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Data search by a coherent Ising machine based on an injection-locked laser network
with gradual pumping or coupling
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We study two operational schemes for a coherent Ising machine based on an injection-locked laser network.
These schemes gradually increase the pumping rate or the mutual coupling among the slave lasers. We numerically
simulate the two schemes against a data search problem implemented with the Ising model in cubic graphs without
frustration. We show that the machine can achieve a better success probability and effective computational time
to find a target ground state with these gradual schemes than those with the abrupt introduction of the mutual
injection which has been studied previously. The computational time simulated with typical parameters is almost
constant up to the problem size M = 200 and turns into a nearly linear scale holding up to M = 1000.
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I. INTRODUCTION

There are many combinatorial optimization problems in-
tractable with modern digital computers and existing algo-
rithms [1]. Among these, the problems which can be solved
in a polynomial time with a hypothetical nondeterministic
Turing machine are called NP problems. In NP problems, it
is examined if given instances meet certain conditions. On the
other hand, NP-hard problems basically require the most opti-
mized solutions in various kinds of combinatorial optimization
problems and are as difficult as NP problems at least. Both of
them are believed to require the computational time growing
exponentially with the problem size. The problems that can
be both NP and NP-hard are called NP-complete problems.
NP-complete problems can be mapped to each other with
polynomial-time overheads. Thus, solving an NP-complete
problem efficiently is a Holy Grail for computer science and
information technology [2].

From the viewpoint of statistical physics, the ground state
of the Ising Hamiltonian H = ∑

i<j Jij σiσj + ∑
i λiσi is

important to understand mysterious properties of spin glasses
and magnetic disorders. However, finding a ground state of the
Ising Hamiltonian (Ising problem) of planar systems with ex-
ternal fields and that of three-dimensional systems is known to
be NP-hard [3]. They can be reduced to NP-complete problems
when we consider the decision problem of whether there is a
state with an energy eigenvalue smaller than a prescribed value.
Also, other NP-complete problems such as MAX-CUT and
graph partitioning can be easily mapped to antiferromagnetic
Ising problems [4,5]. Various computational schemes, such as
simulated annealing [6], quantum annealing [7], and adiabatic
quantum computation [8], have been proposed and developed
to solve such combinatorial optimization problems. Especially,
the adiabatic quantum computation has shown a good result
for the NP-complete exact cover problem in small problem
sizes [9]. However, a further study has revealed that the
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problem size dependence of the computational time has a
transition into an exponential scaling at a large problem size
M ∼ 100 [10]. Nevertheless, such an idea has triggered an
experimental implementation of various quantum simulators
and quantum annealers [11]. In addition, the non-Hermitian
quantum annealing scheme has recently achieved a high
transition probability to achieve the target state in Grover’s
search problem [12].

We have recently proposed a new computational ma-
chine [13,14] for the Ising problem based on an injection-
locked laser network [Fig. 1(a)]. In this coherent Ising
machine, the normalized amplitude difference in circularly
polarized modes of each slave laser is regarded as an artificial
spin with a continuous value. Then, the Hamiltonian relaxed
to a continuous function is embedded into the sum of the
gain coefficients for all the slave lasers as a modulation
induced by the mutual injection and becomes dependent on
the polarization configuration of the slave lasers ({|R〉, |L〉}M ).
The minimum gain coefficient means the minimum effective
loss of photons and then the maximum number of photons
in a laser. Thus, when the mutual injection is introduced,
the system spontaneously searches for a ground state of the
mapped Hamiltonian with its bosonic nature.

