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We report on the theoretical analysis of bosonic and fermionic noninteracting systems in a discrete two-particle
quantum walk affected by different kinds of disorder. We considered up to 100-step quantum walks with a
spatial, temporal, and spatial-temporal disorder observing how the randomness and the wave-function symmetry
nontrivially affect the final spatial probability distribution, the transport properties, and the Shannon entropy of
the walkers.
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I. INTRODUCTION

In statistical physics random walks describe the propagation
of a particle (the walker) under the action of a probabilistic
process which forces the latter to move along preassigned
directions [say, one step on the left or one step on the right if
the system is one dimensional (1D)]. Despite their simplicity,
random walks have found applications in many research fields,
spanning from economics to computer science, chemistry, and
physics. A quantum version of this model was first provided
by Aharonov, Davidovich, and Zagury [1], who introduced the
notion of quantum walks (QWs).

Unlike their classical counterparts, in QWs, the final state
of the walker is highly sensitive to the initial conditions of
the system. Indeed, during its evolution, the particle spatial
distribution does not converge to a steady state, but spreads
ballistically. After a few steps, the counterintuitive profile of
the wave function emerges as a result of quantum interference
among many possible paths. The massive parallelism in
exploring multiple trajectories is the basis for simulating
biological [2,3], chemical [2], and physical [4–6] systems and
is paving the way for universal quantum computation [7,8].

Regarding the experimental implementation of QWs, they
have been observed in several scenarios, such as nuclear
magnetic resonance [9], trapped ions and trapped cold neutral
atoms [10–13], single photons in bulk [14], fiber optics
[6,15,16], and coupled waveguide arrays [4,5,17–20]. The
nature of the propagation of multiple particles in a QW
may be strongly affected even in the absence of a direct
interaction between them. Quantum (nonlocal) correlations
present in the initial state will influence the overall wave-
function evolution as the bunching or antibunching observed
in interferometry. Entangled walkers have been studied both
theoretically [14,17,21,22] and experimentally [4,5,23] in
ordered and disordered systems. Depending on the symmetry
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of the input entangled state it is possible to simulate particles
obeying different (boson or fermion) statistics.

With reference to the experimental realization of QWs in
the presence of disorder presented in Ref. [23], here we report a
detailed theoretical and numerical description of propagation
of noninteracting bosonic and fermionic particles in a dis-
ordered environment. In this photonic approach, walkers are
represented by photon pairs sharing polarization entanglement
on a QW circuit implemented by an array of cascaded beam
splitters, as we describe in the following. Generally, photons
are limited to the behavior dictated by Bose-Einstein statistics,
which defines quantum interference and quantum gates [24].
The ability to simulate nonbosonic statistics with photons by
means of polarization entanglement could provide access to
phenomena otherwise not physically accessible or that would
be hidden by decoherence, providing a way to verify quantum
simulations performed in other quantum systems [4,23,25].
Besides that, the controlled engineering of disorder would
enable a detailed understanding of the distinct signatures of
statistics on the system localization dynamics [23].

This paper is organized as follows. In the first sec-
tion we briefly review the discrete-time QW and the two-
particle probability distributions for an ordered structure. In
Secs. III–V we analyze different types of disorder and the
effects introduced into the walk by varying the symmetry of
the input states. In Sec. VI, we investigate how the disorder
strength affects the width of the wave packet, showing how the
amount of disorder in the system can be varied in a controlled
fashion. Fractality, anomalous diffusion, and other transport
properties of bosonic and fermionic particles are discussed in
Sec. VII, while Shannon entropy and mutual information of
these states are reported in Sec. VIII. Section IX is devoted to
the conclusions.

II. DISCRETE-TIME QUANTUM WALK

Let us give a brief review of some basic concepts of
the discrete-time QW. A quantum walker is a quantum

1050-2947/2014/89(3)/032322(11) 032322-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.89.032322


FRANCESCO DE NICOLA et al. PHYSICAL REVIEW A 89, 032322 (2014)

particle—such as an electron, an atom, or a photon—
characterized by both “external” and “internal” degrees of
freedom, the former describing the propagation of the system
in real space and the latter describing the state of the “coin” that
dictates which path the particle has to follow during evolution.
Accordingly, restricting ourselves to walks along a discrete 1D
lattice, the generic state of the system can be expressed as

|�〉 =
∑

x

|ψ(x)〉 ⊗ |x〉, (1)

|ψ(x)〉 = α(x)|L〉 + β(x)|R〉 , (2)

where |x〉 defines the particle position, with {|L〉, |R〉} an
orthonormal basis for the coin space (assumed hereafter to
be bidimensional), and where α(x) and β(x) are complex
amplitudes (the probability of finding the particle at position
x irrespective of its internal state being P (x) = |〈x|ψ(x)〉|2
[26]). In this setting the dynamics is described as a stroboscopic
process which, after t steps, brings the generic initial state |�〉
into the state

|�(t)〉 =
∑

x

|ψ(x,t)〉 ⊗ |x〉 = Û t |�〉, (3)

with Û = Ŝ · (Ĉ ⊗ Î ) being the unitary transformation ob-
tained by first performing a Hadamard transformation Ĉ (coin)
on the internal degree of freedom (with Î corresponding to
the identity operator), followed by a conditional displacement
operator Ŝ [27]; i.e.,

Ĉ = 1√
2

(
1 1

1 −1

)
, (4)

Ŝ =
∑

x

|L〉〈L| ⊗ |x − 1〉〈x| + |R〉〈R| ⊗ |x + 1〉〈x|. (5)

Assume, hence, that the quantum walker is initially localized
at position x = 0 with internal state |L〉 or |R〉. As a result
of quantum interference among multiple paths that originates
from t steps of the evolution, (3), the counterintuitive profile of
the QW probability distribution can be retrieved by measuring
the position of the particle along the 1D line irrespective of
its internal state, i.e., by looking at the quantity P (x; t) =
|〈x|ψ(x,t)〉|2.

