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Anonymous ranking is a kind of privacy-preserving ranking whereby each of the involved participants can
correctly and anonymously get the rankings of his data. It can be utilized to solve many practical problems,
such as anonymously ranking the students’ exam scores. We investigate the issue of how quantum mechanics
can be of use in maintaining the anonymity of the participants in multiparty ranking and present a series of
quantum anonymous multiparty, multidata ranking protocols. In each of these protocols, a participant can get the
correct rankings of his data and nobody else can match the identity to his data. Furthermore, the security of these
protocols with respect to different kinds of attacks is proved.

DOI: 10.1103/PhysRevA.89.032325 PACS number(s): 03.67.Dd, 03.65.Ud

I. INTRODUCTION

With the development of technology, the proliferation of
the internet has triggered enormous demand for multiparty
computation, in which people jointly conduct computation
tasks based on the private inputs they each provide. In actual
situations, these computations usually occur among partially
trusted parties or even among competitors. Therefore, privacy
naturally becomes a major concern of the people involved
in these computations. The computation, which enables
n (n � 2) participants to jointly compute a function based
on their private inputs while at the same time keeping these
inputs private, is referred to as secure multiparty computation
(SMC) [1].

SMC is one of the most important subfields of cryptog-
raphy and consists of many real-life applications such as
Yao’s millionaire problem [1], private database queries [2],
anonymous voting (election) [3], and secret sharing [4]. Thus
far, the privacy of the participants’ inputs in all the practical
SMC systems (e.g., electronic voting system) has relied on
the public-key cryptography whose security is guaranteed by
the assumptions of computational complexity. However, with
the rapid development of quantum algorithms and quantum
computing [5,6], these assumptions face more and more aus-
tere challenges. To solve this problem, many research groups
have focused their attention on designing SMC protocols,
which pursue information-theoretical security, based on the
principles of quantum mechanics [7–22], including quan-
tum secret sharing [7–9], quantum private database queries
[10–13], quantum anonymous voting or surveying [14–17],
and the quantum millionaire problem [18–22].

It is known that ranking is a fundamental problem in
computer science and is one of the most common operations
in data processing. In this paper, ranking refers to sequencing
a set of non-negative integers with affiliation according to
their numerical size. Concretely, the data set of the ranking is
supposed to be a set of non-negative integers, each of which
belongs to a specific participant. At the end of the ranking, each
participant should know the positions of his numbers in the
ascending (or descending) sequence of the ranked numbers. To
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achieve the ranking, the participants can make use of different
strategies, such as comparing the numbers with each other.
For instance, if n students desire to rank their physical test
scores, they can make pairwise comparisons of their scores.
To be specific, if a student has compared his score with each
of the other n − 1 students individually, he will know how
many people score higher and lower than himself. Then he can
get the position of his score in the ascending (or descending)
ranking sequence of all the n scores. However, with the trend of
the interactive lifestyle over internet, people are paying more
and more attention to the protection of privacy. In this context,
secure multiparty, multidata ranking (SMMR) [23–25] has
become one of the promising approaches in SMC. Suppose
there are n participants, P1, P2, . . . , and Pn. Participant Pi

has a data set DPi
= {mi

1,m
i
2, . . . ,m

i
ki
} for 1 � i � n, where

DPi
⊂ {1,2, . . . ,N} and N is a natural number, which is larger

than the maximum element in D = DP1 ∪ DP2 ∪ · · · ∪ DPn
.

The purpose of SMMR is to rank all the data in D following
the rules given below.

(R1) Correctness. Every participant should correctly get
the rankings of his data, i.e., the positions of his data in
the ascending (or descending) ranking sequence of all the
data in D.

(R2) Anonymity. For each of the participants, nobody else
can obtain any useful information about the rankings of his
data.

(R3) Secrecy. The values of each participant’s data should
be kept secret from all others.

It should be pointed out that if n = 2, no secure SMMR
protocol exists since one participant can directly get the
rankings of the other participant’s data according to the
rankings of his own data. Hence, the number of the participants
involved in the ranking protocols in this paper is supposed to be
larger than 2. When each of the n participants only has a single
input, i.e., k1 = k2 = · · · = kn = 1, this ranking is referred to
as secure multiparty, single-data ranking (SMSR). Obviously,
SMSR is only a special case of SMMR.

Up to now, all the existing SMMR (or SMSR) protocols
[23–25] are based on the computational complexity assump-
tions, which indicate that they cannot achieve information-
theoretical security. More importantly, most of them are pro-
posed in the semihonest model in which all the participants are
assumed to be honest but curious [23–25]. However, in real life,
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ranking usually occurs among mutually untrusted participants;
hence, the protocols designed under the semihonest model are
impractical. For this reason, we wonder whether there exists
a kind of privacy-preserving ranking that cannot only achieve
information-theoretical security but also be of use in practical
situations. Before answering this question, we should realize
that the reason why most of the existing SMMR protocols
are designed in the semihonest model is that it is difficult to
design a SMMR protocol, which could simultaneously satisfy
(R1)–(R3) without adding any additional assumption on the
participants. Consequently, assuming all the participants to be
semihonest was considered as a compromise in most of the
previous protocols [23–25].

Actually, in many real-life situations, it is more desirable
that the identity of the person who owns the data, rather than
the data itself, be kept secret. In other words, anonymity of
the participants in multiparty ranking is usually much more
important than secrecy of the data in reality. In many practical
cases, the primary concerns of the participants are correctness
and anonymity. Hence, the participants do not care whether
the values of the ranked data are public as long as no one
can match the data with the identity of its owner. In some
cases, the participants may even want the values of the ranked
data to be public and hence they get the distribution of all the
ranked data, which may be useful to them. For example, exam
scores were not considered as students’ private information
at an early age. Therefore, each of the students in a group
can get his or her ranking by disclosing his or her score
publicly. However, in order to protect the students’ self-esteem
nowadays, it has become an international practice that the
relationship between a student and his or her score should
be kept secret. Thus, how a certain number of students can
respectively get their rankings correctly under the premise
of preserving anonymity has become an important problem.
Another example arises when several competing companies
within the same field want to make a ranking of the wages of
all their employees in order to make each of the companies
learn the level of its treatment among all these companies.
However, no company wants to leak the relationship between
it and the wages of its employees under this circumstance.
Hence, the problem is that how each of the companies could
correctly get the rankings of its employees’ wages under the
premise of preserving anonymity. Of course, there are still
many examples like this in daily life, such as ranking the sales
volume of a kind of product in several competing companies.
Here we do not describe them in detail.

From the above examples, we can find that, in the real-
life scenarios, a participant involved in privacy-preserving
ranking usually does not care whether the values of his
data can be known by others provided that nobody else
could match the identity of him with his data. The primary
concern of a participant is whether he can correctly and
anonymously get the rankings of his data. As the anonymity
of the participants occupies such an important position in
privacy-preserving ranking in daily life, we devote ourselves to
presenting a new quantum cryptographic primitive, the quan-
tum anonymous multiparty, multidata ranking (QAMMR),
which cannot only achieve information-theoretical security
but also be consistent with the practical situations. The
features that we want the QAMMR protocols to have are as

follows.
(P1) Correctness. Each participant should correctly get the

rankings of his data.
(P2) Anonymity. For each of the participants, nobody else

can obtain any useful information about the rankings of his
data.

(F3) Untraceability. Nobody can match the identity of a
participant with his data except the participant himself.

(F4) Security. The protocol is secure against the quantum
adversary whose actions are only limited by the laws of
quantum mechanics.

