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We discuss a general notion of quantum correlations in fermionic or bosonic indistinguishable particles. Our
approach is mainly based on the identification of the algebra of single-particle observables, which allows us
to devise an activation protocol in which the quantumness of correlations in the system leads to a unavoidable
creation of entanglement with the measurement apparatus. Using the distillable entanglement, or the relative
entropy of entanglement, as entanglement measure, we show that our approach is equivalent to the notion of
minimal disturbance in a single-particle von Neumann measurement, also leading to a geometrical approach for
its quantification.
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I. INTRODUCTION

The notion of entanglement, first noted by Einstein,
Podolsky, and Rosen [1], is considered one of the main
features of quantum mechanics, and became a subject of
great interest in the last few years due to its primordial
role in quantum computation and quantum information [2–5].
However, entanglement is not the only kind of correlation
presenting nonclassical features, and a great effort has recently
been directed towards characterizing a more general notion of
quantum correlations, the quantumness of correlations. The
quantumness of correlations is revealed in different ways, and
there are a wide variety of approaches, sometimes equivalent,
in order to characterize and quantify it, e.g., through the
“activation protocol,” where the nonclassical character of
correlations in the system is revealed by a unavoidable creation
of entanglement between system and measurement apparatus
in a local measurement [6,7]; or by the analysis of the minimum
disturbance caused in the system by local measurements [8–
10], which led to the seminal definition of quantum discord [8];
or even through geometrical approaches [11].

Despite being widely studied in systems of distinguishable
particles, less attention has been given to the study of
entanglement, or even a more general notion of quantum
correlations, in the case of indistinguishable particles. In this
case, the space of quantum states is restricted to symmetric S
or antisymmetric A subspaces, depending on the bosonic or
fermionic nature of the system, and the particles are no longer
accessible individually, thus eliminating the usual notions of
separability and local measurements, and making the analysis
of correlations much subtler. In fact, there are a multitude
of distinct approaches and an ongoing debate around the
entanglement in these systems [12–22]. Nevertheless, despite
the variety, the approaches consist essentially in the analysis
of correlations under two different aspects: the correlations
genuinely arising from the entanglement between the particles
(“entanglement of particles”) [14–18], and the correlations
arising from the entanglement between the modes of the
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system (“entanglement of modes”) [19–22]. These two notions
of entanglement are complementary, and the use of one or
the other depends on the particular situation under scrutiny.
For example, the correlations in eigenstates of a many-body
Hamiltonian could be more naturally described by particle
entanglement, whereas certain quantum information protocols
could prompt a description in terms of entanglement of modes.
The modes notion associates a Fock space to the several dis-
tinguishable modes of a system of indistinguishable particles,
which allows one to employ all the tools commonly used in
distinguishable quantum systems. The entanglement of parti-
cles has different definitions which agree in some respects, and
differ in others; but once one has opted for a certain definition,
there are also several proposed methods to calculate it [23–27].

Note that the correlations between modes in a system of
indistinguishable particles are subsumed in the usual analysis
of correlations in systems of distinguishable ones. Thus
we shall, in this work, characterize and quantify a general
notion of quantum correlations (not necessarily entanglement)
genuinely arising between indistinguishable particles. We
shall call these correlations quantumness of correlations, to
distinguish from entanglement, and it has an interpretation
analogous to the quantumness of correlations in systems
of distinguishable particles, as we shall see. One must
however be careful with such phraseology, since systems of
indistinguishable particles always have exchange correlations
coming from the symmetric or antisymmetric nature of the
wave function. The intrinsic exchange correlations are not
included in the concept of the quantumness of correlations. We
shall discuss these issues in more detail throughout the article.

The article is organized as follow. In Sec. II we briefly re-
view the notion of quantumness of correlations in distinguish-
able subsystems, and their interplay with the measurement
process via the activation protocol. In Sec. III we introduce the
activation protocol for systems of indistinguishable particles,
and in Sec. IV we characterize and quantify the quantumness
of correlations in these systems. We conclude in Sec. V.

