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We derive the quantum limit on the error probability exponent for discriminating any M multimode coherent
states of light and show that it is four times that of an ideal heterodyne receiver for the same signal set. We
then propose a receiver that achieves the quantum limit using auxiliary coherent-state fields, beam splitters, and
single-photon detectors. The performance of the receiver is compared to standard measurements for various
imaging and communication tasks. A related receiver for discriminating arbitrary multicopy pure quantum states
is shown to achieve the M-ary quantum Chernoff exponent and does so using only local operations and classical
communication.
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I. INTRODUCTION

Optimally discriminating unknown nonorthogonal quan-
tum states using appropriate quantum measurements [1–4]
is a basic primitive underlying many quantum information
processing tasks such as communication [1], sensing and
metrology [4–8], and cryptography [9–11]. The central prob-
lem of quantum detection theory [1] is to determine the quan-
tum measurement, specified abstractly by a positive operator-
valued measure (POVM) [4], that minimizes the average error
probability in discriminating a given ensemble of states. The
problem has been solved in terms of necessary and sufficient
conditions that the optimal POVM must satisfy [12,13], but
for discriminating more than two states, the explicit solution
of these conditions is known only in very specific cases (see,
e.g., Refs. [14–18]). The scope of quantum detection theory has
since widened to include other scenarios such as unambiguous
state discrimination, maximum confidence discrimination, and
to discrimination using a quantum computer with limited
entanglement [19].

The main motivation for this work is the design of
concrete receivers, i.e., physical realizations of POVM’s,
for discriminating coherent states of light [20–38]. Coherent
states [39] (and their mixtures) are the most ubiquitous
quantum states of light and their discrimination is central to
optical communication [40] and sensing [4,41]. The optimal
error probability of discriminating an ensemble of coherent
states decreases exponentially with the average energy (or
equivalently, with the average photon number, in the narrow-
band case considered here) in the large-energy regime [1].
This is also true for the error probability of the standard direct,
homodyne, and heterodyne detection receivers [40]. However,
the exponent of the optimal receiver allowed by quantum
mechanics is in general greater than that of the conventional
measurements [1,20,21,31,33], leaving a gap between the
optimal error probability (popularly called the Helstrom limit)
and the minimum achievable by conventional measurements,
viz., homodyne, heterodyne, and direct detection (loosely
called standard quantum limits).

For discriminating two coherent states, the Kennedy re-
ceiver [20] is exponentially optimal, i.e., it achieves the

maximum error probability exponent in the high-photon-
number regime. Dolinar proposed a more complicated design
that exactly achieves the Helstrom limit [21] and was demon-
strated in a proof-of-principle experiment [22]. Sasaki and
Hirota conceived a receiver that could achieve the Helstrom
limit without using the fast electro-optic feedback required by
the Dolinar receiver [23], but this design required unknown
nonlinear-optical transformations, making it impractical. Re-
ceivers with performance in between the Kennedy and Dolinar
receivers were recently proposed [26,27] and demonstrated
[28–30] in the low-photon-number regime. Going beyond two
states, Dolinar proposed an exponentially optimal receiver for
M-ary pulse position modulation (PPM) [31] that was recently
demonstrated experimentally [32]. Bondurant proposed an
exponentially optimal receiver for the 4-ary phase shift keying
(4-PSK) constellation [33]. Recently, Becerra et al. proposed
and implemented a feedforward receiver structure for M-ary
PSK that beats the heterodyne limit for 4-PSK [34,35]. Other
receiver designs continue to be proposed and demonstrated for
particular coherent-state ensembles [36,37].

A parallel motivation for this work lies in the theory of
multicopy state discrimination using local operations and
classical communication (LOCC) [42–47] in the limit of a
large number of copies [48–52]. For discriminating between n

identical copies of one of two density operators, the error
probability of the optimal quantum measurement falls off
exponentially with n with a characteristic exponent depending
on the pair of states known as the quantum Chernoff exponent
[48,49] in analogy with its classical version [53]. Although
the measurement achieving this optimal scaling is expected to
be a joint one over all n copies, for discriminating two pure
states, the scaling and even the exact optimal error probability
is obtainable by copy-by-copy measurements with successive
measurements depending on previous results [43]. The case
of two mixed states is less well understood, although there
are examples of mixed qubit states for which a finite gap
exists between the Chernoff exponent and the best exponent
achievable using LOCC [44–47]. The theory of multicopy
state discrimination was recently extended to M > 2 states in
Refs. [50–52], where it was shown that the error probability
scales exponentially with the number of copies with an
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exponent not larger than the smallest of the pairwise Chernoff
exponents between the states of the ensemble. For pure-state
ensembles, a particular measurement was shown to achieve this
exponent so as to make it the exact M-ary Chernoff exponent
[50]. This achievability result was extended to some classes of
mixed-state ensembles in Refs. [51,52].