Before proposing our protocols, we first introduce the basic
idea of them. Concretely, suppose D = DP1 ∪ DP2 ∪ · · · ∪
DPn

= {y1,y2, . . . ,y|D|}, where y1 < y2 < · · · < y|D|, and |D|
is the number of the elements contained in D. After the joint
computation, if each of the n participants gets the value of
T yi = |Dyi

P1
| + |Dyi

P2
| + · · · + |Dyi

Pn
| for 1 � i � |D|, without

leaking the information of which of the ranked data belongs
to him (where |Dyi

Pj
| represents the number of yi contained

in DPj
, 1 � j � n), they can respectively get the rankings

of their data in ascending order (e.g., the ranking of the data
yi is T y1 + T y2 + · · · + T yi−1 + 1). Therefore, the task of the
following part of this paper is to introduce several QAMMR
protocols based on this idea.

The rest of this paper is organized as follows. In Sec. II,
we present a protocol to achieve QAMMR in the semihonest
model. Then two more practical QAMMR protocols, in which
the participants need not be semihonest, are proposed in
Sec. III. As in most of the previous quantum cryptographic
protocols [7–21], the classical communication channels are
assumed to be authenticated in this paper. In addition, the
technique of “block transmission”, which was proposed first
by Long et al. [26], is employed to ensure the security of
state transmission in our protocols. In block transmission, the
quantum information carriers are ordered and transmitted in
blocks, and the eavesdropping detection is also executed on
the blocks. In Sec. IV, we demonstrate that all the presented
protocols are secure. Then some useful discussions are given
in Sec. V, and our conclusions are in Sec. VI.

II. QAMMR PROTOCOL IN THE SEMIHONEST MODEL

Herein we propose a QAMMR protocol in which n (n � 3)
participants are involved. The participant Pi has a data set
DPi

= {mi
1,m

i
2, . . . ,m

i
ki
}, where DPi

⊂ {1,2, . . . ,N}, 1 � i �
n. That is to say, each participant may possess more than
one datum, and different participants may own the same data.
Similar to most of the classical SMMR protocols [23–25], all
the participants in this protocol are assumed to be semihonest
(honest but curious). That is, the participants always follow
the procedure of the protocol, but they might try to steal the
information from the record of the intermediate computations.
Although this protocol is under semihonest assumption as most
of the classical SMMR protocols, it is more secure than the
classical ones since the security of it is guaranteed by laws
of quantum mechanics. To achieve QAMMR by this protocol,
a kind of two-particle d-level Bell state (d �

∑n
i=1 ki + 1)

is utilized [14,17,18]. One of the n participants should be
responsible for preparing and measuring the entangled states.
For simplicity, we assign this task to P1. The specific steps of
the protocol can be described as below (see also Fig. 1).
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FIG. 1. Illustration of the proposed QAMMR protocol in the
semihonest model, where CE is the eavesdropping check and Ui

represents the encoding operation performed by Pi . The classical
communications are omitted.

(i) P1 prepares an ordered sequence of N two-qudit
entangled pairs [|�〉1,|�〉2, . . . ,|�〉N ], where

|�〉i = 1√
d

d−1∑
j=0

|j 〉Hi
|j 〉Ti

, 1 � i � N. (1)

Here the subscripts H and T represent two different qudits
in one entangled pair and the subscript i (i = 1,2,3, . . . ,N )
indicates the order of the entangled pairs in this sequence.
P1 takes one qudit from each pair to form two ordered
qudit sequences: [H1,H2, . . . ,HN ] (denoted as SH ) and
[T1,T2, . . . ,TN ] (denoted as ST ).

(ii) P1 encodes all his data (the data in DP1 ) on the
corresponding qudits in ST . Concretely, he performs the
unitary operation U on the m1

i th qudit in ST , i = 1,2, . . . ,k1,
where

U =
d−1∑
j=0

exp(iθj )|j 〉〈j |, θ = 2π

d
. (2)

The effect of the operation U on state |�〉 can be illustrated as

I x ⊗ Ux |�〉 = I ⊗ Ux |�〉

= 1√
d

d−1∑
j=0

exp(iθjx)|j 〉H |j 〉T , (3)

where Ux represents performing the operation U x times and
I is the identity operation on the d-dimensional Hilbert space.
After these operations, we denote the new sequence as S1

T =
[T 1

1 ,T 1
2 , . . . ,T 1

N ]. Similar to [27], P1 needs to prepare another
δ states in |�〉 for checking eavesdropping. Specifically, he
inserts the first qudit of each of these states randomly in S1

T

and preserves the remaining qudits (the second qudit of each of
the states). After that, P1 sends all the N + δ qudits (denoted
as S1′

T ) to P2.
(iii) After the reception of S1′

T , P2 requires P1 to tell him the
positions of the inserted decoy qudits. For each of the decoy
qudits, P2 measures it randomly in B1 basis or B2 basis, where

B1 = {|j 〉}d−1
j=0,

(4)

B2 =
{

1√
d

d−1∑
k=0

exp(iθkj )|k〉
}d−1

j=0

.

Then P2 tells Alice which measuring basis he has chosen
for each of the qudits and the corresponding outcome of his
measurement. P1 utilizes the same measuring basis as P2 to
measure each of the corresponding qudits in his hands and
analyzes the security with P2. If there exists no eavesdropping
in the quantum channel, their outcomes should satisfy a
deterministic correlation; i.e., their measurement outcomes
should be the same (the sum of their measurement outcomes
should be 0 modulo d) provided that B1 basis (B2 basis)
is utilized. If any error exists, they abandon the protocol;
otherwise, P2 has securely received S1

T . Then P2 encodes the
data in DP2 on the corresponding qudits in S1

T . Concretely,
he performs the unitary operation U on the m2

i th qudit in S1
T ,

i = 1,2, . . . ,k2. After these operations, we denote the new
sequence as S2

T = [T 2
1 ,T 2

2 , . . . ,T 2
N ]. Before sending S2

T to the
next participant, P2 also makes use of δ states in |�〉 to ensure
the secure transmission of S2

T , similar to what P1 does in step
(ii). Afterwards, he transmits all the N + δ qudits (denoted as
S2′

T ) to P3.
(iv) The rest of the n participants execute the procedures

just like what the first two participants do one after another.
Finally, the last participant Pn sends all the processed qudits
(i.e., Sn′

T ) back to P1.
(v) Once receiving the sequence Sn′

T sent from Pn, P1

and Pn check eavesdropping with the decoy qudits. If no
eavesdropping exists, P1 has securely received Sn

T . Then he
measures each of the entangled pairs in his hand, i.e., (Hi , T n

i )
for 1 � i � N , with the operator M̂ , where

M̂ =
d−1∑
t=0

t |Mt 〉〈Mt |,

|Mt 〉 =
d−1∑
m=0

exp(iθmt)|m〉|m〉, (5)

〈Ms |Mt 〉 = δst .

The measurement outcome of the ith pair in his possession is
recorded as T i . Finally, he publicly announces all the values
T i for 1 � i � N . According to the announced information,
each of the n participants can get the rankings of his data
anonymously. For example, Pi will know that the ranking of
his data mi

j (1 � j � ki) is T 1 + T 2 + · · · + T mi
j −1 + 1, and

nobody else knows that mi
j belongs to him.

In this QAMMR protocol, before P1 prepares the entangled
states, each of the other n − 1 participants should publicly
announce the number of his data, with which P1 could
determine the value of d. Besides, the participants in this
protocol should set up the wavelength filter and the photon
number splitter to prevent the Trojan-horse attack and the
invisible-photon attack [28,29]. Obviously, this protocol can
be employed to solve the two practical issues, i.e., ranking
the students’ exam scores and ranking of the wages of the
employees in different companies, mentioned in Sec. I.

III. THE MORE PRACTICAL QAMMR PROTOCOLS

Thus far, we have proposed a quantum protocol to achieve
anonymous multiparty ranking under the semihonest model.
However, the assumption that all the participants involved in
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this kind of ranking protocols should be semihonest, is not
reasonable since the participants are likely to be partially
trusted parties or even competitors. In real life, one or
more participants may want to get the rankings of another
participant’s data. Therefore, we desire to ease the restrictions
on the participants in order to design a QAMMR protocol,
which is more coincident with the actual situation.