More complex probability distributions arise when two or
more particles are injected into the same QW. In particular,
an interesting situation is given by the evolution of identical
particles obeying bosonic or fermionic statistics. In this case,
due to the symmetrization postulate of quantum mechanics,
bunching or antibunching is expected to influence the dynam-
ics of the QWs. These effects have been analyzed by exploiting
all-optical implementations of the discrete QW dynamics,
(3) [4,23]. In these setups, built up from the theoretical
proposals in Refs. [28,29], the propagation of a single quantum
walker along a 1D line is simulated with a single photon
which undergoes multiple scattering from 50:50 beam splitters
organized in a bidimensional cascade array (see Fig. 1).

This is particularly convenient since the conditional dis-
placement, (5), is automatically implemented (via a dual-
rail encoding based on a “which-path” information) in the
propagation along the network. Most interestingly, in these
systems it is possible to emulate statistical effects associated
with the evolution of two indistinguishable particles, by

FIG. 1. (Color online) Photonic implementation of a 1D discrete-
time quantum walk (QW). Each site is represented by a beam splitter
[open (blue) squares]: a photon impinging on a symmetric beam
splitter has the same probability of emerging from one of its two
outputs. Due to this feature, the beam splitter may be used in a QW
as both coin and step operator: by arranging many beam splitters in
a cascaded configuration, it is possible to simulate an N-step QW
circuit in which each line of beam splitters simulates a step in the
QW [4,23].

exploiting the polarization degree of freedom of a couple of
photons to enforce the proper symmetric or antisymmetric
distributions on the effective 1D line [4,21,23]. Specifically,
the QW of a pair of bosonic (fermionic) particles is obtained
by injecting into the system the symmetric (antisymmetric)
state |�(±)〉, defined by

|�(±)〉 = 1√
2

(|ψA,H 〉|ψB,V 〉 ± |ψB,H 〉|ψA,V 〉), (6)

where |ψA,H 〉 = |ψA〉 ⊗ |H 〉 and |ψB,H 〉 = |ψB〉 ⊗ |H 〉 are
orthonormal vectors describing, respectively, a photon with
horizontal polarization which is entering the array from two
distinct ports of the setup (Fig. 1) (similar definitions apply
for |ψA,B,V 〉 associated with a vertically polarized single
photon). Assuming that the propagation through the network
is polarization insensitive and that no interaction is present
among the two photons, after t steps Eq. (6) will evolve into

|�(±)(t)〉 = 1√
2

[|ψA(t),H 〉|ψB(t),V 〉

± |ψB(t),H 〉|ψA(t),V 〉], (7)

where for C = A,B, |ψC(t)〉 = Ut |ψC〉 is the evolved coun-
terpart of the input state |ψC〉. Figure 2 reports the joint
probability distribution P (±,sym)(x,y,t) associated with the
detection of a photon in position x and the other in position
y, irrespective of their polarization, computed at t = 50 and
assuming that A and B are two neighboring input ports in the
setup [see Eq. (A8) in the Appendix for a formal definition of
this quantity]. The different effects of symmetric (P (+,sym)) and
antisymmetric (P (−,sym)) distributions, which can be related
to bosonic and fermionic statistics, respectively, are shown
in the corresponding probability distributions and density
plots. The antibunching feature in Figs. 2(b) and 2(d) exhibits
zero-probability diagonal elements, meaning that fermions
are nontrivially arranged in space [4,22]. Most significantly,
this pattern survives the random scattering process even after
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FIG. 2. (Color online) (a), (b) Mode probability distributions
P (±,sym)(x,y,t) and (c), (d) associated density plots of bosonic (left)
and fermionic (right) two-particle states. At t = 0, two particles are
placed at two neighboring sites in the center of the lattice. The
distribution is calculated after t = 50 steps. The matrices represent
the probability of finding one particle at position x and one at position
y. Both bosons and fermions diffuse ballistically, giving rise to
significant contributions in the corners of the probability distributions.
Similar plots, but for N = 30 steps, can be found in Ref. [21].
(e) Marginal distribution P sym(x) of Eq. (A10) obtained by summing
over the columns in (c) and (d). The same distribution arises from
both symmetric and antisymmetric distributions (see the Appendix).

very long evolution times. While bosons have a nonvanishing
probability of bunching, fermions have zero probability of
being at the same site, due to the Pauli exclusion principle
[24,25]. This profound difference between the two QWs is
a signature of the probability distribution’s sensitivity to the
initial state, due to the unitarity of the evolution.

III. STATIC DISORDER AND ANDERSON LOCALIZATION

Let us now move to the description of such a scenario in
the presence of disorder. Disorder exists at different levels in
nature, ranging from a few impurities or interstitial defects in
an otherwise perfect crystalline host [30–32] to the strongly
disordered limit of glass structures [33]. In particular, the static
disorder is set when a system parameter is a random variable
evolving in space but not in time [34].