Our contribution in this work is threefold. First, we use
the quantum Chernoff exponent in M-ary multicopy state
discrimination [50] to obtain the maximum error probability
exponent with respect to the average signal energy allowed
of a coherent-state receiver by quantum mechanics. We show
that the exponent of the multimode heterodyne receiver is
smaller in general than this optimal value by a factor of
four. The Kennedy [20], Bondurant [33], and Becerra [34,35]
receivers rely on a strategy of attempting to null—i.e., displace
to the vacuum—the input state by successively subtracting the
fields corresponding to the possible hypotheses. As our second
contribution, we propose a receiver called the sequential
waveform nulling (SWN) receiver for discriminating any
ensemble of M , possibly multimode, coherent states. While the
Helstrom measurement on a coherent-state ensemble appears
in general to require a quantum computer [38], we show
that the quantum limit on the error probability exponent
obtained here is approached by the SWN receiver using
only auxiliary coherent-state generation, beam splitters, and
single-photon detection. The SWN receiver subsumes the
Kennedy [20] and the Type-I Bondurant [33] receiver and
is similar to the Becerra receivers [34,35] but requires no
classical data processing.1 To illustrate the capabilities of the
SWN receiver, we consider an image discrimination task for
which the error probability of the SWN receiver surpasses
the heterodyne limit for energy N beyond a low value.
Similar quantitative comparisons to standard receivers are
made for the 4-PSK and 6-PPM signal sets. As our final
contribution, we generalize the idea of sequential nulling to
pure-state ensembles in an arbitrary Hilbert space, propose a
multicopy discrimination strategy called the sequential testing
(ST) receiver, and show that it attains the M-ary Chernoff
exponent for multicopy discrimination derived in Ref. [50].
Unlike the joint measurement constructed in Ref. [50] for
achieving the M-ary Chernoff exponent, the ST receiver makes
only copy-by-copy binary projective measurements and is thus
potentially realizable using current technology.

1In Ref. [33], Bondurant proposed two receivers (“Type I” and
“Type II”) for the 4-PSK signal set. The Type I receiver nulls
hypotheses in a predetermined sequence, while the Type II receiver
nulls hypotheses in an order depending on the times that counts
were observed, thereby achieving a slightly improved performance.
Similar to the latter receiver, the Becerra et al. receiver [34,35] nulls,
after each detection stage, the most probable hypothesis conditioned
on the previous detection data. In contrast, our SWN receiver
nulls hypotheses in an arbitrary but predetermined sequence, and
is therefore more akin to Bondurant’s Type I receiver. However, our
claim of asymptotic optimality is expected to carry over, a fortiori,
to the more optimized strategies of the Becerra et al. receivers and
Bondurant’s Type II receiver. See also Ref. [47] for a discussion of
various strategies to optimize local measurements in the context of
binary state discrimination.

This paper is organized as follows: In Sec. II, we fix some
notations and formally define the various error probability
exponents studied in this paper. In Sec. III, we derive the
Helstrom and heterodyne error probability exponents for
general coherent-state ensembles, establishing that the former
is four times the latter. In Sec. IV, we introduce our sequential
waveform nulling receiver, describe its operation, obtain its
error probability for general coherent-state ensembles, and
show that its error probability exponent is nearly quantum
optimal. We also study its performance on a multispatial-mode
(image) ensemble, a single-mode (4-PSK) ensemble, and
a multitemporal-mode (6-PPM) ensemble. In Sec. V, we
introduce the sequential testing receiver for discriminating
multicopy pure-state ensembles and show that it achieves the
M-ary quantum Chernoff exponent. Finally, in Sec. VI, we
put the results obtained here in perspective and discuss some
applications and directions for future work.