A natural question which arises when designing a more
practical protocol is whether we can remove all the restrictions
on the participants, namely, whether there exists a secure
QAMMR protocol that sets no limitation on the behavior of
the participants. Unfortunately, it has been proved that any
two-party classical deterministic function cannot be securely
evaluated by using quantum means [30,31]. Of course, this
conclusion is also applicable to the QAMMR protocols since
these protocols can be viewed as two-party type. Take an
n-party protocol, for example. If we take a participant as one
party, then the remaining n − 1 participants can be viewed as
the other party if they cooperate with each other. Consequently,
no secure QAMMR protocol can be presented without adding
any additional assumption.

To achieve anonymous multiparty ranking with quantum
methods, an additional party (denoted as Server) whose role is
to help each of the participants anonymously get the rankings
of his data, is introduced to the following protocols. The Server
in our protocols is permitted to misbehave on his or her own
but conspire with none of the participants. However, he or she
is unable to match the identity of a participant with his data
through active and passive attacks. Under the circumstances,
the participants in our protocols no longer need limiting to be
semihonest. In other words, to get the desirable information,
a participant may not only misbehave on his own but also
cooperate with some of the other participants.

Moreover, all the parties (including Server and the par-
ticipants) in the protocols should be rational. Although the
dishonest parties may utilize different attacking strategies to
deduce the rankings of a participant’s data, they will not
disrupt the execution of the protocol by designed if they could
obtain no useful information about the rankings of a certain
participant. To be specific, each participant may provide fake
inputs in the execution of the protocol. If one participant
provides fake inputs during the executing of the protocol and
then tries to get the rankings of his data with the outcome of
the joint computation running with his fake inputs and other
participants’ true inputs, he will be the only one who can get
the correct rankings of his own data. Nevertheless, even if a
participant utilizes this strategy, he is unable to deduce the
rankings of another participant’s data. Obviously, it is the case
that if two or more participants utilizes this strategy, no partici-
pant will get the the correct rankings of his data. Unfortunately,
this situation is inevitable even when a trusted additional party
is introduced to the protocol. Consequently, we assume that
the first choice of a participant is to obtain the right rankings
of his data. Only when the success probability is nonzero
will he take the corresponding attacking strategies to obtain
information about the rankings of another participant’s data.

Herein, we present two practical QAMMR protocols under
the above assumptions. One is based on the basic idea of
multiparty quantum secret sharing (MQSS); the other is
based on the technique of quantum key distribution (QKD).

FIG. 2. Illustration of the more practical QSS-based QAMMR
protocol, where the classical communications are omitted. D1 and
D2 represent Detection 1 and Detection 2, respectively.

We also assume that n (n � 3) participants are involved in
both of the protocols. Participant Pi has a data set DPi

=
{mi

1,m
i
2, . . . ,m

i
ki
}, where DPi

⊂ {1,2, . . . ,N}, 1 � i � n.

A. The QSS-based QAMMR protocol

Inspired by the idea in Ref. [32], let us first introduce
a QAMMR protocol based on the d-level (n + 1)-qudit
Greenberger-Horne-Zeilinger (GHZ) states and the basic idea
of MQSS. Different from the boss in MQSS who is assumed
to be honest, the assumption of the Server in this protocol is
more reasonable since he or she may try to steal the rankings of
a participant’s data with different kinds of attacks by himself
or herself. Now, let us give an expatiation for this protocol as
below (see also Fig. 2).

(a) Server prepares an ordered sequence of N + δ1 + δ2

GHZ states [|�〉1,|�〉2, . . . ,|�〉N+δ1+δ2 ], where

|�〉i01···n = 1√
d

d−1∑
j=0

|j 〉i0|j 〉i1 · · · |j 〉in. (6)

Here the subscripts 0,1,2, . . . , and n represent n + 1 different
qudits in a GHZ state and the superscripts i indicate the order
of the GHZ states in this sequence, 1 � i � N + δ1 + δ2,
d �

∑n
i=1 ki + 1. Then he or she performs a d-mode quantum

discrete Fourier transform on each of the n + 1 qudits in
every GHZ state. The quantum discrete Fourier transform F
is a unitary transformation of vector space of d-dimensional
quantum systems that can be expressed in B1 basis as

F |j 〉 = 1√
d

d−1∑
k=0

exp

(
2πijk

d

)
|k〉. (7)

After these operations, the state |�〉 is transformed into the
form as

|�̂〉 = F ⊗ F ⊗ · · · ⊗ F |�〉

= 1√
d

d−1∑
j=0

F |j 〉0 ⊗ F |j 〉1 ⊗ · · · ⊗ F |j 〉n

= 1√
d

d−1∑
j=0

⎧⎨⎩
⎡⎣ 1√

d

d−1∑
k0=0

exp

(
2πijk0

d

)
|k0〉

⎤⎦ ⊗

032325-4



QUANTUM ANONYMOUS RANKING PHYSICAL REVIEW A 89, 032325 (2014)

· · · ⊗
⎡⎣ 1√

d

d−1∑
kn=0

exp

(
2πijkn

d

)
|kn〉

⎤⎦⎫⎬⎭
= d− 1

2

d−1∑
j=0

d− n+1
2

∑
k0,...,kn

exp

[
2πij

d
(k0+

· · · + kn)

]
|k0〉 ⊗ · · · ⊗ |kn〉

= d− n
2

∑
K≡0(mod d)

|k0〉|k1〉 · · · |kn〉, (8)

where K = k0 + k1 + · · · + kn. After that, Server
takes one qudit from each the entangled state |�̂〉i
(i = 1,2, . . . ,N + δ1 + δ2) to form n + 1 ordered qudit
sequences: [|�̂〉1

0,|�̂〉2
0, . . . ,|�̂〉N+δ1+δ2

0 ] (denoted as
S0), [|�̂〉1

1,|�̂〉2
1, . . . ,|�̂〉N+δ1+δ2

1 ] (denoted as S1), . . .,
[|�̂〉1

n,|�̂〉2
n, . . . ,|�̂〉N+δ1+δ2

n ] (denoted as Sn). Finally, he or
she keeps qudit sequence S0 and sends sequence Si to Pi for
1 � i � n, respectively.

(b) After receiving the qudit sequence sent from Server,
the n + 1 parties (Server and the n participants) cooperate to
execute the following two eavesdropping detections.
Detection 1. Server randomly chooses δ1 qudits from S0 and
publishes the positions of the chosen qudits. For each of the
chosen qudits, Server randomly chooses a basis (B1 basis or B2

basis) to measure it and requires the n participants to measure
the corresponding qudits in their hands with the same basis.
Then each of the participants announces his measurement
outcome in a random order determined by Server. With
the announced information, Server can check whether the
measured qudits are in the state in Eq. (8), i.e., |�̂〉. To be
specific, if the n + 1 qudits are in |�̂〉, the sum of the n + 1
measurement outcomes should be 0 modulo d (the n + 1
measurement outcomes should be the same), provided that
B1 basis (B2 basis) is utilized. Once he or she finds any error
in the process of this detection, he or she informs the others to
discard their transmission and abort the protocol; otherwise,
they continue to the next detection.
Detection 2. The n participants cooperate to choose δ2 states
randomly from the remaining n + δ2 states and process them
as follows. Pi (1 � i � n) randomly chooses 
 δ2

n
� qudits

from Si and publishes the positions of the chosen qudits.
For each of the chosen qudits, Pi randomly chooses a basis
(B1 basis or B2 basis) and requires Server and the remaining
n − 1 participants to measure the corresponding qudits in their
possession with the same basis. After that, Server is required
to announce his or her measurement outcome first. Then the
n − 1 participants announce their measurement outcomes in
a random order determined by Pi . By utilizing the detecting
principle described in Detection 1, Pi can check whether the
measured qudits are in |�̂〉 with the announced information
and his own measurement outcome. It should be noted that
one of the participants should choose δ2 − (n − 1)
 δ2

n
� qudits

in his sequence for this detection in order to make sure that
the total number of the states chosen by the n participants is
δ2. Without loss of generality, we assume the participant is Pn.
If there exists any error in the process of this detection, they
abort the protocol; otherwise, they continue to the next step.