As predicted by Anderson, static disorder may lead to
the absence of diffusion and the particle wave-function be-
comes localized [31]. This phenomenon, known as Anderson
localization, has a fundamental relevance since it offers
a mechanism to understand, for example, the electronic
conductance in imperfect crystals and the metal-insulator
transition [30,32,33]. The key factor for the interference effect
responsible for the localization is the broken periodicity in the
dynamics of the system, induced by the disordered media:
random perturbations to the dynamics of the system can
break the periodicity and manifest localization [15,35]. For 1D
systems it can be rigorously shown that all states are localized
because of the repeated backscattering, and the localization
length is proportional to the mean free path of the particle, no
matter how strong or weak the disorder is [32].

In the QW scenario localization may be controlled by
introducing drifts with a constant momentum between two
consecutive steps of the walk, i.e., by applying controlled
phase-shift operations on the particle wave function to ran-
domly stop at each site the evolution of the quantum coin [36],
whose matrix now reads

C(x,t) = C(x) = 1√
2

(
eiφL(x) 0

0 eiφR (x)

) (
1 1

1 −1

)
. (8)

At each step, coin operations evolve the initial state by applying
the same phases {φL(x), φR(x)}. While in the absence of
disorder the QW exhibits a spatial probability distribution
diffusing ballistically, in the case of static disorder the
distribution appears to be localized, with a shape characterized
by an exponential decay.

Single-particle transport in disordered lattices has been
experimentally observed in different frameworks (microwaves
in strongly scattering samples [37], single photons in bulk [38],
photonic lattices [39], ultrasound waves in a 3D elastic system
[40], and Bose-Einstein condensates [41]); conversely, there
are few numerical studies [6,22] and only two experiments on
multiparticle transport [23,42].

Understanding the behavior of a multiparticle system in
a disordered medium may be of great interest. Indeed, the
bosonic or fermionic nature of the particles strongly affects the
transport phenomenon, deriving from both wave interference
and quantum correlations. Because of the coin operation’s
unitarity, the static disorder only affects the shape of the
distribution and does not alter the symmetry of the initial state.
Therefore the QW with static disorder still proves strongly
dependent on the input state, as the antibunching feature shows
with the diagonal-vanishing pattern in Fig. 3(d).

By tracing out the position of one of the particles [i.e.,
summing over the columns of the correlation matrix as detailed
in Eq. (A10)], it is possible to confirm the exponential decay
of the Anderson peak by computing the linear fit of the
distribution on a semilogarithmic scale [Figs. 3(e) and 3(f)]
and therefore calculating the localization length in inverse
proportion to the angular coefficient.

The analysis reported here, dealing with a discrete-time
QW, could also beperformed by exploiting a continuous-time
QW; indeed, the two approaches have shown many similarities
[43]. Simulations of space-dependent disorder for two-particle
systems have been reported in this case by Lahini et al. [22],
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FIG. 3. (Color online) (a), (b) Mode probability distributions
P (±,sym)(x,y,t) and (c), (d) associated density plots of bosonic (left)
and fermionic (right) two-particle states in the case of a quantum walk
in the presence of static disorder. At t = 0, two particles are placed
at two neighboring sites in the center of the lattice. The distribution
is calculated after t = 50 steps and averaged over 100 configurations
of static disorder. Both bosons and fermions localize near their
initial position, with a typical distribution profile characterized by
an exponential decay. The dependence on the symmetry of the initial
state is still observable. (e) Marginal distribution P sym(x) of Eq. (A10)
obtained by summing over the columns in (c) and (d). (f) Linear fit on
a semilog scale. The localization length after 50 steps of a two-particle
quantum walk is estimated to be ξ ∼= 3.

where the two-particle correlation function is calculated after
short evolution times, in such a way that each particle has
nonzero probability of being localized or remaining ballistic:
it may be associated with an evolution in the presence of
static disorder whose strength (see Sec. VI) is nonmaximal.
At variance with this approach, in our scenario we implement
a maximal-strength static disorder. In this case the probability
of the particles diffusing ballistically becomes negligible on
a 100-step QW, allowing us to observe a pure localization
effect.

IV. SPACE-CORRELATED DYNAMIC DISORDER
AND DECOHERENCE

In this section we consider the case of a two-particle
QW in the space-correlated dynamic disorder simulating the

transition from QW to classical random walk for bosons and
fermions. The evolution is related to the degrees of freedom
defining the system such as external fields, temperature, pres-
sure, and doping [34]. By turning on an interaction between
the quantum system and the environment, the fluctuations in
the environment lead to a reduction in the coherence in the
quantum system. This is the cost of extracting knowledge
about the state of a system [44]. Thus decoherence plays a
crucial role in the transition from quantum to classical world.
The controlled introduction of decoherence enables a detailed
comprehension of its effects on the system dynamics, enabling
the simulation of biological phenomena which exploit these
features [2].

The impact of decoherence on QWs has been investigated
both numerically and experimentally, in various settings,
mostly in 1D systems [15,23,44] using repeated measurements
[27,44,45] or topological noise by quantum coin phase-shift
operations [15,23,35,44]. In this case the time-dependent coin
operator reads

C(x,t) = C(t) = 1√
2

(
eiφL(t) 0

0 eiφR (t)

) (
1 1

1 −1

)
. (9)

By assigning different quantum coin operators at every step
of the walk while retaining the same at each spatial site
[φL(t) = φR(t)], thus eliminating position-dependent phase
correlations, the complete evolution will be expressed as
C(t)C(t − 1) . . . C(2)C(1) [6,35]. Decoherence appears as
a consequence of the dynamically varying phase suffered
by the quantum particle during its evolution. As a result,
the photon undergoes a classical random walk, revealing a
binomial probability distribution [15,44]. In contrast to the
previous case, the spatial profile of the wave packet in Fig. 4(f)
shows a parabolic shape on the semilog scale, confirming
a Gaussian distribution profile as expected for classical
systems.