II. NOTATION AND DEFINITIONS

Consider M narrow-band complex-valued coherent-state
waveforms {Em(ρ,t)}Mm=1, where ρ ∈ A is the transverse
spatial coordinate in the entrance pupil A of the receiver
aperture plane and t ∈ T = [0,T ] denotes time within the
signaling interval T .2 The mth waveform corresponds to
the mth hypotheses to be discriminated. The {Em(ρ,t)}Mm=1

are expressed in units of
√

photons m−2 s−1, can be
completely arbitrary, and correspond to coherent states
{|αm〉 = |α(1)

m 〉 ⊗ · · · ⊗ |α(S)
m 〉}Mm=1 on the Hilbert space of

S � M orthonormal spatiotemporal modes {φs(ρ,t)}Ss=1 that
span the waveform space. Classically, the mth waveform is
represented as the point αm ∈ CS in an S-mode phase space
[1,54]. Let

Em =
∫
A

∫
T

|Em(ρ,t)|2dρdt =‖αm ‖2 (1)

denote the average energy of the mth waveform in photon
units, and let

� := min
m,m′:m�=m′

∫
A

∫
T

|Em(ρ,t) − Em′(ρ,t)|2 dρdt

= min
m,m′:m�=m′

‖αm − αm′ ‖2 . (2)

Thus, � is the minimum squared distance among each pair
of signal points in phase space. For an a priori probability
distribution {πm}Mm=1, the average energy N in the ensemble is
given by

N =
M∑

m=1

πmEm. (3)

The error probability exponent (EPE) ξ # of a coherent-state
receiver #, where # may denote, e.g., the optimal Helstrom
(Hel) receiver, the heterodyne (Het) receiver, or the SWN
receiver, is defined as

ξ #[{αm}] := − lim
N→∞

1

N
ln P #

E

[{αm}(N)
]
, (4)

2For simplicity, we assume the waveforms all have the same
polarization.
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where P #
E[{αm}(N)] is the average error probability of the

receiver # used to discriminate the coherent-state ensemble
{|αm〉}(N) consisting of waveforms proportional to the given
set {αm}Mm=1 but uniformly scaled to have average energy
N . This definition is simply a translation to coherent-state
discrimination of the standard notion of error probability
exponent in classical digital communication. The EPE is a
key figure of merit for a receiver—a larger exponent indicates
better performance.

For an ensemble F = {ρm}Mm=1 of states from an arbi-
trary Hilbert space, consider the n-copy ensemble F⊗n =
{ρ⊗n

m }Mm=1. The quantum Chernoff exponent (QCE) ξQC[F] of
F is defined as [50,51]

ξQC[F] := − lim
n→∞

1

n
ln P Hel

E [F⊗n], (5)

where P Hel
E [F⊗n] is the average error probability of the

Helstrom receiver discriminating the ensemble F⊗n. For
pure-state ensembles F = {|ψm〉}Mm=1, we have [50]

ξQC[F] = min
m,m′:m�=m′

− ln |〈ψm|ψm′ 〉|2. (6)

III. OPTIMAL AND HETERODYNE EXPONENTS IN
COHERENT-STATE DISCRIMINATION

The EPE of the Helstrom measurement on a coherent-state
ensemble {αm} is, by definition,

ξHel[{αm}] := − lim
N→∞

1

N
ln P Hel

E

[{αm}(N)
]

(7)

= − lim
n→∞

1

n
ln P Hel

E

[ ⊗n {αm}(1)
]

(8)

= ξQC
[{αm}(1)] = �/N ≡ κ. (9)

In Eq. (8), n has been restricted to integer values and Eq. (8)
follows because a coherent-state ensemble can be split into n

identical copies using a unitary beam splitter transformation
and because this action cannot change the error probability
of the Helstrom receiver. We are now in the multicopy
discrimination framework and the left-most term in Eq. (9)
follows from Eq. (6), and we have used the coherent-state
overlap |〈αm|αm′ 〉|2 = e−‖αm−αm′ ‖2

to get the second equality
of Eq. (9). We have also defined the N -independent constant
κ that is a function of the prior probability distribution and
the ensemble {αm} up to a scale factor, i.e., an ensemble
{α′

m = λαm} with the same prior probability distribution has
the same κ as {αm}.

Heterodyning each of the S modes on which the ensemble is
supported yields, conditional on the state |αm〉, an observation
in CS with mean value αm and added zero-mean white
Gaussian noise of variance 1/2 in each of 2S quadratures
of the S modes. For this essentially classical situation, the
M-ary Chernoff exponent equals the smallest binary Chernoff
exponent between all pairs of the hypotheses [51,55]. The
latter quantity is well known in the Gaussian-noise case [56]
and results in

ξHet[{αm}] = �

4N
= κ

4
, (10)

so that the heterodyne EPE is a factor of four worse than the
Helstrom EPE regardless of the ensemble {|αm〉}.