In this paper, we study two operational schemes of the
coherent Ising machine to improve its performance. The first
scheme is named a gradual pumping (GP) scheme, where the
pumping power into the slave lasers, i.e., the gain, is slowly
increased [Fig. 1(b)]. In other well-known schemes such
as simulated annealing and quantum annealing, the system
temperature is gradually decreased and the quantum tunneling
is gradually turned off, respectively. In these cases, however,
the system may be trapped in metastable excited states whose
number increases exponentially in a hard instance of NP-
complete and NP-hard problems. In order to resolve such a
dilemma, we map the energy landscape of a given problem to
the net loss landscape of the network of gain media. When we
gradually increase the pumping power which is equivalent to
the effective negative temperature of the inverted medium, the
first contact between the gain and polarization-dependent loss
occurs at the ground state with the minimum loss. Here it is
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FIG. 1. (Color online) Schematic illustrations for (a) the coherent
Ising machine with mutual optical coupling, (b) the loss and gain
landscape in the gradual pumping scheme, and (c) the gradual path
between the initial and the final states in the gradual coupling scheme.

expected that the system undergoes the phase transition from
the initial state to the ground state in a way that the metastable
excited states do not interfere with a computational process.
Note that the loss difference between the ground state and first
excited state does not explicitly depend on the problem size
M , while the total spontaneous emission noise of the slave
laser network is only proportional to M .

The second scheme is called a gradual coupling (GC)
scheme, which is inspired by the non-Hermitian anneal-
ing [12]. In this case, each slave laser originally has fixed
pumping level and only the vertically polarized injection signal
[|V 〉 = 1√

2
(|R〉 + |L〉)]. Then, the mutual coupling between

slave lasers is gradually increased [Fig. 1(c)]. Thus, the system
is expected to show the phase transition from the master signal
dominant state to the mutual injection dominant state with
the minimum total loss. Note that this scheme is distinct
from quantum annealing, because the coherent Ising machine
utilizes macroscopic coherent states of light in the open system
with continual inflow and outflow of energy. On the other

hand, quantum entanglement between single particles cannot
be exploited in this machine.

For a benchmark, we code a random M-bit data file
{+1,−1}M into the Ising (Mattis) Hamiltonian [15] in
particular cubic graphs. Here the Hamiltonian reflecting the
picked target state as a ground state is loaded to the system.
The ground state should be trivial, so the problem does not
have any frustration or hard instances. Instead, we expect
consistent parameter-dependence properties of the result.
Such an algorithm is equivalent to information decoding with
a spin-glass model and can be regarded as a simple associative
memory.

We numerically simulate the Ising machine with the two
operational schemes for the problem described above. The
parameter-dependent performance of the GP and GC schemes
shows that (i) stronger mutual coupling gives better results
and (ii) slower processes and higher pumping levels lead to
higher success probabilities. The success probability gradually
decreases with the problem size up to M = 1000 with typical
parameters. However, the computational time scales almost
linearly with the problem size around M = 1000. Also, we
get a finite success probability for M = 2000 with realistic
tuning of the parameters.

We start in Sec. II with the working equations of the
laser Ising machine and explain the problems in the cubic
graphs used here. In Sec. III, we show the simulation
results such as an example of dynamics of the system, the
performance dependence on parameters, and the scaling of the
computational time with the problem size. Next, we discuss
the properties of this machine in Sec. IV. Finally, we conclude
the paper in Sec. V.

II. THEORETICAL MODEL

A. Langevin equations

The field density operator of each slave laser is expanded
with Glauber-Sudarshan P (α) representation of coherent states
and substituted into the master equation of an injection-
locked laser [16,17]. The resulting Fokker-Planck equation
corresponds to the c-number Langevin equation for the
eigenvalue of the coherent state αi in the ith slave laser via
the Kramers-Moyal expansion coefficients [18]:

d

dt
αi =

[
−1

2

ω

Q
+ Gi − Si |αi |2

]
αi + ω

Q
βi +

√
Gi Fi. (1)