It is important to highlight that, even with the introduction of
decoherence in QWs by quantum coin phase-shift operations,
the system dynamics is still unitary because the phase-shift
operator is unitary. Hence decoherence is caused only by an
interference effect that mixes the position distribution of the
QW to a uniform distribution essentially as in the classical
case. Therefore, in the presence of dynamic disorder the
QW is still strongly dependent on the symmetry of the input
state. Quantum particles lose their quantum waveform but not
their quantum properties, giving rise to a classical particle
distribution profile exhibiting wave-particle dualism.

V. UNCORRELATED DYNAMIC DISORDER AND
ANDERSON TRANSITION

As shown in Sec. III, a particle moving in a spatially
disordered time-independent potential can exhibit Anderson
localization. At the same time, it is known that, if the disordered
potential is also fluctuating in time, localization is lost and
transport is restored. This is the so-called Anderson transition,
observed under a great variety of experimental conditions,
from electromagnetic waves propagating in strongly disor-
dered dielectric structures such as doped semiconductors and
amorphous systems [30–33]. This transition can be obtained
by changing the temperature, pressure, doping [32], or
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FIG. 4. (Color online) (a), (b) Mode probability distributions
P (±,sym)(x,y,t) and (c), (d) associated density plots of bosonic (left)
and fermionic (right) two-particle states in the case of dynamic
disorder. At t = 0, two particles are placed at two neighboring sites
in the center of the lattice. The distribution is calculated after t = 50
steps and averaged over 100 configurations of dynamic disorder.
Both bosons and fermions localize near their initial position, with
a typical binomial distribution profile characteristic of a classical
random walk, but the dependence on the symmetry of the initial state
is still observable. (e) Marginal distribution P sym(x) of Eq. (A10)
obtained by summing over the columns in (c) and (d). (f) Parabolic
fit on the semilog scale.

magnetization [33]. Over the years, several mechanisms have
been proposed for the breakdown of Anderson localization
due to temporal fluctuations of the potential [46–48]. Mott
considered the effect of phonons at low temperatures and
argued that this gives rise to a diffusive motion known as
variable-range hopping conductivity. Mott also considered
the effects of a weak ac field and suggested that a resonant
interaction dominates the low-frequency response [32,48].

By combining the two previous disordered scenarios, we
may simulate a symmetric or an antisymmetric system in
which localized states become extended states with time due to
decoherence effects. By randomly assigning different quantum
coin operators for each lattice site and changing these operators
during each step of the evolution, we induce a spatiotemporal
disorder or fluctuating disorder [35]. Therefore the quantum
coin operator of the t th step of the dynamics can be expressed

FIG. 5. (Color online) (a), (b) Mode probability distributions
P (±,sym)(x,y,t) and (c), (d) associated density plots of bosonic (left)
and fermionic (right) two-particle states in the case of fluctuating
disorder. At t = 0, two particles are placed at two neighboring
sites in the center of the lattice. The distribution is calculated after
t = 50 steps and averaged over 100 configurations of disorder.
Space-correlated dynamic disorder competes with static disorder,
extending quantum states and forbidding localization. The result
is that both boson and fermion distributions become Gaussian and
the dependence on the symmetry of the initial states remains. (e)
Marginal distribution P sym(x) of Eq. (A10) obtained by summing
over the columns in (c) and (d). (f) Parabolic fits on a semilog scale.

as

C(x,t) = 1√
2

(
eiφL(x,t) 0

0 eiφR (x,t)

) (
1 1

1 −1

)
, (10)

where the value of φL,R(x,t) is randomly chosen at every step
t and at each site x. Thus the complete evolution of the walk
will be given by C(x,t)C(x,t − 1) . . . C(x,2)C(x,1) [35].

This scenario leads to distributions similar to those obtained
in the presence of space-correlated dynamic disorder (compare
Figs. 4 and 5); however, Fig. 5 shows that with an increasing
number of steps the dynamic variation of the phase competes
with the localization effect given by the static variation of
the phase, displaying a Gaussian probability distribution. In
the space-correlated dynamic disordered scenario, we have
shown that particles started in a disorder-free configuration
with extended distributions of quantum states and the effect
of disorder was to shrink the wave functions displaying
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FIG. 6. (Color online) Transition of the mean position variance
Var(±)(xM ) of Eq. (11) of symmetric (a) and antisymmetric (b) states
from ballistic quantum walk to diffusive or subdiffusive evolution
after 100 steps due to dynamic [(blue) circles] and static [(purple)
squares] disorder with increasing disorder strength �max (measured
in radiants). Each data point is averaged over 100 configurations of
disorder and the error bars represent the standard deviation. The solid
black line marks the variance of the classical random walk (RW).

a Gaussian profile. Here, input states first localize in an
Anderson peak owing to static disorder, and only after the
distributions become binomial due to decoherence: static
disorder has a priority on dynamic disorder because the former
acts on different spatial sites in the same temporal step, while
the latter’s action is the same for all sites in a given step.
This is well evident by comparing Figs. 4(d) and 5(d): the
fermionic distribution in the latter case has a Gaussian spatial
profile that is more pronounced and very similar to the bosonic
wave packet, related to the fact that input states localize before
becoming extended. Therefore, dynamic disorder is a global
effect on the walk and it is slower than the static effect, as we
show in the next section. Also in this case, the QW still has a
strong dependence on the symmetry of the input state, as we
can note in Fig. 5.