IV. SEQUENTIAL WAVEFORM NULLING RECEIVER

A. Operation

The sequential waveform nulling (SWN) receiver (Fig. 1)
operates as follows: To begin with, the signal field over A × T
is split into L equal-amplitude portions or slices [L may be
arbitrarily large but at least equal to (M − 1)] that are placed in
lossless storage, e.g., the fiber loop in Fig. 1, and are accessed
and sequentially processed as follows:

(1) Initialize the slice number l to l = 1.

(2) Initialize the nulled hypothesis μ to μ = 1.
(3) While l � L

(a) Displace the lth slice of the input field by the field
− Eμ(ρ,t)√

L
and direct detect the output field in A × T on a

single-photon detector.
(b) If the detector clicks, set μ := μ + 1.

(c) l := l + 1.

(4) Set the receiver’s decision m̂ := μ.
As shown below, the L-fold amplitude-slicing enables the

SWN receiver to achieve the optimal exponent for hypotheses
in arbitrary spatiotemporal modes in the limit of large L.
In practice, due to the finite bandwidth for switching of the
LO pattern and the finite dead time of the detector after the
detection of a photon, the next slice cannot be processed
immediately after a detector click. If it is held in storage until
the LO waveform and detector are reset, the portion of the input
state in this interval is not lost, provided storage loss can be
neglected. In effect, such a splitting strategy was used, albeit
with a different architecture than Fig. 1, in the experiments
of Ref. [34,35] (our “slices” correspond to the “stages” of
Refs. [34,35]).

|αm
|βµ

αm − αµ√
L

Local Oscillator  
generator & 

control

LO

Single photon 
detector

Input

Storage loop

Displacement 
coupler

Transmittance
tuning

t round-trip> max { T, t reset }

Variable 
coupler

t round-trip = Pulse round-trip time in storage loop
t reset  = Post-click delay in resetting detector and generating next LO pattern

αm√
L

FIG. 1. (Color online) A possible implementation of the SWN
receiver. The variable coupler taps a 1/Lth fraction of the input energy
after each round trip around the fiber loop. Each slice is displaced
by the negative of one of the scaled hypotheses at the displacement
coupler and the local oscillator (LO) field pattern is switched to match
the next hypothesis for the next slice whenever the single-photon
detector registers a count. Additional elements necessary to keep the
LO amplitude and phase coherent with those of the input are not
shown.
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B. General error probability analysis

We now derive an expression for the error probability of the
SWN receiver for an arbitrary coherent-state ensemble, obtain
an upper bound on it [Eq. (18) below], and use it to derive the
lower bound [Eq. (19) below] on the SWN error probability
exponent.

The error probability analysis of the SWN receiver, based
as it is on direct detection of coherent states, can be carried
out using the semiclassical theory of photodetection [40,54]
and proceeds as follows: From the method of operation of the
receiver described in the previous section, it is apparent that
when the mth hypothesis is true, we cannot get more than
m − 1 total clicks over the L slices. Further, if m − 1 clicks
are observed, we declare correctly that hypothesis m is true.
We thus have for the conditional probability of error given that
hypothesis m is true

P SWN[E|m] =
m−2∑
K=0

Pr [K clicks are observed | m], (11)

where the m = 1 case may be included by agreeing that sums
in which the starting value of the summation index exceeds
the ending value are zero. For K > 0, the summand may be
written as follows: the K = 0 case is dealt with later. Define a
length-K vector l = (l1, . . . ,lK ) whose kth component lk is the
slice number in the detection of which the kth click occurred.
The possible instances of l are the increasing sequences of K

integers chosen from {1, . . . ,L}, and are thus (L

K) in number.
When the nulled hypothesis is μ < m, the average number of
photons incident on the detector in one slice is �μ,m/L, where

�m,m′ :=
∫
A

∫
T

|Em(ρ,t) − Em′ (ρ,t)|2 dρdt

= ‖αm − αm′ ‖2 . (12)

We may then write, using the Poisson statistics of detection
in each slice together with the conditional statistical indepen-
dence of photon counts in successive slices,

Pr[K clicks are observed | m]

=
∑

allowedl

exp

{
−�1,m

(l1 − 1)

L

}(
1 − exp

{
−�1,m

L

})

× exp

{
−�2,m

(l2 − l1 − 1)

L

}(
1 − exp

{
−�2,m

L

})
× · · ·

× exp

{
− �K,m

(lK − lK−1 − 1)