(c) Once the n + 1 parties (Server and the n participants)
confirm that there is no eavesdropping during the previous
steps, they have securely shared an ordered sequence of N

entangled states which are all in |�̂〉, where the qudit sequence
in Server’s possession is denoted as W 0 and the qudit sequence
of Pi is denoted as Wi for 1 � i � n. Then each of the n + 1
parties measures the qudits in his or her sequence with B1

basis and makes a record of the corresponding measurement
outcomes. For example, the measurement outcome of the j th
qudit in Wi is recorded as Mi

j for 1 � j � N . Afterwards,
each participant encodes his data on the N -dit classical string
in his possession. Take Pi as an example: He encodes each
data in DPi

on the corresponding dit in Mi . Concretely,
he replaces Mi

mi
j

with Mi

mi
j

+ 1 (mod d) for 1 � j � ki .

After these encoding operations, the new classical string is
denoted as Mi ′ . Finally, Pi publicly announces the string
Mi ′ = [Mi ′

1 ,Mi ′
2 , . . . ,Mi ′

N ] for 1 � i � n.
(d) According to the strings announced by the n par-

ticipants (Mi ′ , 1 � i � n) and his own string M0, Server
calculates T i for 1 � i � N , where T i = M0

i + M1′
i + · · · +

Mn′
i (mod d). Finally, he or she announces all the calculated

values. Based on the announced information, each of the n

participants can get the rankings of his data anonymously.
For example, Pi will know that the ranking of his data mi

j

(1 � j � ki) is T 1 + T 2 + · · · + T mi
j −1 + 1, and nobody else

knows that mi
j is contained in DPi

.
It is obvious that the qudits only travel once in the

whole process of this protocol; hence, the proposed protocol
is congenitally free from the Trojan-horse attack and the
invisible-photon attack [28,29]. In this protocol, Server and
the n participants first securely share an N -dit classical secret,
i.e., M0 + M1 + · · · + Mn = 0̄ (mod d), by utilizing d-level
GHZ states, where 0̄ represents the zero string of length N

and each of the subsecret strings (Mi , i = 1,2, . . . ,n) is a
random N -dit string. Then they make use of the shared secret
to rank their data anonymously by our method. Of course,
this protocol can also be used to resolve both of the practical
issues introduced in Sec. I. In addition, this protocol is more
consistent with the actual situation since the n participants
need not be semihonest.

B. The QKD-based QAMMR protocol

Now we propose another practical QAMMR protocol based
on the technique of QKD. Different from the above QSS-
based protocol which utilizes multipartite entangled states,
this protocol can achieve anonymous multiparty ranking with
single particles. The specific steps of the protocol can be
described as below.

(A) Server distributes a random N -dit secret key to each
of n participants as follows. To distribute a random N -dit
string to Pi for 1 � i � n, Server generates a random 2N -dit
string RPi and a random 2N -bit string CPi , respectively,
where the j th dit (bit) of RPi (CPi ) is denoted as R

Pi

j

(CPi

j ), R
Pi

j ∈ {0,1, . . . ,d − 1}, C
Pi

j ∈ {0,1} for 1 � j � 2N ,
and d �

∑n
i=1 ki + 1. According to the two random strings,

Server prepares a sequence of 2N single qudits, which is
denoted as Li . Specifically, the j th qudit in Li (denoted as
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Li
j ) is �

R
Pi
j C

Pi
j

, where

�m0 = |m〉,

�m1 = 1√
d

d−1∑
k=0

exp

(
2πikm

d

)
|k〉. (9)

In other words, when C
Pi

j is 0 (1), Li
j should be prepared in

|m〉 [ 1√
d

∑d−1
k=0 exp( 2πikm

d
)|k〉] provided that R

Pi

j is m. After

that, he or she sends Li to Pi . Upon receiving Li , Pi asks
Server to announce string CPi . Then he measures each of the
qudits in Li according to CPi . Concretely, if C

Pi

j is 0 (1), he
measures Li

j in B1 basis (B2 basis). With all the measurement
outcomes, Pi gets a 2N -dit string. Then he randomly chooses
some dits in this string and requires Server to announce the
corresponding values in RPi for checking eavesdropping. If
the error rate exceeds a predetermined threshold, they abandon
the protocol; otherwise, they can utilize information rec-
onciliation and privacy amplification [33,34] to process the
remaining dits and finally share an N -dit secret key, which is
denoted as Ks,i = [Ks,i

1 ,K
s,i
2 , . . . ,K

s,i
N ].

(B) Pi distributes a random N -dit secret key to Pi+1 by
utilizing the same method described in step (A) for 1 � i � n,
where Pn+1 = P1, and the secret key shared between Pi and
Pi+1 is denoted as Ki,i+1 = [Ki,i+1

1 ,K
i,i+1
2 , . . . ,K

i,i+1
N ]. Then

each of the n participants calculates an N -dit string as his
subsecret string. For Pi , his subsecret string is V i , where the
j th dit of V i is V i

j = d − K
s,i
j + d − K

i−1,i
j + K

i,i+1
j = 2d −

K
s,i
j − K

i−1,i
j + K

i,i+1
j for 1 � j � N .

(C) Then each of the n participants encodes his data on his
subsecret string. Take Pi as an example: He encodes the data
in DPi

on the corresponding dits in V i . Concretely, he replaces
V i

mi
j

with V i

mi
j

+ 1 (mod d) for 1 � j � ki . After the process

of encoding, the new N -dit string is denoted as V i ′ . Finally,
Pi announces V i ′ = [V i ′

1 ,V i ′
2 , · · · ,V i ′

N ] for 1 � i � n.
(D) Upon getting the n classical strings (V i ′ , i =

1,2, . . . ,n) announced by the participants, Server calculates
T i with the received information for 1 � i � N , where
T i = ∑n

j=1 K
s,j

i + ∑n
j=1 V

j ′
i . Finally, he or she announces

all the calculated values. Similar to the above two QAMMR
protocols, each of the n participants can anonymously
get the rankings of his data according to the announced
information.

Similar to the QSS-based protocol, the qudits in the QKD-
based protocol also travel only once in the whole process of this
protocol; hence, this protocol is congenitally immune to the
Trojan-horse attack and the invisible-photon attack [28,29].
Comparing the two practical QAMMR protocols proposed
in this section, we can find that they have their respective
advantages and disadvantages. The main advantage of the
QKD-based protocol is that it does not require entanglement.
However, the qubit efficiency of the QKD-based protocol is
much lower than that of the QSS-based protocol. In addition, to
achieve QAMMR, the participants in the QKD-based should
be equipped with one more quantum apparatus, i.e., a qudit
generating machine, than the ones in the QSS-based protocol.

IV. SECURITY ANALYSIS OF THE PROPOSED
PROTOCOLS

It is known that two security models, the semihonest
model and the malicious model, are generally considered in
SMC protocols [35]. In the semihonest model (also called
honest-but-curious model), the participants are assumed to
follow the protocol but at the same time record all the
intermediate information they have seen during its execution.
In the malicious model, the participants may actively cheat
and deviate from the the protocol; e.g., dishonest participants
may try to learn information about the inputs of an honest
participant. Hereafter, we first analyze the security of our
protocol, which is designed under the semihonest model. Then
we show that the protocols, in which the participants may
be dishonest, are secure. Before proving the security of our
protocols, we first give two theorems, which are respectively
about the states |�̂〉 and |�〉, as follows.

