting with a separable state.
Actually, for ωk � kp, one gets F [ρ,J (1)

x ] � O(N2p+1).
Remark 4. (i) Notice that, in this case, it is not the

entanglement of the initial state that helps overcoming the
shot-noise limit in the phase estimation accuracy; rather, it
is the nonlocal character of the rotations operated by the
apparatus on an initially separable state that allows δθ to be
smaller than 1/

√
N .
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(ii) In the case of systems made of N distinguishable
particles, for a collective operator J = ∑N

i=1 J (i), where
J (i) are single-particle SU(2) rotation generators, and any
state ρ, the following general bound on the quantum Fisher
information holds:

F [ρ,J ] � N2, (43)

providing an absolute limit for the accuracy on the parameter
estimation: δθ � 1/N . When the equality holds, one reaches
the so-called Heisenberg limit, the ultimate sensitivity allowed
by quantum metrology in this case. Instead, in the scenario
described above, one can reach sub-Heisenberg sensitivities.
This possibility has been discussed before, using, however,
nonlinear metrology [105–112], i.e., for interferometric ap-
parata that cannot be described in terms of single-particle
rotations. Furthermore, note that the result (42) and the ability
to go beyond the Heisenberg limit is not a “geometrical”
phenomena attributable to a phase accumulation even on empty
modes [99]; rather, it is a genuine quantum effect, that scales
as a function of the number of fermions, the resource available
in the measure.

(iii) When dealing with boson systems, an interferometer
based on standard beam splitters suffices in order to reach
sub-shot-noise accuracy in parameter estimation. In such case
the relevant operator is Jx , obtained from (40) by removing the
spectral function ωk; it belongs to an su(2) algebra. Similarly,
also the generalized beam splitter operator (40) is part of a Lie
algebra, although infinite dimensional. Indeed, let us define
the three operators:

J (n)
x = 1

2

m∑
k=1

(ωk)n (a†
kam+k + a

†
m+kak), (44)

J (n)
y = 1

2i

m∑
k=1

(ωk)n (a†
kam+k − a

†
m+kak), (45)

J (n)
z = 1

2

m∑
k=1

(ωk)n (a†
kak − a

†
m+kak+m). (46)

One easily checks that they satisfy the following commutation
relations:[
J

(n)
i ,J

(m)
j

] = iεijkJ
(n+m)
k , i,j,k = x,y,z, n,m ∈ Z, (47)

defining the su(2) loop algebra (i.e., a centerless Kac-Moody
algebra) [113,114]. �

In general, some sort of quantum nonlocality is nevertheless
needed in order attain sub-shot-noise accuracy in phase
estimation. This can be most simply appreciated by changing
the M-mode bipartition of our system of N fermions. Let
us introduce new creation and annihilation operators b

†
k , bk

through the following Bogolubov transformations:

bk = ak + am+k√
2

, bm+k = ak − am+k√
2

, k = 1,2, . . . ,m,

(48)

together with the Hermitian conjugate ones; the new M modes
still obey canonical anticommutation relations: {bk, b

†
l } = δkl .

In this new representation, the operator J (1)
x in (40) gets

transformed into J (1)
z ,

J (1)
x → J (1)

z = 1

2

m∑
k=1

ωk (b†kbk − b
†
m+kbm+k). (49)

Therefore, choosing again a balanced bipartition, (M/2,M/2),
in which half of the bk modes are in the first component,
while the remaining half are in the second one, the unitary
transformation ρ → ρθ inside the apparatus is now represented
by a local operator,

eiθ J
(1)
z = eiθ

∑
k ωk b

†
kbk/2 e−iθ

∑
k ωk b

†
m+kbm+k/2. (50)

However, the initial state |ψ〉 is no longer separable in the new
bipartition, since, in the new language, it results in a linear
combination of 2N different Fock states:

|ψ〉 =
(

b
†
1 + b

†
m+1√

2

) (
b
†
2 + b

†
m+2√

2

)
· · ·

(
b
†
N + b

†
N+1√

2

)
|0〉.