VI. DISORDER STRENGTH

When a disordered scenario is considered, the degree of
disorder needs to be characterized quantitatively. This physical
quantity can be addressed by taking into account the disorder
strength, which is determined by �max, i.e., the maximal ap-
plied phase shift which defines the uniform interval [0,�max]
from which {φL(x), φR(x)} are randomly chosen [15].

The stepwise increase in the disorder strength �max enables
the controlled transition of the system from the ballistic evolu-
tion of the disorder-free QW towards diffusive (subdiffusive)
evolution in a scenario with dynamic (static) disorder, as
shown in Fig. 6. To this purpose we characterized the resulting
expansion profile by the two-particle distribution variance
Var(±)(xM ) of twice their mean position, xM = x + y; i.e.,

Var(±)(xM ) =
N∑

x,y=1

(x + y)2P (±,sym)(x,y)

−
⎡
⎣ N∑

x,y=1

(x + y)P (±,sym)(x,y)

⎤
⎦

2

. (11)

Clearly, this quantity will result in different behaviors for
the symmetric state (related to bosonic evolution) and
the antisymmetric one (related to fermionic evolution), the

FIG. 7. (Color online) Transition of the mean position variance
Var(±)(xM ) of Eq. (11) of symmetric (a) and antisymmetric (b) states
from subdiffusive quantum walk to diffusive evolution after 100 steps
due to dynamic disorder [(blue) circles] with increasing dynamic
disorder strength �(D)

max once the static disorder strength is fixed,
�(S)

max = π . The mobility edge is �(D)
max

∼= π/2 (all phases are given
in radiants). Every data point is averaged over 100 configurations of
disorder and the error bars represent the standard deviation. The solid
black line marks the variance of the classical random walk (RW).

exact connection with the particle statistics being detailed
in Eq. (A12). Moreover, it will be strongly affected by the
presence of disorder.

In Fig. 6 we report the variance, (11), calculated for
100-step QWs in the presence of static [(purple) squares]
and space-dependent dynamic [(blue) circles] disorder, with
different values of the maximum disorder strength, averaged
on 100 random distributions. Without disorder (�max = 0) the
ballistically spreading wave packet shows a large expansion
induced by quantum interference after 100 steps. In a system
with dynamic disorder (circles), decoherence reduces the
expansion of the wave packet to the level of a diffusive classical
particle (solid black line).

On the contrary, static disorder (squares) leads to a
stagnation of the spread due to the Anderson localization
effect and hence an even smaller variance. The variance
exponentially decreases as the disorder strength increases and,
in general, as the number of steps grows. By comparing the two
behaviors reported in Fig. 6, we may notice that the presence of
static disorder tends to localize the distribution more rapidly
than the space-correlated dynamic disorder since, for each
value of disorder strength, the variance in the presence of
space-dependent disorder is lower than the variance obtained
in the dynamic-disordered scenario. We infer from Fig. 6(a)
that the maximal localizing interval is [0, π ], irrespective of
the particle statistics. This is the same interval we used in all
the previous simulations. These results clearly demonstrate
how the amount and kind of disorder influence the expansion
of the particle wave packet.

Let us now consider the variance of a QW in the presence
of uncorrelated dynamic disorder [(blue) circles in Fig. 7] and
a stepwise increase in the dynamic disorder strength �(D)

max
once the static disorder strength is fixed to its highest value,
�(S)

max = π . From Fig. 7 it is possible to rate the dynamic
disorder strength necessary to extend the localized states
and, in this way, realize a controlled Anderson transition.
The mobility edge is defined as the critical value of disorder
strength for which the variance reaches the level of a classical
random walk (solid black line). For values of �D

max below the
mobility edge the variance decreases because static disorder
dominates, thus localizing the particle wave packet.
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VII. TRANSPORT PROPERTIES AND FRACTALITY

In this section we study how the transport properties of par-
ticles are connected to the fractality of the system. Fractals are
mathematical objects with a Hausdorff-Besicovitch dimension
which is not an integer [47,49]. Fractals are best constructed
in a recursive way and their limiting curve is of infinite length,
although it is confined to a finite region of the plane. The best
way to characterize them is by using their fractal dimension d.
When calculating this quantity we notice the striking property
of self-similarity: every fractal curve is similar to the fractal
curve of a part of itself, or, in other words, it is said to be a
scale invariant.

Classical random walks are self-similar only in a statistical
sense [47]. For these objects a fractal dimension d is still easily
defined by the scaling of their fractal mass M with their linear
size L, M ≈ Ld . As a consequence, classical random walks
are statistical fractals with Hausdorff dimension d = 2 [47].
Conversely, QWs are not fractals even in the statistical sense:
because of their quantum nature, their fractal dimension is
d = 1.

Particle transport in a lattice has been widely investigated
in the framework of the QW [2,15,47]. One of the most
important physical parameters describing a random walk is
the mean-square displacement covered by the walker once it
has passed through t steps. This quantity is proportional to the
variance of the center of mass of Eq. (11). In uniform Euclidean
systems, the mean-square displacement of a random walker is
proportional to the time, for any number of spatial dimensions
agreeing with Fick’s law [47]. Random walks describe the
probabilistic evolution of a classical particle in a structured
space resulting in a diffusive transport. In contrast, endowing
the walker with quantum mechanical properties typically leads
to a ballistic spread of the particle’s wave function [15].