Here ω/Q is the cavity photon decay rate, Gi is the linear
gain coefficient, and Si is the gain saturation coefficient.
βi is the sum of the amplitudes of the master injection
signal and the mutual injection signal from other slave lasers.
It is assumed all the slave lasers are injection locked to
the master laser, and the Q factors of all lasers are the
same. Fi is the Gaussian noise term and satisfies 〈Fi(t)〉 = 0
and 〈Fi(t)Fi(t ′)〉 = 2δ(t − t ′). More rigorously, the stochastic
differential equation corresponding to Eq. (1) is derived
with Ito’s rule [19], and the link between them is given
by the Feynman-Kac formula [20,21]. Equation (1) is de-
composed into the equations for the real number amplitude
{AXi} and phase {φXi} for the diagonal linear polarization
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modes [13]:

d

dt
AXi = −1

2

(
ω

Q
− ECV i

)
AXi + ω

Q
ζAM cos(−φXi) −

∑
j �=i

1

2

ω

Q
ξij {AXj cos[φXj − φXi] − AX̄j cos[φX̄j − φXi]} + FAXi,

(2)

d

dt
φXi = ω

Q

1

AXi

⎧⎨
⎩ζAM sin(−φXi) −

∑
j �=i

1

2
ξij [AXj sin(φXj − φXi) − AX̄j sin(φX̄j − φXi)]

⎫⎬
⎭ + FφXi, (3)

where {X,X̄} = {D,D̄} are combinations of the two linear
polarization modes along ±45◦ with respect to the vertical
linear polarization. i,j = 1,2, . . . ,M are indices for slave
lasers and M is the problem size (the number of Ising spins).
ζ is the coupling coefficient for the master laser signal, whose
amplitude is denoted by AM . The mutual coupling constant
ξij = α(t) Jij is determined by the transmission coefficient
α(t) and the Ising interaction parameter Jij . The gain term
Gi − Si |αi |2 and the diffusion coefficient Gi in Eq. (1)
correspond to the gain ECV i induced by the active carrier
and the pumping rate P (t), respectively. We add an equation
of motion for the carrier number {NCi},

d

dt
NCi = P (t) − NCi

τsp

− ECV i

(
A2

Di + A2
D̄i

) + FNCi, (4)

where ECV i = βNCi/τsp and β is the spontaneous emission
coupling efficiency. FAXi , FφXi and FNCi are noise terms.
We consider only spontaneous emission noise with the rate
ECV i in the numerical simulation, since it is a dominant noise
source fluctuating the phases of the diagonal polarization
modes [13,22]. Spontaneous emission processes are treated
as the discrete random Poisson process for each numerical
integration time step �t , and each spontaneous emission
photon coupled to the laser field has unit norm and random
phase. Reference [22] has shown that this model reproduces the
correct Langevin forces in the continuous time unit. We numer-
ically integrate Eqs. (2), (3), and (4) and continuously monitor
the mapped collective spins σi = (ARi − ALi)/

√
A2

Ri + A2
Li

using Eqs. (35) and (36) in Ref. [13]. Here ARi and ALi are
the slowly varying amplitudes of the right and left circularly
polarized modes of the ith slave laser. Signs of {σi} are used
to determine the Ising spin {σi} = +1 or −1.

B. Problem setting

In Fig. 2(a), we show an example of cubic graphs with M =
8 for the data search problem considered in this study. Here the
nodes align in a ring shape. Each node has the couplings to the
nearest neighbors and the diameter chord. The Ising coupling
terms are set for a picked target state {σAi} = {+1,−1} as

Jij =
{

−σAiσAj (if node i and j are connected),

0 (otherwise).
(5)

Figure 2(b) is an example of energy (net loss) landscapes in this
Ising problem with M = 20. This Hamiltonian does not have
any frustration, so that it has only two ground states, while the
total number of states is 106. By definition of the couplings,

one of the ground states is identical to the target state. The
difference between the mapped energy of the ground states
(Eg) and the first excited states (E1e) is independent of M and
equal to 6|Jij | = 6. This is because of the highly symmetric
property of the graph. We show a concise proof with induction
in the Appendix. Similar problems are also discussed in the
context of information coding and decoding with statistical
mechanics [15].