II. QUANTUMNESS OF CORRELATIONS

The concept of quantumness of correlations is related to
the amount of inaccessible information of a composed system
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if we restrict to the application of local measurements on the
subsystems [8,9,28,29]. Since quantumness of correlations can
be created with local operations on the subsystems, it is also
called the quantum properties of classical correlations [8,29].
A model for the description of a measurement process is
given via decoherence [30], where in order to measure a
quantum system we must interact it with a measurement
apparatus, which is initially uncorrelated with the quantum
system. This interaction, given by a unitary evolution, creates
correlations between them, and thereby the measurement
outcomes will be registered on the apparatus eigenbasis. A
protocol that allows us to understand the interplay between a
measurement process and the quantumness of correlations in
a system is known as the nonclassical correlations activation
protocol. This protocol shows that if and only if the system
is strictly classically correlated, i.e., has no quantumness
of correlations, there exists a local measurement on the
subsystems that does not create entanglement between system
and measurement apparatus [6,7,31]; or rather, if the system
has quantumness of correlations, then it will inevitably create
entanglement with the apparatus measurement in a local
measurement process, hence the reference to “activation.”
A direct corollary of this protocol allows us to quantify the
amount of quantumness of correlations by measuring the
minimal amount of entanglement created between the system
and the measurement apparatus during a local measurement
process [32].

Given, for instance, a bipartite system S described by the
state ρS , in order to apply a von Neumann measurement in
this system we must interact it with a measurement apparatus
M, initially in an arbitrary state |0〉〈0|M. Suppose that we
are able to apply global von Neumann measurements in
such a system, e.g., a von Neumann measurement in the
system eigenbasis {|i〉}S , ρS = ∑

i λi |i〉〈i|. The system and
the measurement apparatus must interact under the action
of the following unitary transformation: US:M|i〉S |0〉M =
|i〉S |i〉M. We see that the interaction simply creates classical
correlations between them: ρ̃S:A = US:A(ρS ⊗ |0〉〈0|A)U †

S:A =∑
i λi |i〉〈i| ⊗ |i〉〈i|. If, however, we are restricted to apply local

measurements, the measurement process will create entangle-
ment between system and apparatus by their corresponding
coupling unitary U ′

S:A, unless the state is strictly classically
correlated, as stated by the activation protocol. The minimal
amount of entanglement E(ρ̃S:A) which is created in a local
measurement process is quantified by the quantumness of
correlations Q(ρS) of the system, i.e.,

Q(ρS) = min
US:A

E(ρ̃S:A). (1)

Different entanglement measures will lead, in principle,
to different quantifiers for the quantumness of correlations.
The only requirement is that the entanglement measure be
monotone under local operations and classical communication
(LOCC) maps [6,7,32]. Other measures of quantumness
can be recovered with the activation protocol: the quantum
discord [6], one-way work deficit [6], relative entropy of
quantumness [7], and the geometrical measure of discord via
trace norm [33], are some examples.

III. ACTIVATION PROTOCOL FOR
INDISTINGUISHABLE PARTICLES

As aforesaid, quantum correlations between distinguishable
particles can be interpreted via a unavoidable entanglement
created with the measurement apparatus in a partial von
Neumann measurement on the particles [6,7], i.e., in a mea-
surement corresponding to a nondegenerate local observable.
Note that although the approach is based on projective
measurements, it is valid and well defined also for positive
operator-valued measures (POVMs) : once the dimension and
the partitioning of the ancilla can be arbitrarily chosen, general
measurements can be realized through a direct application of
Naimark’s dilation theorem. In systems of indistinguishable
particles the notion of “local measurement” will be imple-
mented through the algebra of single-particle observables (see
for example Ref. [14] for a detailed discussion), and based
on this identification we shall set up an “activation protocol”
for indistinguishable particles. The importance to study the
correlations, particularly the entanglement, in terms of subal-
gebras of observables has been emphasized in [14,22,34–37],
proving to be a useful approach for such analysis. The algebra
of single-particle observables is generated by

Osp = M ⊗ I ⊗ · · · ⊗ I + I ⊗ M ⊗ · · · ⊗ I + · · ·
+I ⊗ · · · ⊗ I ⊗ M, (2)

where M is an observable in the Hilbert space of a single
particle. We can express this algebra in terms of fermionic
or bosonic creation {a†

i } and annihilation {ai} operators,
depending on the nature of the particles in the system.
The algebra is generated by quadratic observables Osp =∑

ij Mija
†
i aj that can be diagonalized as Osp = ∑

k λkã
†
kãk ,

where ã
†
k = ∑

j Ukja
†
j and U is the unitary matrix which

diagonalizes M . Thus, since it is a nondegenerate algebra,
the eigenvectors of their single-particle observables will
be given by single Slater determinants, or permanents, for
fermionic and bosonic particles respectively; more precisely,
given by the set {ã†