L

}(
1 − exp

{
−�K,m

L

})

× exp

{
−�K+1,m

(L − lK )

L

}
, (13)

where factors of the form exp{·} are probabilities that no
clicks are obtained in the intervals between the click locations
indicated by l while factors of the form (1 − exp{·}) are
probabilities of obtaining a click in the click locations. With
the conventions l0 := 0 and lK+1 := L + 1, we may rewrite

and bound the above expression as follows:

Pr[K clicks are observed | m]

�
∑

allowedl

K∏
k=0

exp

{
−�k+1,m

lk+1 − lk − 1

L

}
(14)

�
∑

allowedl

K∏
k=0

exp

{
−�

lk+1 − lk − 1

L

}
(15)

=
(

L

K

)
exp

{
−�

(L − K)

L

}
. (16)

To get Eq. (15), we have used the definition (2) of �. For K = 0
and for m > 1, we have Pr[K clicks are observed | m] =
exp(−�1,m) � exp(−�). The upper bound of Eq. (16) is there-
fore also valid in this case. For m = 1, we have P SWN[E | m =
1] = 0. Therefore, with the summation convention adopted
above, we may write, for all values of m,

P SWN[E | m] �
m−2∑
K=0

(
L

K

)
e−�

(L−K)
L , (17)

so that the total error probability of the SWN receiver is
bounded by

P SWN
E [{αm}] �

M∑
m=1

πm

m−2∑
K=0

(
L

K

)
e−�

(L−K)
L . (18)

A lower bound on the EPE ξSWN[{αm}] of the SWN receiver
can be obtained by inserting the right-hand side of Eq. (18)
into the definition (4) of the EPE. It is readily verified that
the EPE depends only on the term decaying the slowest with
respect to � and we have

ξSWN [{αm}] � �

N

(
1 − M − 2

L

)

= ξHel [{αm}]
(

1 − M − 2

L

)
. (19)

Because we must have ξSWN[{αm}] � ξHel[{αm}] by definition
of the Helstrom receiver, we conclude that the EPE of the
SWN receiver is at most a factor of 1 − (M − 2)/L away from
the Helstrom receiver. If L < (M − 2), there are not enough
clicks to ever declare the Mth hypothesis (and perhaps other
hypotheses as well) and, therefore, ξSWN[{αm}] = 0. On the
other hand, in the limit of L → ∞, the two exponents must
be identical, establishing the optimality of the SWN receiver
exponent in this limit. For a given M , L need not be very large
for the EPE to be close to optimal, as seen in the examples in
the next section.

C. Performance of the sequential waveform nulling receiver on
imaging and communication tasks

We consider the error probability performance of the SWN
receiver on three signal sets below. In all cases, we assume
that the hypotheses are equally likely, i.e., πm = 1/M for all
m ∈ {1, . . . ,M}.
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FIG. 2. Hypotheses in an image discrimination problem.

1. Detecting image orientation

Our first example is an image discrimination task with the
hypotheses supported on multiple transverse spatial modes. In
Fig. 2, the triangular transparency object shown consists of
three regions of uniform but unequal phase and amplitude
transmissivity.3 One of the three-fold rotations about the
horizontal axis (which is the propagation axis) combined with
one of the two-fold rotations about the vertical axis generates
six possible orientations of the object. When illuminated by a
pulse of transversely uniform coherent-state light propagating
on axis, the transparency generates one of six field patterns
that constitute the hypotheses to be discriminated. In effect, the
output of the receiver is the estimated orientation of the object.

In order to specify the coherent-state set to be discriminated,
we fix (arbitrarily) the complex numbers

f1 =
√

1

6
eiπ/3, (20)

f2 =
√

1

3
e−iπ/2, (21)

f3 =
√

1

2
(22)

that specify the relative amplitudes of the nonoverlapping
spatial modes supported on each of the three regions of
the triangle of Fig. 2. The coherent-state ensemble to be
discriminated then consists of all permutations among the
three spatial modes of the coherent states |f1

√
N〉,|f2

√
N〉,

and |f3

√
N〉:

|α1〉 = |f1

√
N〉|f2

√
N〉|f3

√
N〉,

|α2〉 = |f1

√
N〉|f3

√
N〉|f2

√
N〉,

... (23)

|α6〉 = |f3

√
N〉|f2

√
N〉|f1

√
N〉,

for average energy N .

3The target may alternatively be reflective without affecting the
analysis.
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FIG. 3. (Color online) Error probability of various receivers for
discriminating a 6-ary coherent-state image set.