(51)

Despite these changes, the value of the quantum Fisher
information for the given initial state and observable is
unchanged and still expressed by (42), since it does not depend
on the representation used to compute it. Therefore, if one is
able to build an interferometric setup that can be described in
terms of the modes b

†
k , bk instead of the original modes a

†
k , ak ,

then the accuracy δθ with which the phase θ may be determined
can still be better than the shot-noise limit. In such a case, the
improvement in sensitivity is due to the entanglement of the
initial state and not to the nonlocality of the transformation
that takes place inside the apparatus.

As a further remark, notice that in practical applications,
instead of using a generalized rotation through operators of
the form (44)–(46), it might be more convenient to implement
parameter estimation via the dynamical state transformation
generated by a Hamiltonian operator. A generic quadratic
Hamiltonian for our N -fermion system can be written in the
form,

H =
M∑

k=1

�k a
†
k ak, (52)

with �k a given energy dispersion relation. In most situa-
tions, the dependence on the parameter θ to be estimated
arises as a proportionality coupling constant multiplying the
Hamiltonian, Hθ ≡ θH ; in this case, the finite-time dynamical
transformation occurring in the system is described by e−itHθ .
This operator is clearly local in any (m,M − m) bipartition,
since it is the product of M transformations in the various
modes: e−itHθ = ∏

k e−it θ �k a
†
kak . For an entangled initial state

of the form,16

|�〉 = 1√
2

(|N ; 0〉 + |0; N〉), (53)

where the two states |N ; 0〉, |0; N〉 represents the situation in
which the N fermions are all in the first, second component,

16This state is the multimode, N -fermion generalization of the state
(6) considered in Sec. II.
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respectively, of a generic (m,M − m) bipartition, the quantum
Fisher information can be readily computed:

F [|�〉〈�|,H ] =
(

N∑
k=1

(�m+k − �k)

)2

. (54)

In the case of a linear dispersion relation, �k ∼ k, it reduces
to the simple form F [|�〉〈�|,H ] = m2 N2, providing a sub-
Heisenberg-like sensitivity in the estimation of the quantity
tθ , hence of the parameter θ , once the evolution time t is
fixed. Notice that in F the factor N2 is a genuine quantum
effect, while the dependence on the number of modes is a
“geometrical” effect due to phase accumulation among all,
even empty, modes [cf. Remark 4 (ii)].

V. OUTLOOK

One of the most important tasks in modern quantum physics
is the characterization and quantification of nonclassical
correlations, as they allow on one hand the implementation
of classically unavailable protocols in information theory;
on the other hand the realization of quantum devices and
sensors outperforming the present available ones. In these
developments, thanks to the recent advances in quantum
optics and ultracold and superconducting physics, many-
body systems composed by identical particles are playing a
prominent role.

For such systems though, the usually adopted definitions
of separability and quantum correlation are no longer viable
since, due to the indistinguishability of the microscopic
constituents, the natural particle Hilbert space decomposition
on which these concepts are based is lost. One should then
resort to a more general definition of locality, no longer
given a priori once for all, rather, based on a choice of a
bipartition (or more in general multipartition) of the operator
algebra of “observables” of the system. In this framework,
a state is declared separable if its expectation value on all
local operators can be written in a product form, i.e., as a
convex combination of products of local expectations. This
new approach to quantum nonlocality is valid in all situations
and, in particular, it reduces to the standard one when applied
to systems of distinguishable particles.

The physical, characteristic properties of this new, general-
ized definition of separability, previously analyzed in a bosonic
setting, has been studied here in the case of fermion systems.
We have focused on many-body systems composed of a fixed
number N of fermions that can occupy a given set of different
states or modes. We stress that this model represents a very
general paradigm, able to describe the behavior of various
different situations in atomic and condensed matter physics,
as those occurring in quantum phase transitions and matter
interference phenomena.