�k|vac〉} where �k = (k1, . . . ,kn), ki ∈
{1,2, . . . ,dimsingle-particle}, represents the states of occupation
of n particles, ã

†
�k = ã

†
k1

ã
†
k2

· · · ã†
kn

|vac〉, dimsingle-particle is the
single-particle dimension, and |vac〉 is the vacuum state.
The measurement of single-particle observables is therefore
given by a von Neumann measurement, which we shall
call hereafter as single-particle von Neumann measurement,
according to the complete set of rank-1 projectors {�̃�k =
ã
†
�k|vac〉〈vac|ã�k},

∑
�k �̃�k = IA(S), being IA and IS the identity

of the antisymmetric and symmetric subspaces, respectively.
Recall that a measurement can be described by coupling

the system to a measurement apparatus, with the measurement
outcomes being obtained by measuring the apparatus in its
eigenbasis . Given a quantum state ρQ, and a measure-
ment apparatus M in a pure initial state |0〉M, such that
ρQ,M = ρQ ⊗ |0〉〈0|M, their coupling is given by applying
a unitary U on the total state that will correlate system
and apparatus, ρ̃Q,M = U (ρQ ⊗ |0〉〈0|M)U †. Such unitary U

realizes a single-particle von Neumann measurement {��k} if
for any quantum state ρQ holds: TrM(U (ρQ ⊗ |0〉〈0|M)U †) =∑

�k ��kρQ�
†
�k .
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FIG. 1. Activation protocol for a system of indistinguishable
particles, where ρS is the state of the system, |0〉〈0|M represents
the measurement apparatus, V are the single-particle unitary trans-
formations and U is the unitary [as given by Eq. (3)] respective to a
single-particle von Neumann measurement.

It is not hard to see how the unitary U must act in
order to realize the {��k = a

†
�k|vac〉〈vac|a�k},

∑
�k ��k = IA(S)

measurement. Let us first consider the notation {a†
�k|vac〉} =

{|f (�k)〉}, f (�k) ∈ {1,2,..,dimA(S)}, with f being a bijective
function of the sets {�k} and {1,2, . . . ,dimA(S)}, and dimA(S) is
the dimension of the antisymmetric or symmetric subspaces.
Given that the apparatus has at least the same dimension as the
system, the unitary is given by

U |f (�k)〉Q ⊗ |j 〉M = |f (�k)〉Q ⊗ |j ⊕ f (�k)〉M. (3)

It is easy to show that such operator is indeed unitary; note
that

U =
∑
�k,j

|f (�k)〉|j ⊕ f (�k)〉〈f (�k)|〈j |, (4)

thus,

UU † =
∑

�k,j, �k′,j ′

δ�k, �k′δj,j ′ |f (�k)〉|j ⊕ f (�k)〉〈f ( �k′)|〈j ′ ⊕ f ( �k′)|,

(5)

and since {|f (�k)〉Q}�k and {|j ⊕ f (�k)〉M}j form a complete set,
we have that UU † = IA(S) ⊗ IM.

Having defined the coupling unitary, we are now able
to analyze the entanglement created between system and
apparatus in a single-particle von Neumann measurement,
EQ,M. Given a quantum state ρQ, we intend to quantify the
minimum of such entanglement over all single-particle von
Neumann measurements, minU EQ,M[U (ρQ ⊗ |0〉〈0|M)U †].
This quantity then corresponds to the quantumness of cor-
relation in systems of indistinguishable particles. Note that
such minimization is analogous to the activation protocol given
in [7], but now for systems of indistinguishable particles, where
the minimization is carried out on the single-particle unitary
transformations V ⊗n; see Fig. 1.

IV. RESULTS

Regardless of which entanglement measure is used, let us
first see which set of states does not generate entanglement
after the activation protocol, i.e., has no quantumness of
correlations. We find that this set {ξ} is given by states that
possess a convex decomposition in orthonormal pure states

described by single Slater determinants, or permanents,

ξ =
∑

�k
p�k ã

†
�k|vac〉〈vac|ã�k,

∑
�k

p�k = 1, (6)

where ã
†
�k|vac〉 = V ⊗na

†
�k|vac〉, V is a unitary matrix, and {a†

�k}
an orthonormal set of creation operators.