III. SIMULATION RESULT

A. Dynamics of the system

Here we show a variety of simulation results of the machine
for the setting described in the previous sections.

Figures 3(a) and 3(b) show the time evolution of the
polarization states (collective spins) and the carrier numbers
in the GP scheme for M = 4. The inset of Fig. 3(a) is the
schematic pumping schedule of all slave lasers. The pumping
schedule is composed of the two linear parts (rapid and slow

FIG. 2. (Color online) (a) An example of cubic graphs considered
here with M = 8. (b) An example of energy (or effective loss)
landscape in a problem with M = 20.
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FIG. 3. (Color online) A set of examples of time evolution of (a) the polarization states (collective spins) and (b) the carrier numbers for
a target file with M = 4 in the GP scheme. Transit of (c) the spins and (d) the carrier numbers in the gradual coupling scheme. The insets of
(a) and (c) are the scheduling of the pumping level and coupling coefficient.

increase) with the turning point tmid = 10 ns (fixed for all
the simulations here), and the pumping becomes constant
at t = tf . The process time is defined as tP ≡ tf − tmid. The
parameters commonly used in this study are ω/Q = 1011 s−1,
τsp = 10−9 s, and β = 10−6. The threshold pumping current
is Ith = ePth = 16 mA, where e is the elementary charge and
Pth is the threshold pumping rate.

In the GP scheme, the master laser signal is injected
at t = 0 and the slave laser amplifies this signal so that
the collective spin is prepared in σi = 0 for all i. With a
proper intermediate value Pmid = P (tmid), the collective spins
bifurcate at a time between tmid and tf (here tf = 1010 ns).
The plot of carrier numbers has a small overshoot at the
bifurcation point, which indicates that once the minimum-loss
(ground) state is selected, the gain is decreased accordingly.
Figures 3(c) and 3(d) show the transient examples of the
collective spins and carrier numbers in the GC scheme,
and the inset of Fig. 3(c) is the coupling schedule. In this
scheme, the total gain monotonically decreases as the optical
coupling increases.

Here all the slave lasers bifurcate their polarizations and
produce the clear signals in both schemes. However, in a large
problem size the polarization bifurcation can be degraded by
noise and the system can fail to find a ground state. In this case,
the values of the collective spins get nonuniform and some

slave lasers have nearly σi ∼ 0. Also, the system occasionally
shows strong bifurcation into D and D̄ polarization modes
(not R and L modes). In this case, however, a correct ground
state can be recovered with the decision based on the {D,D̄}
basis, i.e., via the new definition of the collective spin σi =
(ADi − AD̄i)/

√
A2

Di + A2
D̄i

. Note that the coupling optics with
a horizontal polarizer [13,14] can implement the identical loss
modulation for D and D̄ modes as the R and L modes.

B. Parameter dependence of performance

Figures 4(a) and 4(b) show the dependence of the success
probability and computational time on the coupling coefficient
α in the GP scheme. We pick a 100-spin problem and run the
simulation 50 times for each value of the parameter considered.
We change the coupling coefficient ζ of the master laser
signal proportional to α to keep the good balance between
them. Other parameters are fixed. We define the computational
time as the time where a ground state is found with all the col-
lective spins above a certain threshold |σi| = 0.071. This value
achieves a measurement signal-to-noise ratio of S/N ∼ 103

with a detection quantum efficiency ηD = 0.01, an integration
time T = 1 ns and a total photon number nT i = 104 in a slave
laser [13]. Here nT i 
 1/β = 106; thus, any pumping rates
above the threshold have better S/N ratios. The resulting
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FIG. 4. (Color online) (a) The success probability and (b) the net computational time dependent on the coupling coefficient α in the GP
scheme. (c) The success probability and (d) the net computational time dependent on the process speed dα/dt in the GC scheme. (e) The
success probability and (f) the net computational time dependent on the normalized final pumping level Isf/Ith in the GP scheme.