However, in disordered systems, Fick’s law is not valid in
general. Rather, we may recall the localization behavior as
anomalous diffusion [47]: 〈x2(t)〉 ∝ t

2
d . Note that classical

Fick diffusion with d = 2 can be considered anomalous
diffusion with respect to the quantum case with d = 1.

The observed slowing-down of the transport is caused by
the delay of the diffusing particles in the dangling ends,
bottlenecks, and backbends existing in the disordered struc-
ture. Examples of disordered systems for which anomalous
diffusion has been observed are percolation clusters [50,51],
fractal lattices [47], and classical and quantum random walks
[15,23].

In Fig. 8 we report step by step the variance Var(±)(xM ) of
Eq. (11) of the center of mass in all four of the previous QW
scenarios (the disorder strength is maximum), for symmetric
and antisymmetric input states. First, we note that, due to
the symmetry of the states, bosons diffuse more rapidly
than fermions, reaching higher variance values. Moreover,
by computing the polynomial fits of these curves we obtain
the correct trends of the mean-square displacement and the
fractal dimensions, for the two-particle QW with bosonic and
fermionic input states. In the disorder-free case the QW has
fractal dimension d ≈ 1; therefore the diffusion, character-
ized here by the positional probability distribution variance,
is ballistic, Var(±)(xM,t) ∝ t2 circles]. In the presence of
dynamic and fluctuating disorder, the fractal dimension is

FIG. 8. (Color online) Trend of mean position variance
Var(±)(xM ) of Eq. (11) up to 100 steps of a bosonic (a) and
a fermionic (b) quantum walk in different scenarios. For the
disorder-free case [(blue) circles] we observe a ballistic spread (full
behavior shown in insets). The evolutions with space-correlated
dynamic [(purple) squares] and uncorrelated [(green) triangles]
disorder are clearly diffusive. Finally, under the condition of
static disorder [(yellow) diamonds] the variance starts to saturate
after a few steps and the dynamics shows the onset of Anderson
localization. The parameters used in this simulation are equivalent
to the simulation settings used for Figs. 2–5. Each data point for
the four kinds of disordered quantum walks is averaged over 100
configurations of disorder. Error bars have been omitted for clarity.

d ≈ 2, therefore the motion is diffusive, Var(±)(xM,t) ∝ t

[(purple) squares and (green) triangles]. Finally, in the case
of the static disordered QW the fractal dimension is d ≈ 3.4
and the trend is subdiffusive, Var(±)(xM,t) ∝ t0.6, thus leading
to particle stagnation [(yellow) diamonds].

VIII. SHANNON ENTROPY AND MUTUAL INFORMATION

An alternative method to measure the position fluctua-
tion with the variance is provided by the joint Shannon
entropy of the two walkers’ position probability distribution
P (±,sym)(x,y), which, via Eq. (11), describes the statistics in
the bosonic (fermionic) case. This is

H (X,Y ) ≡ −
∑
x,y

P (±,sym)(x,y) log2 P (±,sym)(x,y). (12)

This quantity varies with the number of steps in a similar
way for symmetric and antisymmetric particles, however, the
values of H (X,Y ) obtained at each step depend on the particle
statistics. In particular, we may observe in Fig. 9 that the
distribution P (−,sym)(x,y) (dashed line) shares a joint entropy
lower than the one shared by the distribution P (+,sym)(x,y)
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FIG. 9. (Color online) Joint Shannon entropy, (12), up to 100
steps of symmetric (solid curves) and antisymmetric (dashed curves)
quantum walks under different conditions. We may observe how the
increase in entropy is slowed when passing from the ordered [upper
(blue) curves] to the disordered case, saturating in the case of static
disorder [lower (red) curves]. For each type of disorder the entropy
of the P (−,sym)(x,y) distribution is always lower than the entropy
of P (+,sym)(x,y). Each data point for the three kinds of disordered
quantum walks is averaged over 50 configurations of disorder. Error
bars have been omitted for clarity.

(solid line), and this happens in the presence of any kind of
disorder. The Shannon entropy, which we may consider the
amount of information gained by increasing the number of
steps in the QW, depends on the type of disorder the walker
undergoes during the walk.

As reported in Fig. 10 we also calculated another quantity,
the mutual information. The mutual information content of X

and Y measures the amount of common information about the
spatial position of the two particles, and its expression reads

I (±)(X : Y ) = H (X) + H (Y ) − H (±)(X,Y )

= 2H (X) − H (±)(X,Y ), (13)

where H is the Shannon entropy associated with the single-
particle marginal, (A10) (note that it does not depend on the
symmetry of the input state; see the Appendix).

We may observe in Fig. 10 that this quantity reaches an
asymptotic value in the disorder-free case [upper (blue) curve]
and in the presence of static disorder [middle (yellow) curve],
while it slowly decreases in the presence of dynamic disorder
[lower (purple) curve]. In the presence of this type of disorder,
indeed, the distribution tends to the classical one, so we may
imagine that one particle loses information about the position
of the other one since they tend to behave like independent
walkers. Both the symmetric and the antisymmetric distri-
butions exhibit this behavior, however, symmetric particle
systems share a mutual information lower than the one shared
by antisymmetric particles. This may be naively understood by
observing that, since the antisymmetric distribution is related
to fermionic behavior, due to the Pauli exclusion principle,
fermions cannot occupy all possible two-particle positions:
this corresponds to a residual mutual knowledge between
the two walkers. For the same reason, it is expected that
the higher residual correlation occurring in the antisymmetric