Proof. We shall first show that states given by Eq. (6)
do not generate entanglement, and then that they are the
only ones. Let U be the coupling unitary corresponding
to the {��k = a

†
�k|vac〉〈vac|a�k = |f (�k)〉〈f (�k)|}, ∑�k ��k = IA(S)

measurement. Applying the activation protocol on states
given by Eq. (6), using V̄ = V † as the single-particle unitary
transformation, it follows that

ρQ:M = U [(V̄ ⊗nξ V̄ †⊗n

)Q ⊗ |0〉〈0|M]U †

=
∑

�k
p�k |f (�k)〉〈f (�k)|Q ⊗ |f (�k)〉〈f (�k)|M, (7)

where ρQ:M ∈ Sep(Q ⊗ M). The demonstration that such
states correspond to the unique states that do not generate
entanglement is given below. A separable state between system
and measurement apparatus can be given by

σ =
∑

i

pi |ψi〉〈ψi |Q ⊗ |φi〉〈φi |M, (8)

noting that the sets {|ψi〉} and {|φi〉} are not necessarily
orthogonal. Since the activation protocol corresponds to a
unitary operation, thus invertible, there must exist a set {|ηi〉}
of states for the system such that

U (V ⊗n) |ηi〉Q ⊗ |0〉M = |ψi〉Q ⊗ |φi〉M, (9)

and ρQ = ∑
i pi |ηi〉〈ηi |. Expanding {|ηi〉} on the basis

{a†
�k|vac〉} “transformed” by V †⊗n

,

|ηi〉 =
∑

�k
c

(i)
�k V †⊗n

a
†
�k|vac〉, (10)

we see from Eqs. (9) and (10) that

U (V ⊗n) |ηi〉 ⊗ |0〉 =
∑

�k
c

(i)
�k a

†
�k|vac〉 ⊗ |f (�k)〉

= |ψi〉 ⊗ |φi〉. (11)

The above factorization condition imposes the following re-
striction: c(i)

�k = γi δ{�k,g(i)}, ‖γi‖ = 1, g : {i} 
→ {�k}. Therefore,

ρQ =
∑

i

pi |ηi〉〈ηi |,

=
∑

i

pi

( ∑
�k

γi δ{�k,g(i)} a
†
�k|vac〉

)

×
(∑

�k′

〈vac|a �k′ γ
∗
i δ{ �k′,g(i)}

)
,

=
∑

i

pi ‖γi‖︸︷︷︸
1

a
†
g(i)|vac〉〈vac|ag(i), (12)

i.e, the states with no quantumness of correlations as given by
Eq. (6). �
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Example. Let us show an example of the approach in
order to clarify the formalism and the above analysis. An
interesting case concerns to the controversial bosonic quantum
state |ψb〉 = 1

2 (b†0b
†
0 + b

†
1b

†
1)|vac〉 ∈ S(H2 ⊗ H2), where {b†i }

are the bosonic creation operators. Such a state is considered
both entangled by some authors [12,17,25] and nonentangled
by others [14,15,18]. Note that such a state can actually be
described by a single Slater permanent |ψb〉 = b

†
+b

†
−|vac〉,

where b
†
± = 1√

2
(b†0 ± b

†
1). Defining the coupling unitary U

corresponding to the {��k = b
†
�k|vac〉〈vac|b�k},

∑
�k ��k = IS ,

{�k} = {(0,0),(0,1),(1,1)} measurement, and using the notation

b
†
0b

†
0|vac〉 = |0〉, b

†
0b

†
1|vac〉 = |1〉, b

†
1b

†
1|vac〉 = |2〉, (13)

we have that the unitary acts as follows:

U |k〉Q ⊗ |0〉M = |k〉Q ⊗ |k〉M. (14)

Applying this unitary on the bosonic state, we generate an
entangled state between system and apparatus, U (|ψb〉Q ⊗
|0〉M) = 1

2 (b†0b
†
0|vac〉 ⊗ |0〉 + b

†
1b

†
1|vac〉 ⊗ |2〉); but this is not

an unavoidable entanglement in order to realize that measure-
ment, since we could apply, before the unitary coupling, the
single-particle unitary transformation V : |+〉 = |0〉 + i|1〉 
→
|0〉,|−〉 = |0〉 − i|1〉 
→ |1〉, i.e,

V ⊗ V :

{
b
†
+ 
→ b

†
0,

b
†
− 
→ b

†
1.