The treatment of fermion systems requires more care than
in the boson case because of the anticommutative character of
the basic fermion algebra. As a result, in contrast to the bosonic
case, the notion of locality for fermion systems is not directly
related with that of commutativity; nevertheless, the intuition
that entanglement should be connected to the presence of
nonclassical correlations revealed through averages of local
operators turns out to be correct also in this case. As a
byproduct, a new entanglement criterion for fermion states
is obtained. Using this criterion together with the partial
transposition one, a complete classification of entangled N -
fermion states has been explicitly given.

Similarly to what happens with N -boson states, the entan-
glement contained in N -fermion states turns out to be much
more stable against mixing with other states than the one found
in systems of distinguishable particles; this makes many-body
systems made of identical constituents even more attractive
for use in quantum technology applications.

In this respect, quantum metrology is the natural context in
which systems of N fermions can be employed to construct
quantum devices that outperform classical ones. Indeed, as
discussed in the last section, multimode fermion quantum
interferometers can be used to improve the accuracy in
parameter estimation much beyond the so-called, classical,
shot-noise limit, provided some sort of quantum nonlocality
is present in the measuring process. However, this required
nonlocality need not be encoded in the initial N -fermion state:
It can be provided by the interferometric apparatus itself, which
at this point can be fed with an initial separable state. As
a result, no preliminary, resource-consuming, entanglement
operation (like “squeezing”) on the state entering the apparatus
is needed in order to get sub-shot-noise accuracies in parameter
estimation. This fact clearly opens new perspectives in the
realization of many-body-based quantum sensors capable
of outperforming any available apparatus dedicated to the
measurement of ultraweak effects.

Finally, let us briefly consider the case in which the
fermionic system is describable in terms of a set of Majorana,
Hermitian operators ci , i = 1,2, . . . ,2M , obeying the alge-
braic relations: {ci,cj } = 2δij . Clearly, also in this case the
set of all polynomials in the operators ci forms an algebra
C, to which the system observables belong. The adopted
notions of algebraic bipartition, locality, and separability (see
Definitions 1, 2, and 3) are very general and can be applied
also to C, so that most of the general results obtained in the
case of complex fermion algebras hold also for the Hermitian
ones. Nevertheless, the system Hilbert spaces differ in the two
cases; in particular, the Majorana algebra does not admit a
Fock representation. As a consequence, the detailed structure
of entangled Majorana states differs from that reported in
Sec. III, deserving a separate, expanded discussion that will
be reported elsewhere.
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[90] G. Tóth, C. Knapp, O. Gühne, and H. J. Briegel, Phys. Rev. A

79, 042334 (2009).
[91] M. Kacprowicz et al., Nat. Photon. 4, 357 (2010).
[92] V. Giovannetti, S. Lloyd, and L. Maccone, Nat. Photon. 5, 222

(2011).
[93] C. W. Helstrom, Quantum Detection and Estimation Theory

(Academic Press, New York, 1976).

[94] A. S. Holevo, Probabilistic and Statistical Aspect of Quantum
Theory (North-Holland, Amsterdam, 1982).

[95] D. Petz, Quantum Information Theory and Quantum Statistics
(Springer-Verlag, Berlin, 2008).

[96] M. G. A. Paris, Int. J. Quant. Inf. 7, 125 (2009).
[97] S. Luo, Lett. Math. Phys. 53, 243 (2000).
[98] S. L. Braunstein, C. M. Caves, and G. J. Milburn, Ann. Phys.

247, 135 (1996).
[99] G. M. D’Ariano and M. G. A. Paris, Phys. Rev. A 55, 2267

(1997).
[100] G. M. D’Ariano, C. Macchiavello, and M. F. Sacchi,

Phys. Lett. A 248, 103 (1998).
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