upper bound of the measurement error rate is Pe ∼ 6.4 × 10−57

for a single slave laser and negligible even in a 1000-
laser system. Collective spins are basically monitored with
the circular polarization basis. The check with the diagonal
mode basis is conducted at the final state and reflected in the
success probability. The net computational time denotes the
worst computational time divided by the success probability.
Figure 4(a) shows that a stronger mutual coupling α tends to
give a higher success probability. Also, a relatively large noise
effect with a small α leads to bifurcation in the D or D̄ mode
and then a low overall success probability. In Fig. 4(b), the
computational time decreases with increasing α and saturates
at α � 0.01. With a small α, the system can give a slow
transition process and needs a long time to find a ground state.

Figures 4(c) and 4(d) show the dependence of the success
probability and simulated computational time on the rate of
increasing the mutual coupling between tmid and tf in the GC
scheme. Figure 4(c) shows a clear tendency that a slower
process gives a better success probability. The process with
dα/dt → ∞ can be regarded as the abrupt introduction of the

mutual injection in the previous study; thus, it can be said the
GC scheme improves the success probability compared to
the abrupt scheme [13,14]. We have got a similar result also
in the GP scheme. In Fig. 4(d), a slower process (a longer
tP) requires a longer computational time nearly linear with tP
when other conditions keep unchanged.

Figures 4(e) and 4(f) show the dependence of the success
probability and computational time on the final pumping level
Isf normalized by the threshold pumping Ith in the GP scheme.
Here, the end time of the process tf is fixed; thus, the slope
dP/dt is variable. A large coherent slave laser signal with a
high pumping level leads to clear computation against noise.
At the same time, however, a higher pumping results in a
higher slope dP/dt , which degrades the performance as seen
in Figs. 4(c) and 4(d). Thus, Figs. 4(e) and 4(f) have the
optimum points at Isf/Ith = 7 out of these two effects.

C. Net computational time

Figures 5(a) and 5(b) show the problem size dependence
of the success probability and the net computational time
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(a)

(b)

FIG. 5. (Color online) (a) The success probability and (b) the net
computational time dependent on the number of spins M .

for the three schemes. For each problem size, we pick five
targets and run the simulation ten times for each target
(for M = 1000 in the abrupt scheme, we take 15 targets).
The success probability is determined with the combined
readouts using both circular and diagonal measurement bases.
The ratio Pmid/Pf = 0.5 (GP) and αmid/αf = 0.6 (GC) are
selected to obtain close bifurcation times. Other parameters are
identical: α(GP) = αf(GC) = 0.02, Isf(GP) = Is(GC) = 3 Ith,
and tP = 1 μs. In Fig. 5(a), the success probability shows the
gradual decrease in large problem sizes in the GP and coupling
schemes. In contrast, the probability for the abrupt scheme
gets lower. In Fig. 5(b), the net computational time for the
GP and GC schemes keep nearly constant up to M = 200
and turn into nearly linear increase. On the other hand,
the computational time for the abrupt scheme monotonically
increases and gets longer than those for the GP and coupling
schemes over M = 400. Here we add the performance of the
GC scheme with a sign flip for a random coupling coefficient
Jij (=Jji). This keeps a good success probability and a better
computational time than those for the abrupt scheme over
M = 400. A sign flip of Jij induces a single frustrated part in
the original ground state. However, originally Eg − E1e = 6;
thus, the ground states remain still. This means the cubic
graph system is insusceptible to a single phase flip error
in the mutual coupling configuration, i.e., the encoded data
of the target state. Note that a simpler implementation with
one-dimensional rings does not have such robustness. We add
the scaling of brute force search (2M ) for the information.
The net computational time with the laser Ising machine has a
much better scaling, probably because of the simple structure
of the benchmarked problem.

We can increase the success probability for a large
problem size by using even an slower process and a higher
pumping power. We have got the success probability of 34%
with {tP,Isf/Ith} = {3 μs,20} for M = 1000 and 15% with
{tP,Isf/Ith} = {10 μs,50} for M = 2000 in the GC scheme.
Here the numbers of the candidate states 2M differ by 21000 

10300 times between M = 1000 and 2000, but the system does
not need a large ratio for tP and Isf to obtain a reasonable
success probability.