The above ensemble is a geometrically uniform state set
[15] with a non-Abelian generating group (the permutation
group S3) and the optimal measurement is the so-called
least-squares measurement (LSM) [18]. In this case (and in
the following cases), the LSM is a projective (von Neu-
mann) measurement with orthogonal measurement vectors
{|μm〉}Mm=1, and the conditional probability of correct decision
given hypothesis m is [18]

P [m | m] = |〈μm|αm〉|2 = (
√

G)mm, (24)

where
√

G is the positive square root of the Gram matrix G of
the states defined as

Gmn = 〈αm|αn〉. (25)

The heterodyne error probability is not available in closed
form and so we use the union bound as an upper bound and
the bound Eq. (3.7.3) of Ref. [57] as a lower bound. These
two bounds have the same exponent and are very close for
N � 8 photons. The exact SWN error probability is calculated
from Eq. (13). The performance of these receivers is compared
in Fig. 3. We see that the SWN receiver with L = 10 slices
already beats the heterodyne receiver at N � 6 photons and
that increasing L improves the performance. The (L = 30)-
SWN receiver has an error probability exponent almost equal
to the Helstrom exponent, as evinced by the corresponding
curves being nearly parallel.

2. Quadrature phase-shift keying (QPSK)

Consider the 4-ary single-mode signal set (see Fig. 4) with
hypotheses corresponding to the coherent states (for average
energy N )

|αm〉 = |i(m−1)
√

N〉; m = 1, . . . ,4. (26)

QPSK is a common digital communication format that is
becoming popular in optical communication in recent years
because it has twice the symbol rate of on-off keying or binary
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i
√

N

−i
√

N

√
N−

√
N

FIG. 4. Quadrature phase-shift keying (QPSK) constellation in
phase space.

phase-shift keying [40,58]. In Ref. [33], Bondurant proposed
two QPSK receivers, one of which (his “Type-I” receiver)
may be regarded as an L = ∞ version of our SWN receiver.
To see this, note that in Ref. [33], the coherent-states (26) are
defined on a flat-top temporal pulse, and the Type-I receiver
operates by displacing the input pulse by the negative of the
currently nulled hypothesis followed by direct detection on a
single-photon detector. When a click is observed, the nulling
hypothesis is instantaneously changed to the next in sequence.
This receiver is clearly the limiting version of one in which the
input pulse is sliced into a very large number of temporal slices
of equal width, with the nulled hypotheses being incremented
if a click is seen anywhere within a slice duration. Since the
pulses are temporally flat, this latter receiver has the same
performance (albeit with less decoding delay) to one that slices
the input into a very large number of equal-amplitude slices,
i.e., the SWN receiver with L → ∞. More recent proposals
and experimental implementations of coherent-state QPSK
receivers that beat the standard quantum limit may be found
in Refs. [34–37].

The plots in Fig. 5 were obtained as follows: The state
set (26) is a geometrically uniform state set (in particular,
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FIG. 5. (Color online) Error probability of various receivers for
coherent-state quadrature phase-shift keying (4-PSK).
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FIG. 6. Temporal waveforms corresponding to pulse position
modulation (PPM).

it is a symmetric set [14,59]) and, as in the previous case,
the Helstrom measurement coincides with the least-squares
measurement, and the conditional probability of a correct
decision given hypothesis m is given by [15]

P [m | m] = (
√

G)mm, (27)

in terms of the Gram matrix

Gmn = 〈αm|αn〉. (28)

The error probability of the Type-I Bondurant receiver is taken
from Ref. [33]. The error probability of the heterodyne receiver
for QPSK is also known in closed form [57]. The SWN error
probability for each value of L is obtained from Eq. (13). The
superiority of the SWN receiver to the heterodyne receiver is
evident from the plots in Fig. 5. Note that increasing L makes
the SWN performance approach that of the Type-I Bondurant
receiver, as argued to be the case above.