(15)

We see now that the coupling between system and
apparatus does not generate entanglement between them,
U [(V ⊗ V )|ψb〉Q ⊗ |0〉M] = U (b†0b

†
1|vac〉Q ⊗ |0〉M) =

b
†
0b

†
1|vac〉Q ⊗ |1〉M ∈ Sep(Q ⊗ M), and thus such a state has

no quantumness of correlations.
An important result to be emphasized in this analysis

via the activation protocol relates to the establishment of an
equivalence between the quantumness of correlations with the
distinguishable bipartite entanglement between system and
apparatus, showing the usefulness of the correlations between
indistinguishable particles. Note that the set {ξ} is simply
the antisymmetrization or symmetrization of the distinguish-
able classically correlated states (states with distinguishable
particles with no quantumness of correlations), and all their
correlations are due to the exchange correlations; the activation
protocol then shows that any kind of correlations between
indistinguishable particles beyond the mere exchange correla-
tions can always be activated or mapped into distinguishable
bipartite entanglement between Q : M.

The correlations between indistinguishable particles can
thereby be characterized by different types: the entanglement,
the quantumness of correlations as discussed in this article, the
correlations generated merely by particle statistics (exchange
correlation), and the classical correlations. In fact, there are
quantum states whose particles are classically correlated, not
even possessing exchange correlations, such as pure bosonic
states with all their particles occupying the same degree of
freedom, |ψb〉 = 1√

n!
(b†i )n|vac〉, or mixed states described by

an orthonormal convex decomposition of such pure states,
χb = ∑

i
1
n

(b†i )n|vac〉〈vac|(bi)n. See Fig. 2 for a schematic
picture of these different kinds of correlations. Interesting

FIG. 2. (Color online) Schematic picture of the distinct types of
correlations in systems of indistinguishable particles. The larger set
(Q) denotes the set of all fermionic, or bosonic, quantum states; the
blue area (U) represents the convex set of states with no entanglement;
the gray area (P) represents the non convex set of states with no
quantumness of correlations, as defined in this article [Eq. (6)]; and
the yellow area (C) represents the nonconvex set of states with no
exchange correlations due to the particle statistics, possessing only
classical correlations. Note that for fermionic particles, the set C is a
null set. The following hierarchy is identified: C ⊂ P ⊂ U ⊂ Q.

questions to raise are how the notion of entanglement of
particles is related to the quantumness of correlations, and
if they are equivalent for pure states. We can note from Eq. (6)
that, for pure states, the set with no quantumness of correlations
is described by states with a single Slater determinant, or
permanent, which is equivalent to the set of unentangled pure
states. Actually there is an ongoing debate regarding the correct
definition of particle entanglement [14–18], but at the same
time there are strong physical reasons to consider particle
entanglement in pure states as the correlations beyond the mere
exchange correlations [14–16,18]. Concerning mixed states, it
becomes clear that the set given by Eq. (6) is a subset of
the unentangled one, thereby quantumness of correlations is a
more general notion of correlations than entanglement.

According to the activation protocol, different entangle-
ment measures will lead, in principle, to different quantifiers
for the quantumness of correlations. We can thus define the
measure QE for quantumness of correlations, associated with
the entanglement measure E, as follows:

QE(ρQ) = min
V

E(ρ̃Q,M), (16)

where ρ̃Q,M = U [(V ⊗nρQV †⊗n

) ⊗ |0〉〈0|M]U †.
We shall consider two different entanglement measures

for the bipartite entanglement: the physically motivated
distillable entanglement ED [38] and the relative entropy
of entanglement Er [39,40]. Note that the output states
of the activation protocol have the so-called maximally
correlated form [41] between system and measurement
apparatus, ρ̃Q,M = ∑

�l,�l′ χV
�l,�l′ |f (�l)〉〈f (�l′)|Q ⊗ |f (�l)〉〈f (�l′)|M,

with χV
�l,�l′ = (�V

�l )†ρQ(�V
�l′ ), where �V

�l = V ⊗n��l (see the
Appendix). It is known that the entanglement for such states
according to the distillable entanglement [42], as well as
for the relative entropy of entanglement [41], is given by
ED(r)(ρ̃Q,M) = S(ρ̃Q) − S(ρ̃Q,M), where S(ρ) = −Tr(ρ ln ρ)
is the von Neumann entropy. The first term is given by
S(ρ̃Q) = S(