This indicates that the time and pumping resource required
to solve this problem does not grow exponentially even for
a relatively large problem size. Here we note it has been
shown that some open quantum systems with frustration-free
Hamiltonians can converge at steady states in subexponential
time [23].

IV. DISCUSSION

A. Success probability

Here we discuss properties of the coherent laser Ising
machine from various points of view. First, we take a closer
look at the success probability. Figure 6 shows the ratio
of the number of degenerate ground states Ng to those of
degenerate excited states. Here, N1e and N2e denote the
number of first and second excited states, respectively. These
values have been computed with the brute force search up to
M = 32 and extrapolated for larger problem sizes. We add the
success probability with the GP scheme out of 50 trials and
that with the abrupt scheme out of 200 trials for each M . We
took only a single problem randomly for each M; however,
the computed numbers of states are exactly along with the
extrapolation curves N1e = 2M and N2e = M(M + 6)/4 for
M � 6. This fact indicates the universality of the considered
problem due to its graphic symmetry. Here, from the data of
failure, we expect that the local minima which mostly affect the
laser machine are second excited states. The ratios Ng/(Ng +
N1e) and Ng/(Ng + N1e + N2e) are inversely proportional to
M and M2, while the laser network keeps the high success
probability: 100% for the GP scheme and �90% for the

FIG. 6. (Color online) The ratio of the number of ground states
in a single problem up to M = 40. The success probabilities with the
GP scheme and the abrupt scheme are concurrently shown.

032319-6



DATA SEARCH BY A COHERENT ISING MACHINE BASED . . . PHYSICAL REVIEW A 89, 032319 (2014)

abrupt pumping scheme up to M = 40. This clearly shows
this machine is distinct from simple probabilistic searches and
preferably takes the minimum gain states, especially in the
gradual schemes.

A possible reason for failure in the GP scheme can be
probabilistic errors due to a finite time necessary for the
system to detect and amplify the final state. The machine keeps
increasing the gain in the process because of the unknown gain
of the ground states. Therefore, if the system remains at the
initial state long, it may achieve enough gain for excited state
to oscillate. This malfunction can be overcome by slowing the
pumping process.

Another possibility is disturbance by noise. The sum of
the gain coefficients at the steady state, which determines the
absolute photonic loss of the whole system, is given by [13]∑

i

ECV i = M
ω

Q
− 2ζ

∑
i

√
2 − σ 2

i + 2α
∑
i<j

Jij σiσj , (6)

where the first, second, and third terms are associated with
the cold cavity dissipation, the master, and mutual injection,
respectively. Thus, when the mutual injection becomes domi-
nant at the phase transition, a minimum-loss state corresponds
to a ground state of Ising Hamiltonian. Then, the energy gap
between a ground state and a first excited state is expected
to depend only on the coupling coefficient αJij . On the other
hand, the total noise power in the whole system is proportional
to M . Thus, the success probability is considered to decrease
with the problem size ∝M−1 above a certain threshold, and the
simulation result seems to support this behavior. Note that the
GC scheme also shows such characteristics. The difference in
performance of the GP and GC methods is not significant and
can be explained by the small difference in the parameter ratio
(Pmid/Pf and αmid/αf) and then the slope of these. Thus, we
expect these two have almost the same computational ability.