FIG. 10. (Color online) Mutual information, (13), up to 100 steps
of the quantum walk for (a) the distribution P (+,sym)(x,y) and (b) the
distribution P (−,sym)(x,y) in the disorder-free case [upper (blue) line],
dynamic disordered case [lower (purple) line], and static disordered
case [middle (yellow) line]. Mutual information decreases as the
number of steps increases. At each step the mutual information for
bosons is lower than that for fermions. Each data point for the three
kinds of disordered quantum walks is averaged over 50 configurations
of disorder. Error bars have been omitted for clarity.

case, compared to the symmetric one, survives even in the
limit of an infinite number of steps, since the particle statistics
is not affected during the walk. This is enforced by observing
from Eq. (13) that the difference in the mutual information
between symmetric and antisymmetric systems arises only
from the difference between the corresponding joint Shannon
entropies; indeed the marginal entropies [H (X) and H (Y )]
do not depend on the particle statistics. Thus a brief look at
Fig. 9 confirms that the gap in entropies between symmetric
and antisymmetric systems does not decrease as the number
of steps increases.

IX. CONCLUSIONS

In this paper, we have presented a theoretical analy-
sis of two noninteracting bosons and fermions traveling
in a discrete-time QW. By varying the parameters of the
system, transport properties have been studied. Then the
interplay between quantum coherence and the presence of
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dephasing disorder has been investigated, with particular
attention to entanglement and disorder-assisted transport
effects. By introducing suitable static disorder into the walk
we have simulated the absence of diffusion in a periodic
lattice. Under these conditions, the onset of Anderson local-
ization has been observed. Furthermore, decoherence deriving
from dynamic disorder has been investigated, simulating the
transition between the quantum and the classical worlds.
Finally, we have presented how fluctuating disorder can
lead to a deeper comprehension of the Anderson transition.
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APPENDIX: POLARIZATION AND STATISTICS

Given state (7), the probability of detecting one photon in
position x and the other in position y, irrespective of their
polarization, is written

P (±)(x,y,t) =
{|〈x,H |〈y,V |�(±)(t)〉|2 + |〈y,V |〈x,H |�(±)(t)〉|2, i > j,

|〈x,H |〈x,V |�(±)(t)〉|2, x = y,
(A1)

where |x,H 〉 and |x,V 〉 describe a photon emerging from the output port x of the setup with horizontal and vertical polarization,
respectively. Explicitly, this is

P (±)(x,y,t) =

⎧⎪⎨
⎪⎩

|ψA(x,t)ψB(y,t) ± ψA(x,t)ψB(y,t)|2 for x > y,{
2 |ψA(x,t)ψB(y,t)|2 for (+),

0 for (−),
for x = y,

(A2)

where for C = A,B we have introduced the single-particle
amplitude probabilities,

ψC(x,t) = 〈x|ψC(t)〉. (A3)

[We stress that to avoid double-counting, P (±)(x,y,t) is defined
only for x � y.]

The probabilities defined above correspond to the probabil-
ities one would get if the particles were indistinguishable and
obeyed bosonic or fermionic statistics. This is a consequence
of two facts: (i) while in Eq. (7) the two particles are
distinguishable in terms of their polarization degrees of
freedom, the measurement we consider is transparent with
respect to this degree of freedom (we do not distinguish
whether the emerging photon is H or V ); and (ii) the
vector |�(±)〉 is symmetric (antisymmetric) for particle (i.e.,
polarization) exchange. To see this explicitly observe that in
the first quantization, having identified the polarization with
the particle indexes, we have that |�(+)(t)〉 defines a proper
state of two bosons. The probability of detecting one of the
two particles in position x and the other in y (<x) can then
be obtained by projecting |�(+)(t)〉 in the bosonic state which
represents this final configuration [i.e., the symmetric vector
(|x,H 〉|y,V 〉 + |y,H 〉|x,V 〉)/√2)],

P (BOS)(x,y) =
∣∣∣∣
[ 〈x,H |〈y,V | + 〈y,H |〈x,V |√

2

]
|�(+)〉

∣∣∣∣
2

= |ψA(x)ψB(y) + ψA(x)ψB(x)|2 = P (+)(x,y),

(A4)

(hereafter, time has been neglected for ease of notation).
Similarly, the probability of detecting both particles in x is
given by

P (BOS)(x,x) = |〈x,H |〈x,V | |�(+)〉|2
= 2 |ψA(x)ψB(y)|2 = P (+)(x,x). (A5)

The same conclusions apply for fermions. Indeed in this case
one has

P (FER)(x,y) =
∣∣∣∣ [〈x,H |〈y,V | − 〈y,H |〈x,V |]√

2
|�(−)〉

∣∣∣∣
2

= |ψA(x)ψB(y) − ψA(y)ψB(x)|2 = P (−)(x,y)

(A6)

for x > y, while of course

P (FER)(x,x) = 0 = P (−)(x,x). (A7)

A compact way to express the above quantities is by means
of the symmetric version of the distributions P (±)(x,y), i.e.,
the quantities

P (±,sym)(x,y) = P (±,sym)(y,x)

= |ψA(x)ψB(y) ± ψA(y)φB(x)|2
2

. (A8)

The functions P (±,sym)(x,y) are normalized when integrated
over the whole domain of x and y; i.e.,

∑
x,y

P (±,sym)(x,y) =
∑
x,y

|ψA(x)ψB(y) ± ψA(y)ψA(y)|2
2

= 〈ψA|ψA〉〈ψB |ψB〉 ± |〈ψA|ψB〉|2 = 1,

(A9)

and possess identical marginals, i.e.,

P (sym)(x) =
∑

y

P (±,sym)(x,y)