Theorem 1. An (n + 1)-qudit state is in the form of the state
|�̂〉, if and only if it satisfies both the following two conditions:
(1) When each of its qudits is measured in B1 basis, the sum of
the n + 1 measurement outcomes is 0 modulo d; (2) when each
of its qudits is measured in B2 basis, the n + 1 measurement
outcomes are the same.

The proof of Theorem 1 is shown in Appendix A.
Apparently, the two states, |�〉 and |�̂〉, can be converted
between each other with the unitary operations F⊗(n+1). In
addition, the two measuring bases, B1 basis and B2 basis, can
be converted between each other with the unitary operations
F . Thus, we can intuitively get a theorem about |�〉 as below.

Theorem 2. An (n + 1)-qudit state is in the form of the
state |�〉 if and only if it satisfies both of the following two
conditions: (1′) When each of its qudits is measured in B1

basis, the n + 1 measurement outcomes are the same; (2′)
when each of its qudits is measured in B2 basis, the sum of the
n + 1 measurement outcomes is 0 modulo d.

A. Security of the proposed protocol in the semihonest model

For the proposed protocol in the semihonest model, the
security includes two aspects. First, an external eavesdropper
(Eve) could not get the rankings of a participant’s data or
match the identity of a participant with his data. Second,
a participant can get no information about the rankings of
another participant’s data from the intermediate information
he records during the execution of the protocol.

In this protocol, only one qudit of each the entangled states
(Ti , 1 � i � N ) is transmitted among the n participants, and
the qudits Hi (i = 1,2, . . . ,N) are always held by P1. That
is, no one but P1 can get access to both of the qudits in |�〉i
(1 � i � N ). However, in the whole procedure of the protocol,
the density matrix of the traveling subsystem Ti is

ρTi
= trHi

(|�〉ii〈�|) = 1

d

d−1∑
j=0

|j 〉〈j | = I

d
. (10)

Obviously, ρTi
is invariant under the operation U ; hence, no

one can extract any useful information from Ti . Moreover, the
particles in this protocol are transmitted with the technique
of decoy qudits, which are in the manner of quantum data
block [26]. In each of the traveling sequences (Si ′

T , 1 � i � n),
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there exist some decoy qudits, the positions of which are just
known by the sender. Since both the decoy qudits and the
signal qudits (the qudits of the entangled states which are
used to encode data) are in the maximally mixed state I

d
for

Eve, she cannot distinguish the decoy qudits from the signal
qudits. As a consequence, whatever kind of attack Eve utilizes,
her eavesdropping actions will inevitably disturb some of the
decoy qudits and hence introduce errors into the eavesdropping
check according to Theorem 2. In other words, this protocol
is secure against any external eavesdropping since Eve cannot
get any valuable information but be found in the eavesdropping
check if she eavesdrops in the transmission of Si ′

T , 1 � i � n.
Now we show that no one of the n participants can get the

rankings of another participant’s data from the intermediate
information he records during the execution of the protocol.
Take Pi (2 � i � n) as an example, he cannot extract any
useful information from the traveling qudits since each of
them is in the maximal mixed state. Although P1 can get both
the two qudits of each of the N entangled states after Pn sends
Sn′

T back to him, he can only gets the value of Ti with these
qudits for 1 � i � N . However, he could get none of the useful
information from Ti . For instance, if Ti = 2, he knows that one
(or two) of the n participants has (have) data i, but he is unable
to know the identity (identities) of him (them). Therefore, P1

cannot get the rankings of another participant’s data, either.
Finally, we consider two special kinds of attacking strate-

gies for two-way quantum cryptographic protocols, i.e.,
Trojan-horse attack [28] and the invisible-photon attack [29].
In the two kinds of attacks, if Eve wants to extract the private
input of Pi (2 � i � n), she intercepts the traveling sequence
S

(i−1)′
T and inserts invisible qudits or fake qudits with a delay

time. The inserted qudits cannot be detected by Pi since
they do not click Pi’s detector. After Pi encodes all his data
on the corresponding qudits in Si−1

T and sends Si ′
T to Pi+1,

Eve captures her fake qudits from the sequence, with which
she can deduce information about Pi’s private input. In fact,
the participants can take the strategies in Refs. [28,29] to
resist these attacks. For the sake of simplicity, we omit the
description of the strategies here.

B. Security of the more practical protocols

In this part, we analyze the security of the QAMMR
protocols proposed in Sec. III. According to the concrete steps
of these protocols, if an attacker wants to get the rankings of a
participant’s data, he or she should get the specific values of the
participant’s private input (match the identity of this participant
with his data). For clarity, we consider three possible cases.
The first one is the attack from an external eavesdropper (Eve).
The second case concerns a situation, in which one or more
dishonest participants try to obtain the rankings of another
participant’s data. Finally, the attack from Server is discussed
in the third case.

1. Security of the QSS-based QAMMR protocol

Outside attack. The signal qudits are transmitted only once
during the whole procedure of this protocol. That is to say the
transmission process in step (a) is the only chance for Eve to
carry out her attacks. Therefore, if Eve wants to deduce the
private input of Pi , she has to perform her actions on the qudits

when they are transmitted from Server to the participants.
Thus, she might be able to deduce the classical subsecret string
of Pi (i.e., Mi , 1 � i � n) and utilize it to extract the data of
Pi in step (d). Apparently, if Eve can obtain Mi , she is able to
get the data of Pi . For example, if Mi ′

j = Mi
j + s (1 � j � N ,

1 � s � ki), she knows that j ∈ DPi
and |Dj

Pi
| = s.

Obviously, if Eve does not take active attacks, she is
unable to deduce any useful information just according to the
public information announced by the participants. However,
no matter what kind of attack Eve utilizes, once she can
get any valuable information about a participant’s subsecret
string, her eavesdropping actions will inevitably disturb part of
the transmitted qudits, which indicates that the corresponding
qudits shared by Server and the participants are no longer in
|�̂〉. According to Theorem 1, Eve’s eavesdropping actions
will unavoidably introduce errors into the eavesdropping
detections in step (b), which will make the protocol aborted.

In addition, the participants will respectively encode their
data on their classical subsecret strings only if they have
affirmed that there is no eavesdropping in the transmission
of Si (i = 1,2, . . . ,n), which indicates that the signal qudits
transmitted in step (a) contains no information about the
participants’ private inputs. That is to say, the proposed
protocol is robust against the attacks from Eve since she can
get no useful information about the rankings of a participant’s
data but be found in the eavesdropping detections.

Participant attack. Actually, a dishonest participant has
more power to attack a QAMMR scheme than an outside
eavesdropper. On one hand, he can know partial information
legally. On the other hand, he can cooperate with some
of the other participants to cheat in the execution of the
scheme. Hence, we now analyze the “participant attack”,
which emphasizes that the attacks from dishonest participants
are generally more powerful and deserve more attention [37].

We consider the situation where l participants (1 � l �
n − 1) cooperate to extract the private input of an honest
participant. Without loss of generality, we assume that the
l dishonest participants are P1,P2, . . . , and Pl , who want to
deduce the subsecret string of an honest participant without
being noticed. Since the qudits are transmitted only once in
the whole protocol, it is natural that they should perform their
attack during the transmission of Si (i = 1,2, . . . ,n) in step (a).