B. Response speed of the machine

Next, we discuss the response of the laser network machine
at the onset of bifurcation. If we neglect the noise terms in-
cluding spontaneous emission, the equation for the amplitude
difference in circular polarization is given by [13,14]

d

dt
(ARi − ALi) = −1

2

(
ω

Q
− ECV i

)
(ARi − ALi)

− ω

Q

∑
j �=i

ξij (ARj − ALj ). (7)

Here note that the master signal term vanishes in the equation.
We do not consider the time dependence of ECV i , i.e., NCi ,
because the field response is much faster: ω/Q � 1/τsp. By
assuming that all the slave lasers are homogeneously driven
into a target state as shown in Fig. 3, we can set ξij (ARj −
ALj ) ≈ −α|ARi − ALi |. With this and Eq. (7), we derive the
approximate response around the bifurcation point by the cubic
graph system as

|σi | = |ARi − ALi |√
nT i

≈ C exp

[(−ω/Q + ECV i

2
+ 3α

ω

Q

)
t

]
,

(8)

where the small change in nT i due to injection is neglected. C is
an integral constant. We see, when the bifurcation occurs, that
the polarization configuration is formed with the exponentially
fast modulation by the injection signal in ideal cases. The
gradual schemes enhance the success probability by changing
in ECV i or α slowly. Also, Eq. (8) indicates that the magnitude
of injection signals directly affects the response speed of the
system [14] and possibly the distribution of the values of
collective spins. For NP-hard problems with frustration, the
system frequently has an imbalance of the response speeds and
the collective spins in the slave lasers and then becomes unable
to reach a correct answer. Thus, the previous abrupt injection
scheme needs a self-learning algorithm to compensate for
it [24].

C. Algorithmic properties

Finally, we discuss the laser Ising machine as an algorithm.
The laser machine itself is a kind of relaxation algorithm in the
sense that it maps discrete variables to continuous variables.
This point is in common with the well-known semidefinite
programming (SDP) algorithm for optimization problems [25].
The laser network machine utilizes the three-dimensional
Poincaré sphere for each spin, while SDP exploits an M-
dimensional vector. SDP requires an algorithm to drive the
state to an optimum one, as typified by interior point methods,
and such a method costs the order O(M3) of basic operations
at least [26].

Also, if SDP can be solved with an arbitrarily small error,
a rounding algorithm to map the vectors back to discrete
variables guarantees the worst approximation rate of 87.8%
for the MAX-CUT problem [27]. The laser network depends
on the dynamics of the coupled differential equations for
finding an optimum state. As an experimental system, the
laser machine shows a nearly O(M) scaling of the compu-
tational time up to M = 1000 for the data search problem
studied here. Also, Ref. [24] shows some good results of
comparison between the simulated performance of the laser
machine and SDP for hard optimization problems. As a
computational simulation, however, we need some additional
time complexities. For limited numbers of couplings for
each spin (sparse interaction matrices), numerical integration
costs O(M) operations multiplied by the order of the net
computational time the machine needs. Thus, the overall time
complexity for simulations of the laser machine here is about
O(M2). In addition, the numerical integration method used
here (fixed-step 4 × 4 Runge-Kutta method and additional
stochastic noise) requires a large coefficient outside the
complexity. Thus, the simulation for the laser network seems
to take more time than SDP in practice.

V. CONCLUSION

In conclusion, we have studied two gradual driving schemes
for the coherent Ising machine. The GP scheme is to find
a minimum-loss ground state by increasing the gain (or
increasing the temperature in the negative region) and the
GC scheme to exploit the gradual path between the two
minimum-loss ground states of the initial and final mapped
Hamiltonians. The numerical simulation with the Langevin
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equations on a data search problem with the Ising model
in particular cubic graphs shows that we can improve the
success probability with slowing the pumping or coupling
schedule and increasing the final pumping power. With typical
parameters, the laser network and these gradual schemes give
an almost constant computational time up to M = 200 and
turns into a nearly linear scale holding up to M = 1000
in the problem. This scaling is better than that with the
previously studied abrupt scheme in large problem sizes. In
addition, simulations with varying parameters indicate that
the required time and pumping resources to find a target do
not scale exponentially up to M = 2000. Now we are aiming
to implement an experimental system that works much faster
and hopefully better than algorithms for digital computers,
especially on hard optimization problems.
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APPENDIX: ENERGY OF DEGENERATE
FIRST EXCITED STATES