3. Pulse position modulation

Consider a single transverse spatial mode and the nonover-
lapping temporal modes in the signaling interval [0,T ] illus-
trated in Fig. 6. This signaling set corresponds to pulse position
modulation (PPM), another popular modulation format for
optical communication [40]. We consider the case of six
temporal modes corresponding to the coherent-state ensemble

|αm〉 =
6⊗

k=1

|δm,k

√
N〉, (29)

where k indexes the nonoverlapping temporal modes.
The performance of the following receivers on the 6-PPM

ensemble is shown in Fig. 7. The Helstrom receiver for M-ary
PPM has the error probability [31]

P Hel
E = M − 1

M2

[√
1 + (M − 1)e−N −

√
1 − e−N

]
, (30)

the so-called conditional pulse nulling (CPN) receiver has the
closed form error probability [31]

P CPN
E = 1

M
[(1 − e−N )M + Me−N − 1], (31)

and direct detection has the error probability

P Dir
E =

(
M − 1

M

)
e−N . (32)
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FIG. 7. (Color online) Error probability of various receivers for
coherent-state 6-ary pulse position modulation (PPM).

The heterodyne error probability corresponds to that of
orthogonal signals in additive white Gaussian noise and can be
evaluated numerically [57]. The SWN error probabilities are
again calculated via Eq. (13). Note that the CPN receiver’s
error probability is very close to optimal, while the EPE
of the SWN receiver has not yet approached optimal in
the photon range shown even for L = 64 slices. This near-
optimal performance of the CPN receiver stems from its being
optimized to the specific structure of the PPM waveforms. We
note that the CPN and related receivers have recently been
implemented experimentally [32].

V. SEQUENTIAL TESTING RECEIVER

A. Operation

The philosophy of the SWN receiver can be applied to
the multicopy discrimination scenario of the M-ary quantum
Chernoff bound [50]. Abstractly, the nulling process in the
SWN receiver implements a unitary that maps the state |αμ〉
corresponding to the nulled hypothesis to the multimode
vacuum state |0〉. Detection using a single-photon detector
corresponds to a two-outcome POVM {|0〉〈0|,I − |0〉〈0|}.
Together, these two steps yield the same statistics as a measure-
ment of the POVM {|αμ〉〈αμ|,I − |αμ〉〈αμ|}. Now consider
a pure-state ensemble F = {|ψ1〉, . . . ,|ψM〉} of states on an
arbitrary Hilbert space H with prior probabilities {πm}Mm=1.
For each |ψm〉, analogous to the two-element POVM above,
define a binary projective POVM on H via �m = |ψm〉〈ψm|
and �⊥

m = I − �m. The unknown input state |ψm〉 enters the
receiver in the n-copy form ⊗n

l=1|ψm〉l , where we let 1 � l � n

denote the copy index. Analogous to the SWN receiver, we
now consider a sequential testing (ST) receiver that operates
as follows:

(1) Initialize the copy index l to l = 1.

(2) Initialize the current hypothesis μ to μ = 1.
(3) While l � n,

(a) Measure {�μ,�⊥
μ } on |ψm〉l .

(b) If the �⊥
μ outcome is obtained, set μ := μ + 1.

(c) l := l + 1.

(4) Set the estimated hypothesis m̂ := μ.

B. Error probability analysis

In this section, we derive the error probability of the ST
receiver, and via an upper bound on this probability, we
establish that it attains the M-ary quantum Chernoff exponent
in the asymptotic limit.

Analogous to the quantum Chernoff exponent defined in
Eq. (5), we may define the multicopy error exponent ξST[F]
of the ST receiver as

ξST [F] := − lim
n→∞

1

n
ln P ST

E [F⊗n], (33)

where P ST
E [F⊗n] is the average error probability of the ST

receiver for discriminating the ensemble F⊗n.
The performance analysis of the ST receiver follows largely

the same lines as that of the SWN receiver. Because making
the {�m,�⊥

m} measurement on |ψm〉 can never lead to a “⊥”
outcome, we have

P ST[E | m] =
m−2∑
K=0

Pr[K “ ⊥ ” outcomes | m]. (34)

As before, for each K > 0, we define a length-K vector l =
(l1, . . . ,lK ) whose kth component lk is the copy number in the
detection of which the kth “⊥” outcome occurred. We may
then write

Pr[K“ ⊥ ” outcomes |m]

=
∑

allowedl

|〈ψ1|ψm〉|2(l1−1)[1 − |〈ψ1|ψm〉|2]

× |〈ψ2|ψm〉|2(l2−l1−1)[1 − |〈ψ2|ψm〉|2] × · · ·
× [1 − |〈ψK |ψm〉|2]|〈ψK+1|ψm〉|2(n−lK ) (35)

�
∑

allowedl

F (l1−1)
max F (l2−l1−1)

max × · · · × F (n−lK )
max (36)