= |ψA(x)|2 + |ψB(x)|2
2

± Re[ψA(x)ψB(x)∗〈ψB |ψA〉]

= |ψA(x)|2 + |ψB(x)|2
2

. (A10)
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[Note that in writing the last identities in Eqs. (A9) and
(A10) we have explicitly used the fact that |ψA〉 and |ψB〉
are orthonormal states: these vectors are in fact associated
with two single-particle trajectories entering the system from
two distinct ports of the interferometer.] Accordingly, we can
write

P (BOS)(x,y) = 2P (+,sym)(x,y) for x > y,

P (BOS)(x,x) = P (+,sym)(x,x) for x = y,
(A11)

P (FER)(x,y) = 2P (−,sym)(x,y) for x > y,

P (BOS)(x,x) = P (−,sym)(x,x) = 0 for x = y.

In particular, the expectation value of any two particle
observable 
 which is symmetric under particle exchange
can be expressed in terms of P (±,sym)(x,y). Indeed, indicating
by 
(x,y) = 
(y,x) the spatial representation of 
, the
following identity holds:

〈
(BOS)〉 =
∑
x�y

P (BOS)(x,y)
(x,y)

=
∑
x,y

P (+,sym)(x,y)
(x,y),

(A12)
〈
(FER)〉 =

∑
x�y

P (FER)(x,y)
(x,y)

=
∑
x,y

P (−,sym)(x,y)
(x,y).

1. Single-particle detection probabilities

From the above equation one can easily compute the
probability of finding a particle in position x. In particular,

for bosons one may introduce the probability P
(BOS)
>1 (x) of

finding at least one particle in position x and the probability
P

(BOS)
1 (x) of having exactly one particle in position x. These

quantities in general differ and can be expressed as

P
(BOS)
>1 (x)

=
∑
y(<x)

P (BOS)(x,y) +
∑
y(>x)

P (BOS)(y,x) + P (BOS)(x,x)

= 2
∑

y

P (+,sym)(x,y) − P (+,sym)(x,x)

= 2P (sym)(x) − P (+,sym)(x,x), (A13)

P
(BOS)
1 (x) =

∑
y(<x)

P (BOS)(x,y) +
∑
y(>x)

P (BOS)(y,x)

= 2P (sym)(x) − 2P (+,sym)(x,x). (A14)

We stress that neither P
(BOS)
>1 (x) nor P

(BOS)
1 (x) coincides with

the marginal distribution P (sym)(x) of (A10). In particular,
differently from the latter, neither P

(BOS)
>1 (x) nor P

(BOS)
1 (x)

is necessarily normalized to 1 when summing over x (this is
due to the fact that when summing over x we are unavoidably
including double-counting of events). In the fermionic case
P

(FER)
>1 (x) and P

(FER)
1 (x) coincides due to the Pauli exclusion

principle. In this case we have

P
(FER)
1 (x) =

∑
y(<x)

P (FER)(x,y) +
∑
y(>x)

P (FER)(y,x)

= 2
∑

y

P (−,sym)(x,y) = 2P (sym)(x), (A15)

which, up to a constant normalization factor, coincides with
the marginal of the symmetric distribution P (−,sym)(x,y).

[1] Y. Aharonov, L. Davidovich, and N. Zagury, Phys. Rev. A 48,
1687 (1993).

[2] M. Mohseni, P. Rebentrost, S. Lloyd, and A. Aspuru-Guzik,
J. Chem. Phys. 129, 174106 (2008).

[3] M. B. Plenio and S. F. Huelga, New J. Phys. 10, 113019 (2008).
[4] L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi,

R. Ramponi, and R. Osellame, Phys. Rev. Lett. 108, 010502
(2012).

[5] A. Peruzzo, M. Lobino, J. Matthews, N. Matsuda, A. Politi,
K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Worhoff,
Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. O’Brien,
Science 329, 1500 (2010).

[6] A. Schreiber, K.N. Cassemiro, V. Potocek, A. Gabris, P. J.
Mosley, E. Andersson, I. Jex, and C. Silberhorn, Phys. Rev.
Lett. 104, 050502 (2010).

[7] A. M. Childs, Phys. Rev. Lett. 102, 180501 (2009).
[8] A. M. Childs, D. Gosset, and Z. Webb, Science 339, 6121 (2013).
[9] C. A. Ryan, M. Laforest, J. Boileau, and R. Laflamme, Phys.

Rev. A 72, 062317 (2005).
[10] H. Schmitz, R. Matjeschk, C. Schneider, J. Glueckert, M.

Enderlein, T. Huber, and T. Schaet, Phys. Rev. Lett. 103, 090504
(2009).

[11] F. Zähringer, G. Kirchmair, R. Gerritsma, E. Solano, R. Blatt,
and C. Roos, Phys. Rev. Lett. 104, 100503 (2010).

[12] J. Casanova, A. Mezzacapo, L. Lamata, and E. Solano, Phys.
Rev. Lett. 108, 190502 (2012).

[13] A. Mezzacapo, J. Casanova, L. Lamata, and E. Solano, Phys.
Rev. Lett. 109, 200501 (2012).

[14] P. K. Pathak and G. S. Agarwal, Phys. Rev. A 75, 032351
(2007).

[15] A. Schreiber, K. N. Cassemiro, V. Potocek, Gabris, I.
Jex, and C. Silberhorn, Phys. Rev. Lett. 106, 180403
(2011).
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