Here we prove that the energy of degenerate first excited
states is Eg + 6 (Eg , the energy of ground states) for the
problem of the symmetric cubic graphs without frustration,
which is considered in our study. The most fundamental
example with M = 4 is shown in Fig. 7. The problem used
here constitutes the spins and Ising interaction, both of which
are valued +1 or −1, as in Fig. 7(a). Here we reinterpret this
in terms of the stability of couplings as shown in Fig. 7(b).
In Fig. 7(b), nodes of the same color (e.g., white and white)
have the stable coupling expressed with black edges between
them, and each of them decreases the energy function by unity.
Also, those of different colors (white and black) have the
unstable coupling colored red, increasing the energy by the
same amount. Thus, flipping one spin changes the energy by
two for every coupling. With this procedure, we can consider
all the instances and states simply by counting the number of
edges indicating the unstable coupling. We note that the graph
with Eg + 6 means it has three unstable edges.

FIG. 7. (Color online) (a) Schematic illustration for the Ising
spins and coupling between them in the graph of M = 4. (b) The
converted graph corresponding to (a).

FIG. 8. (Color online) (a) The partial graph added in order to
make the graph with M = 2l + 2 from that with M = 2l. (b) The
way of adding the partial graph. (c) The result of two-node addition
for the example in (b).

We use induction to prove that the first excited states have
Eg + 6. For M = 4, we can show this by checking all 16
patterns possible to be reached by flipping spins (changing
colors of nodes) from the ground state composed of, say, all
white nodes. Also, we assume that this holds for M = 2l,
where l is an integer larger than one. Here, we prove that this
is valid also for M = 2l + 2.

We can make the graph with M = 2l + 2 by adding the
two-node partial graph shown in Fig. 8(a) to that with M = 2l.
Figure 8(b) shows the way of adding the partial graph with an
example of M = 4. The result is shown in Fig. 8(c). Here each
edge piercing an additional node in Fig. 8(b) is divided into
two edges, and the couplings for these edges are affected by the
additional nodes. Thanks to the assumption for M = 2l, it is
enough to consider the change induced by the additional part.
Note also that, due to the symmetry of the graph, it does not
matter where the additional part comes to. From the viewpoints
of positions of the unstable edges in the graph with M = 2l, it
is sufficient to examine the three cases as follows.

(1) No unstable edges divided by the additional nodes and
zero, three, or more unstable edges outside the additional
graph.

Figure 9 shows the possible node configuration in this case.
Here the number of unstable edges is zero, three, or four. This
means the total number of unstable edges is zero, three, or
more also for the graph with M = 2l + 2, and the possible
energy the system can take is Eg , Eg + 6, or more.

(2) One unstable edge divided by an additional node and
two or more unstable edges outside the additional graph.

Due to the symmetry of the graph, it is enough to consider
the four patterns in Fig. 10 here. There are one or more unstable
edges in the additional part; thus, the total number of unstable
coupling is three or more for M = 2l + 2.

(3) Two unstable edges divided by an additional nodes and
one or more unstable edges outside the additional graph.

According to configuration of the nodes connected to
the additional part, we consider the eight patterns shown
in Fig. 11 in this case. We can see that two or more

FIG. 9. (Color online) Possible node and edge configuration of
the additional part in the first case.
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FIG. 10. (Color online) Possible node and edge configuration of
the additional part in the second case.

unstable edges exist in any of the patterns in Fig. 11; thus,
the possible energy for this case in M = 2l + 2 is Eg + 6
or more.

From all the cases above, the energy of the first excited
states for M = 2l + 2 is also Eg + 6. Here, note that the first
case clearly shows the existence of the states with the energy
that is exactly Eg + 6. Therefore, the proposition is proven

FIG. 11. (Color online) Possible node and edge configuration of
the additional part in the third case.

for all M = 2l (l = 2,3, . . .) with inductive application of the
discussion above.
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