∑
�l(�

V
�l )†ρQ(�V

�l )|f (�l)〉〈f (�l)|), i.e., the entropy of
the projected state ρQ according to a single-particle von
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Neumann measurement, and the second term is simply given
by S(ρ̃Q,M) = S(ρQ), since it is invariant under unitary trans-
formations. Thus we have that the quantumness of correlations
measure is given by

QED(r) (ρQ) = min
V

[
S

( ∑
�l

(
�V

�l
)†

ρQ
(
�V

�l
)|f (�l)〉〈f (�l)|

)

−S(ρQ)

]
, (17)

which corresponds to the notion of minimum disturbance
caused in the system by single-particle measurements. This
result is in agreement with the analysis made in [43] for the
particular case of two-fermion systems, and to the best of
our knowledge is the only study attempting to characterize
and quantify a more general notion of correlations between
indistinguishable particles. Using arguments analogous to
those in [11], it is possible to prove Eq. (17) is an equivalent
expression to

QED(r) (ρQ) = min
ξ

S(ρQ ‖ χ ), (18)

where S(ρ ‖ χ ) = Tr(ρ ln ρ − ρ ln χ ) is the relative entropy.
The above equation introduces a geometrical approach to the
particle correlation measure. Notably we see that, as well as for
the quantumness of correlations in distinguishable subsystems,
the quantumness of correlations between indistinguishable
particles defined in this article has a variety of equivalent
approaches in order to characterize and quantify it, as shown
by the activation protocol [Eq. (16)], minimum disturbance
[Eq. (17)] and geometrical approach [Eq. (18)].

V. CONCLUSION

In this work we discussed how to define a more general
notion of correlation, called quantumness of correlations,
in fermionic and bosonic indistinguishable particles, and
presented equivalent ways to quantify it, addressing the notion
of an activation protocol, the minimum disturbance in a
single-particle von Neumann measurement, and a geometrical
view for its quantification. An important result of our approach
concerns to the equivalence of these correlations to the
entanglement in distinguishable subsystems via the activation
protocol, thus settling its usefulness for quantum information
processing. It is interesting to note that the approach used
in this work is essentially based on the definition of the
algebra of single-particle observables, dealing here with the
algebra of indistinguishable fermionic, or bosonic, single-
particle observables, but we could apply the same idea

for identical particles of general statistics, e.g., braid-group
statistics, simply by defining the correct single-particle algebra
of observables.
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APPENDIX: MAXIMALLY CORRELATED STATES

Let us show that the output states of the activation protocol
for indistinguishable particles have the so called maximally
correlated form between system and measurement apparatus.
If {a†

�k|vac〉} = {|f (�k)〉} is the system basis, U is the coupling
unitary given by Eq. (3), and V is the unitary respective to the
single-particle transformation, we have that

V ⊗n a
†
�k|vac〉 =

(∑
l1

vk1l1a
†
l1

)
· · ·

( ∑
ln

vknlna
†
ln

)
|vac〉

=
∑

�l
vk1l1 · · · vknln |f (�l)〉, (A1)

where vki lj are the matrix elements of V . A general state for
the system can be given as

ρQ =
∑
�k, �k′

p�k, �k′ |f (�k)〉〈f ( �k′)|; (A2)

thereby,

V ⊗nρQV †⊗n =
∑

�k, �k′,�l,�l′
p�k, �k′(vk1l1 · · · vknln )

× (vk′
1l

′
1
· · · vk′

nl
′
n
)† |f (�l)〉〈f (�l′)|,

=
∑
�l,�l′

χV
�l,�l′ |f (�l)〉〈f (�l′)|, (A3)

where χV
�l,�l′ = ∑

�k, �k′ p�k, �k′(vk1l1 · · · vknln ) (v �k′
1l

′
1
· · · v �k′

nl′n
)†. The

output states of the activation protocol thus have the form

ρQ:M = U [(V ⊗nρQV †⊗n

) ⊗ |0〉〈0|M]U †

=
∑
�l,�l′

χV
�l,�l′ |f (�l)〉〈f (�l′)|Q ⊗ |f (�l)〉〈f (�l′)|M, (A4)

i.e., the maximally correlated form.
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