In Detection 1, Server randomly selects δ1 states for
checking eavesdropping. For each of the chosen states, the
measuring basis is randomly chosen by Server from B1

or B2; also, the n participants are required to announce
their measurement outcomes in a random order determined
by Server. According to Theorem 1, once the dishonest
participants cooperate to attack this scheme and acquire any
useful information about an honest participant’s subsecret
string, they will unavoidably introduce errors into Detection 1
and make the protocol aborted. In other words, if the dishonest
participants successfully pass Detection 1, they will get no
useful information of an honest participant’s subsecret string
(see Appendix B for details). Therefore, to deduce the subse-
cret string of an honest participant, these dishonest participants
can only utilize the qudit sequences in their own hands and the
classical information announced in steps (c) and (d). However,
this method is also useless. Intuitively, the subsecret strings
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possessed by the n + 1 parties satisfy M0 + M1 + · · · +
Mn = 0̄ (mod d), which indicates that M1

j + M2
j + · · · +

Ml
j = d − (M0

j + Ml+1
j + Ml+2

j + · · · + Mn
j ) for 1 � j �

N . Since M0
j is only known by Server, we can conclude that

the l dishonest participants cannot get any one of the honest
participants’ subsecret strings. In other words, the dishonest
participants are unable to extract the private input of an honest
participant with their own subsecret strings.

Finally, we consider an extreme attack whereby l dishonest
participants try to get the private input of an honest participant
at the cost of leaking their own private inputs to each other.
In this attack, each of the l participants honestly executes
the protocol and privately informs the other l − 1 cooperators
of his input. After Server announces all the values of Ti for
1 � i � N , they can deduce some information about an honest
participant’s private input with their private inputs and the
announced information. Precisely speaking, by employing this
strategy, the l participants can deduce the set that consists of
the private inputs of the remaining n − l honest participants.

It should be pointed out that this attack is a kind of trivial
strategy that is usually not considered when designing certain
kinds of SMC protocols, such as anonymous voting proto-
cols, secure multiparty ranking protocols, and anonymous
surveying (summation). In all these kinds of protocols, if
l = n − 1 (i.e., all the participants except one are dishonest),
the dishonest participants can easily obtain the vote, ranking,
or private data of the honest participant by utilizing this attack.
Obviously, this is also the case with our protocol. However, in
our protocol, when 1 � l � n − 2, the dishonest participants
cannot deterministically deduce the private input of an honest
participant. For simplicity, we assume that each of the n

participants has only one datum. By employing the strategy
in this circumstance, the l dishonest participants can only
exactly extract the private input of an honest participant in the
case that all the inputs of the n − l honest participants are the
same. Nevertheless, this case only happens with a negligible
probability of 1

Nn−l−1 . That is to say, when 1 � l � n − 2,
the l participants cannot exactly deduce the private input of
an honest participant with a probability of 1 − 1

Nn−l−1 , which
will be exponentially close to 1 with the decrease of l.

Server’s attack. Finally, we discuss the case where Server
tries to steal the private input of a participant. In our protocol,
Server is assumed to be a party who may misbehave on its own
but will conspire with none of the participants.

To get a participant’s private input, Server must get the
subsecret string of the participant without introducing any
error into the detections. It is apparent that if Server executes
the protocol honestly, he can only deduce the sum of the
participants’ subsecret strings, i.e., M1 + M2 + · · · + Mn

(mod d), with which he or she is unable to exactly extract the
subsecret string of any participant. Therefore, the only way
for him or her to get a participant’s subsecret string is to send
the participants fake qudits, which are not in the regulation
state. For a simple example, if Server replaces |�̂〉 with the
|1〉0|1〉1 · · · |1〉n and passes the detections in step (b), he or she
will get all the n participants’ subsecret strings with which he or
she can deduce the private input of each participant in step (c).

However, in Detection 2, the participants randomly choose
δ2 samples from the shared states to test whether the states
they have shared are in |�̂〉. For each of the chosen states,

they randomly choose one of the two conjugate bases, B1 and
B2, for measuring its qudits and require Server to announce his
measurement outcome first. According to Theorem 1, any kind
of fake state prepared by Server for extracting participants’
subsecret strings will introduce errors into Detection 2. In other
words, if Server replaces |�̂〉 with the states which can be used
to extract Mi (1 � i � n), her or his action will inevitably
be detected in Detection 2 and make the protocol aborted.
Nevertheless, if he or she prepares and distributes the states as
described in step (a), he or she can get no information about a
participant’ subsecret string. Therefore, the presented protocol
is secure against the attacks from Server.

2. Security of the QKD-based QAMMR protocol

Outside attack. In this protocol, if Eve wants to get the
rankings of Pi’s data, she has to deduce Pi’s subsecret string
(i.e., V i , 1 � i � n). Then she can utilize V i and V i ′ to extract
the private inputs of Pi in step (C) and get the corresponding
rankings. To deduce V i , Eve should know the three classical
strings, Ks,i , Ki,i+1, and Ki−1,i .

However, the distribution process for these strings can
resist any kind of attack from Eve since it is equivalent to
the BB84 QKD protocol [36], which has been proved to be
unconditionally secure. Specifically, all the transmitted qudits
in these protocol are randomly prepared in one of the states
in the two conjugate bases, B1 basis and B2 basis. For Eve,
each of the qudits is in a maximally mixed state. According
to the Heisenberg uncertainty principle, it is impossible for
her to discriminate these states perfectly. Consequently, no
matter what kind of attack Eve utilizes, she will inevitably
introduce errors and be found in the eavesdropping check,
which indicates that our protocol is secure against the attacks
from outside eavesdroppers.

Participant attack and Server’s attack. First, we consider
the circumstance in which an individual participant tries
to eavesdrop the private inputs of Pi . As analyzed in the
previous section, to get V i , the dishonest participant should
simultaneously get Ks,i , Ki,i+1, and Ki−1,i . However, it is an
impossible task for him since he can get at most one of Ki,i+1

and Ki−1,i only when he is Pi−1 or Pi+1.
Then we consider the situation where more than one

participant try to eavesdrop the private input of Pi . Obviously,
the dishonest participants also cannot succeed since they are
unable to get the string Ks,i without being detected. Of course,
since Server will not cooperates with any of the participants,
no matter what kind of attack he or she utilizes, the case is the
same with him as he or she cannot get Ki,i+1 or Ki−1,i without
being noticed.

As for the extreme attack in which the dishonest participants
try to get the private input of Pi at the cost of leaking their
own private inputs, the analysis is the same as that for the
QSS-based protocol; hence, that is not covered again here.
Until now, we have shown that this protocol is immune to the
attacks from both dishonest participants and Server.

V. DISCUSSIONS

In all the proposed protocols, the private inputs of the
participants are accurate to single digits. However, in some
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actual situations, the data of the participants may not be small,
and it is unnecessary to rank the data accurately to single
digits or tens since such small differences among the data
are not concerned by the participants. Take the QSS-based
protocol as an example: When it is utilized to rank the sales
volume of a kind of product in several competing companies,
we can use one state to represent a range of numbers. For
instance, under the assumption that each state represents a
range of 100 numbers, if the sales volume of companyi is
k, then companyi adds 1 to the (
 k

100�+1)th dit in Mi , i.e.,
Mi ′


 k
100 �+1

= Mi


 k
100 �+1

+ 1, where 1 � i � n. In this condition,

if the cap of the ranked sales volumes is 10 000, only 100 GHZ
states (N = 100) would be enough to accomplish the task of
ranking.

The next thing that we want to account for is the security
levels of our two more practical QAMMR protocols. In each
of the two protocols, Server is supposed to cooperate with
none of the n participants since the protocol will be equivalent
to a two-party one, which could not be secure [30,31], if
Server cooperates with n − 1 of the participants. Under this
assumption, both of the protocols have been proved to be
secure in the previous section.