=
∑

allowedl

F (n−K)
max =

(
n

K

)
F (n−K)

max , (37)

where

Fmax = max
m,m′:m�=m′

|〈ψm|ψm′ 〉|2 , (38)

and Eq. (37) happens to also be valid for K = 0. The average
error probability of the ST receiver can then be bounded as

P ST
E [{|ψm〉⊗n}] =

M∑
m=1

πmP ST[E | m]

�
M∑

m=1

πm

m−2∑
K=0

(
n

K

)
F (n−K)

max . (39)

A lower bound on the Chernoff error exponent ξST of the ST
receiver can be obtained by inserting the right-hand side of
Eq. (39) into Eq. (33). Factoring out the lowest power of Fmax

032318-7



RANJITH NAIR, SAIKAT GUHA, AND SI-HUI TAN PHYSICAL REVIEW A 89, 032318 (2014)

on the right-hand side, namely Fn−M+2
max , we have

− 1

n
ln P ST

E [{|ψm〉⊗n}] � −n − M + 2

n
ln Fmax − 1

n
ln

[
M∑

m=1

πm

m−2∑
K=0

(
n

K

)
F (M−K−2)

max

]
. (40)

Since πm � 1,
(

n

K

)
� nK , and Fmax < 1, we may bound the

argument of the logarithm in the second term as

M∑
m=1

πm

m−2∑
K=0

(
n

K

)
F (M−K−2)

max � M2nM−2. (41)

Substituting this back into Eq. (40) gives

− 1

n
ln P ST

E [{|ψm〉⊗n}] � −n − M + 2

n
ln Fmax

− ln M2

n
− (M − 2)

ln n

n
. (42)

Taking the limit of n → ∞, we have

ξST[{|ψm〉}] � − ln Fmax

= ξQC[{|ψm〉}]. (43)

Since ξQC[{|ψm〉}] is the maximum exponent allowed of any
receiver, we must have

ξST[{|ψm〉}] = ξQC[{|ψm〉}], (44)

so that the ST receiver achieves the quantum Chernoff
exponent in the asymptotic limit of many copies.

VI. DISCUSSION AND OUTLOOK

We have used an amplitude-splitting argument to derive the
quantum-optimal EPE for discriminating M coherent states—
such an argument connects the two notions of EPE pertaining
to signal energy and number of copies that were defined in
Sec. II. A similar splitting argument was used in Ref. [60]
to rederive the Dolinar receiver [21] for discriminating two
coherent states from multicopy binary discrimination [43].
Implementing the SWN receiver requires beam splitters, the
ability to coherently engineer spatiotemporal coherent-state
waveforms, and single-photon detection—all these operations
are currently available in the laboratory. Remarkably, this lim-
ited toolbox achieves the optimal error probability exponent
allowed by quantum mechanics on arbitrary spatiotemporal
coherent states. The SWN receiver may be applied to un-
amplified communication links, such as space and satellite
links, and for metrology and imaging using laser light. Its
superior performance to conventional receivers translates to

lower energy requirements for tasks like imaging biological
cells, where noninvasiveness is important. As with all coherent
receivers, a major challenge in implementing the SWN receiver
is to maintain phase and amplitude coherence between the
received signal and LO waveforms. In practice, this may be
achieved using phase and amplitude recovery from a strong
pilot pulse in a different mode than the signals. Since the SWN
receiver relies on exact cancellation when the LO and signal
states are identical, quantifying the effect of imperfections
in the nulling process arising from lack of perfect control of
the LO waveforms is of interest. The absolute performance
of the receiver may be further improved by adapting the
sequence of nulling hypotheses based on measurement data
[33–35,42–47]. In general, however, we may expect the SWN
and similar cancellation-based receivers to be quite sensitive
to noise either from the above sources or due to background
photons, since these can cause the nulled hypotheses to be
spuriously incremented leading to error. Therefore, no general
optimality of the SWN receiver is likely to hold in noisy cases.
Analyses of these aspects and extensions of the SWN receiver
is left for future work.

The ST receiver provides an alternative proof to that in
Ref. [50] of the achievability of the M-ary quantum Chernoff
exponent for pure states (the LOCC achievability of the
M = 2 case was studied in Ref. [43]). It is remarkable that
it does so using only copy-by-copy binary measurements and
feedforward, unlike the joint measurement used in Ref. [50].
The measurements on each copy can be destructive and are,
for example, readily made on polarization-encoded photonic
qubits [44]. It should be interesting to explore the capabilities
of LOCC measurements for discrimination of M-ary mixed-
state ensembles in the asymptotic limit.
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