However, under the assumption that Server is permitted to
collaborate with part of the participants, the security level
of the QSS-based protocol becomes different with that of
the QKD-based one. Concretely, it is not hard to find that
when the number of the dishonest participants who cooperate
with Server is less than n − 1, they could not obtain the
subsecret string of any honest participant in the QSS-based
protocol. Nevertheless, the situation is quite different with
the QKD-based one. Obviously, if Server collaborates with
Pi−1 and Pi+1, they can easily get the subsecret string of
Pi , where 1 � i � n and Pn+1 = P0. This situation happens
because each participant in the QKD-based protocol only
shares secret keys with Server and the two participants next
to him, respectively. If every participant involved in the
QKD-based protocol respectively shares a secret key with
Sever and each of the other n − 1 participants, the security
level of this protocol will be the same as that of the QSS-based
one. In other words, if every two of the n + 1 parties involved
in the QKD-based protocol share a secret key between each
other, Server and the dishonest participants could not deduce
the subsecret string of any honest participant if the number of
the dishonest participants is less than n − 1.

In addition, in our semihonest QAMMR protocol and QSS-
based QAMMR protocol, which are presented with entangled
states, if the qudits of the entangled states travel in a noisy
channel, it seems that the entanglement may be threatened over
a long distance. Under this circumstance, the quantum-repeater
technique [38,39], containing the entanglement purification
and teleportation, can be used to keep the reliably shared
entanglement.

VI. CONCLUSIONS

In summary, this paper represents an attempt to address the
issue of anonymous multiparty ranking in quantum domain.
It proposes three secure protocols to achieve QAMMR. By
utilizing these protocols, each of the participants can correctly

and anonymously get the rankings of his data. That is to
say, except the participant himself, no one can get the
rankings of his data. Similar to most of the previous classical
SMC protocols, the first of our protocols is proposed in
the semihonest model. Then we present two more practical
QAMMR protocols, in which the participants need not be
semihonest, based on the basic idea of MQSS and the technique
of QKD, respectively.

There are several merits of our protocols. First, the proposed
protocols are of realistic significance since anonymous ranking
can be employed to solve many practical problems, such as
anonymously ranking the students’ exam scores, anonymously
ranking the wages of the employees in different companies,
and anonymously ranking the sales volume of a kind of
product in different companies. Second, compared with almost
all the existing secure multiparty ranking protocols that are
based on the assumptions of computational complexity, our
protocols are more secure since they are secure against the
adversary with quantum computation ability. Third, both of
the practical QAMMR protocols are congenitally free from
the Trojan-horse attack and the invisible-photon attack since
the quantum states need transmitting only once in each of
the two protocols. In addition, not all the parties involved
in the QSS-based protocol are required to have full quantum
power. In fact, to achieve the anonymous ranking with the
help of the Server by this protocol, the n participants need
not have the ability to generate quantum states or perform
unitary operations, only the abilities to perform single-qudit
measurements and store qudits are enough. That is to say,
this protocol may be easier to be widely applied over the
quantum network in the future because of its convenience
and low expense for the users. Moreover, different from the
QSS-based protocol, the QKD-based protocol can achieve
the purpose of QAMMR without the aid of quantum entan-
glement, which indicates that it may have an advantage in
implementation.

To execute the QSS-based protocol, Server should be
equipped with the devices for preparing the d-level (n + 1)-
particle GHZ state, which can be remotely prepared by using
only one d-level two-particle entangled state and n d-level
CNOT operations [40]. Meanwhile, he or she should also be
equipped with the devices for performing quantum Fourier
transform. The participants involved in this protocol should
be equipped with the devices for single-qudit measurements,
i.e., measuring the received qudits in B1 basis or B2 basis.
Besides, Sever and all the participants should also have
the quantum memory apparatus for storing qudits [41]. To
execute the QKD-based protocol, Server and the participants
should be capable of generating the d-level single particle.
For example, they could utilize the method in Ref. [42] to
prepare spatial qudits with a single phase-only spatial light
modulator. Meanwhile, Server and the participants need also
be equipped with the devices for measuring and storing
single qudits [41]. In addition, since both the QSS-based
protocol and the QKD-based protocol employ the technique
of “block transmission” [26], in order to transmit the ordered
qudit block to the receiver, the sender could employ the
similar circuits composed of optical delays and switches
in Refs. [27,43] to adjust the qudits in the transmitted
sequence.
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In each of the three proposed protocols, with the informa-
tion of Ti (i = 1,2, . . . ,N ) which is announced by Server,
every participant not only gets the rankings of his data
anonymously, but also gets the values of the ranked data and
hence obtains the distribution of the all the n participants’
data. Actually, this feature that each participant will get the
distribution of all the ranked data while ranking his data can
also be viewed as an advantage of our protocols in many
real-life cases. For example, when ranking the scores (wages)
of the students (employees) in different schools (companies),
each of the schools (companies) may also want to know the
distribution of all the ranked data since it may be useful
for their work. In such circumstances, the distribution of the
ranked data need not be considered as a secret and hence
everyone can obtain it. However, in some other cases, this
distribution may become one of the private attributes which
should be obtained by none of the participants. Therefore,
how to design quantum SMMR protocols in which each of the
participants can only get the rankings of his own data, espe-
cially the ones in the malicious model, still remains an open
problem.
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APPENDIX A: PROOF OF THEOREM 1

According to Eq. (8), it is easy to verify that |�̂〉 can satisfy
both the two conditions in Theorem 1. Now we prove that if
an (n + 1)-qudit state satisfies both the two conditions, it must
be |�̂〉.

Let us suppose that |	〉 is an (n + 1)-qudit state that can sat-
isfy both condition (1) and condition (2). On one hand, as |	〉
satisfies condition (1), it should be in the subspace spanned by

M =
{

|k0k1 · · · kn〉|
n∑

i=0

ki
mod d===== 0, ki ∈ N, ki < d

}
.

(A1)

It is easy to find that the number of the states contained in
M is dn. Without loss of generality, we denoted the dn states
as |K1〉,|K2〉, . . . ,|Kdn〉, respectively. In other words, if |	〉
satisfies condition (1), we have

|	〉 =
dn∑
i=1

λi |Ki〉, (A2)

where
∑dn

i=1 |λi |2=1. On the other hand, since |	〉 satisfies
condition (2), it should be in the subspace spanned by

N = {K ′
j |K ′

j = F⊗(n+1)|j 〉0|j 〉1 · · · |j 〉n}d−1
j=0, (A3)

where the subscripts 0,1, . . ., and n represent n + 1 different
qudits in |	〉. In other words, if |	〉 satisfies condition (2),
we have

|	〉 =
d−1∑
j=0

λ′
jK

′
j , (A4)

where
∑d−1

j=0 |λ′
j |2 = 1. Obviously,

|	〉 =
d−1∑
j=0

λ′
jK

′
j =

d−1∑
j=0

λ′
jF⊗(n+1)|j 〉0|j 〉1 · · · |j 〉n

=
d−1∑
j=0

λ′
j

⎧⎨⎩
⎡⎣ 1√

d

d−1∑
k0=0

exp

(
2πijk0

d

)
|k0〉

⎤⎦ ⊗ · · · ⊗
⎡⎣ 1√

d

d−1∑
kn=0

exp

(
2πijkn

d

)
|kn〉

⎤⎦⎫⎬⎭
= d− n+1

2

d−1∑
j=0

λ′
j

∑
k0,...,kn

exp

[
2πij

d
(k0 + · · · + kn)

]
|k0〉 ⊗ · · · ⊗ |kn〉

= d− n+1
2

d−1∑
j=0

λ′
j

⎧⎨⎩ ∑
∑n

i=0 ki=0(mod d)

exp

[
2πij

d
(k0 + · · · + kn)

]
|k0〉 · · · |kn〉

+
∑

∑n
i=0 k′

i =0(mod d)

exp

[
2πij

d
(k′

0 + · · · + k′
n)

]
|k′

0〉 · · · |k′
n〉

⎫⎬⎭ . (A5)

According to Eqs. (A2) and (A5), we have

d−1∑
j=0

λ′
j

∑
∑n

i=0 k′
i =0(mod d)

exp

[
2πij

d
(k′

0 + · · · + k′
n)

]
|k′

0〉 · · · |k′
n〉 = 0, (A6)
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which indicates that

|	〉 =
dn∑
i=1

λi |Ki〉 = d− n−1
2

d−1∑
j=0

λ′
j

dn∑
i=1

|Ki〉. (A7)

Hence, we can derive from Eq. (A7) that

λ1 = λ2 = · · · = λdn = d− n−1
2

d−1∑
j=0

λ′
j . (A8)

In addition, since
∑dn

i=1 |λi |2 = ∑d−1
j=0 |λ′

j |2 = 1, we can get
that

d−1∑
j=0

λ′
j = d− 1

2 , λ1 = λ2 = · · · = λdn = d− n
2 , (A9)

which indicates that

|	〉 = d− n
2

∑
∑n

i=0 ki=0(mod d)

|k0〉 · · · |kn〉 = |�̂〉. (A10)

So far, we have showed that if an (n + 1)-qudit state satisfies
both condition (1) and condition (2), it must be |�̂〉. That is to
say, we have proved Theorem 1.

APPENDIX B: IF THE DISHONEST PARTICIPANTS
SUCCESSFULLY PASS DETECTION 1, THEY WILL GET

NO USEFUL INFORMATION OF AN HONEST
PARTICIPANT’S SUBSECRET STRING

Before demonstrating this point, we first introduce an
equivalent version of steps (a) and (b).

According to Theorem 2 and the relationship between |�〉
and |�̂〉, the first two steps of the QSS-based protocol, step
(a) and step (b), are completely equivalent to the following
version.

(a′) Instead of transforming |�〉i into |�̂〉i with Fourier
transform and then sharing |�̂〉i with the n participants, Server
directly share |�〉i with the n participants utilizing the same
method as that used for sharing |�̂〉i in step (a) for 1 � i �
N + δ1 + δ2.

(b′) After all the participants receives their qudit sequences
sent from Server, respectively, they begin to check eavesdrop-
ping by testing whether their shared states are in |�〉. The
detecting process, which also contains two detections (denoted
as Detection 1′ and Detection 2′), is essentially the same as
those in step (b). The only difference is that the n + 1 parties
should check whether the states they have shared are in |�〉
according to Theorem 2 instead of checking whether the states
they have shared are in |�̂〉 according to Theorem 1. That is, if
there is no eavesdropping, the n + 1 measurement outcomes
should be the same (the sum of the n + 1 measurement
outcomes should be 0 modulo d) provided that B1 basis (B2

basis) is utilized in both of the detections. Once they confirm
that there is no eavesdropping during the transmission in step
(a′), each of the n + 1 parties performs F on every qudit in his
or her possession. After that, the n + 1 parties have securely
shared a sequence of N states which are all in |�̂〉.

The purpose of both steps (a) and (b) and steps (a′) and
(b′) is to securely share a sequence of N states, which are
all in |�̂〉, among the n + 1 parties. The vital difference

between them is that only Server should be equipped with
the devices for performing quantum Fourier transform in steps
(a) and (b), while all the n + 1 parties should be equipped
with such devices in steps (a′) and (b′). In order to reduce the
implementation cost for the participants in our protocol, we
make use of steps (a) and (b) to share |�̂〉 among the n + 1
parties. Even so, the security of steps (a) and (b) is equivalent
to that of steps (a′) and (b′). Hence, we now prove that, under
the premise of introducing no errors into Detection 1′ and
Detection 2′, the l dishonest participants cannot get any useful
information about the subsecret string of an honest participant
in steps (a′) and (b′) as follows.

In step (a′), Server prepares an ordered sequence of N +
δ1 + δ2 GHZ states [|�〉1,|�〉2, . . . ,|�〉N+δ1+δ2 ], where

|�〉i01...n = 1√
d

d−1∑
j=0

|j 〉i0|j 〉i1 · · · |j 〉in

= 1√
d

d−1∑
j=0

|j 〉i0|j 〉il+1 · · · |j 〉in|j 〉i1 · · · |j 〉il . (B1)

In the distribution of these states, the l dishonest participants
may attack each of the states and then try to extract information
about the subsecret string of an honest participant with the
qudits transmitted to them and some other auxiliary qudits
prepared by themselves. Take |�〉i as an example. The
dishonest participants first prepare s ancilla qudits in |0〉⊗s

E ,
where s is a parameter determined according to their attacking
strategy. Initially, the state |�〉i and the ancilla qudits compose
a composite system as

|�1〉i = 1√
d

d−1∑
j=0

|j 〉i0|j 〉il+1 · · · |j 〉in|j 〉i1 · · · |j 〉il |0〉⊗s
E . (B2)

When the j th qudit of |�〉i (i.e., |�〉ij ) is transmitted from
Server to the Pj in step (a′) for 1 � j � n, the dishonest
participants can cooperate to perform their desirable unitary
operation UE on the n transmitted qudits and the s ancilla
qudits. After the operation, the state of the composite system
will be converted from |�1〉i into

|�2〉i = I ⊗ UE|�1〉i . (B3)

Although the dishonest participants can choose any unitary
operation as UE in their favor, they do not want to introduce
any error into Detection 1′. In this detection, Server randomly
chooses B1 or B2 and requires the n participants to measure the
corresponding qudits in their hands with the chosen basis. To
avoid introducing any error under the condition that B1 basis is
chosen, the measurement outcomes of the honest participants
and Server should be the same, which indicates that |�2〉i
should be in the form of

|�2〉i = 1√
d

d−1∑
j=0

|j 〉i0|j 〉il+1 · · · |j 〉in|ϒ(j )〉, (B4)

where |ϒ(j )〉 represents the l + s qudits controlled by the
dishonest participants after being performed UE . As their
eavesdropping actions are not detected in Detection 1′ (here
we suppose that they also pass Detection 2′), the honest
participants and Server will perform F on each of the qudits
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in their hands following step (b′). After these operations, the state of |�2〉i will be transformed into

|�3〉i = 1√
d

d−1∑
j=0

⎧⎨⎩
⎡⎣ 1√

d

d−1∑
k0=0

exp

(
2πijk0

d

)
|k0〉

⎤⎦ ⊗ · · · ⊗
⎡⎣ 1√

d

d−1∑
kl+1=0

exp

(
2πijkl+1

d

)
|kl+1〉

⎤⎦ ⊗ · · ·

⊗
⎡⎣ 1√

d

d−1∑
kn=0

exp

(
2πijkn

d

)
|kn〉

⎤⎦ ⊗ |ϒ(j )〉
⎫⎬⎭

= d− n−l+2
2

d−1∑
j=0

∑
k0,kl+1,...,kn

exp

[
2πij

d
(k0 + kl+1 + · · · + kn)

]
|k0〉|kl+1〉 · · · |kn〉 ⊗ |ϒ(j )〉

= d− n−l+2
2

∑
k0,kl+1,...,kn

|k0〉|kl+1〉 · · · |kn〉
d−1∑
j=0

|ϒ(j )〉 exp

[
2πij

d
(k0 + kl+1 + · · · + kn)

]
. (B5)

In step (c), Server and each of the honest participants will measure the qudit in his or her hand with B1 basis and record the
measurement outcome as one dit of his or her subsecret string. According to Eq. (B5), we can conclude that if the dishonest
participants do not introduce any error in Detection (1′) and Detection (2′), they can at most get the value of k0 + ∑n

i=l+1 ki ,
no matter what kind of strategy they utilize. Since Server will conspire with none of the participants,

∑n
i=l+1 ki is random for

the dishonest participants, which indicates that they can deduce no useful information about the subsecret string of an honest
participant.

Thus far, we have proved that the dishonest participants cannot get the subsecret string of an honest participant without being
detected if they eavesdrop in step (a).
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