
PHYSICAL REVIEW A 89, 032306 (2014)

One- and two-qubit quantum gates using superimposed optical-lattice potentials
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Steps towards implementing a collision-based two-qubit gate in optical lattices have previously been realized
by the parallel merging of all pairs of atoms in a periodicity two superlattice. In contrast, we propose an
architecture which allows for the merger of a selected qubit pair in a long-periodicity superlattice structure
consisting of two optical lattices with close-lying periodicity. We numerically optimize the gate time and fidelity,
including the effects on neighboring atoms and in the presence of experimental sources of error. Furthermore, the
superlattice architecture induces a differential hyperfine shift, allowing for single-qubit gates. The fastest possible
single-qubit gate times, given a maximal tolerable rotation error on the remaining atoms at various values of
the lattice wavelengths, are identified. We find that robust single- and two-qubit gates with gate times of a few
hundred microseconds and with error probabilities ∼10−3 are possible.
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I. INTRODUCTION

The ability to prepare and manipulate ultracold atoms in
optical lattices has led to many breakthroughs in the last
decade. From demonstrating the superfluid to Mott-insulator
transition [1] to strongly interacting Fermi gases [2,3], the pu-
rity and controllability of ultracold atoms has greatly benefited
many-body physics [4]. Due to the inherent, repeating pattern
of an optical lattice and the long-coherence times of neutral
atoms arranged in such systems, they are also viable candidates
for quantum computing [5,6]. Ultracold atoms in optical
lattices are scalable and offer parallelism due to their geometry
[7]. Implementing the two-qubit gates necessary for quantum
computation is a longstanding problem using this approach.
In optical lattices, two-qubit gates have been proposed [8] and
conducted on many pairs of atoms in parallel [9,10], by making
use of ground-state collisions [6]. Alternatively, one may
make use of dipole-dipole interactions between Rydberg states
[11–13], as indicated by recent experiments on pairs of atoms
in dipole traps [14,15] or by means of hybrid atom-molecule
schemes in optical lattices [16].

The challenge of implementing a two-qubit gate on a
selected pair of atoms in a large array has yet to be fulfilled
largely due to the experimental difficulty in obtaining an
imaging resolution comparable to the lattice spacing. Initially
this lead to proposals to achieve single-site addressing using
subdiffraction optical techniques [17–19] and an experimental
demonstration using magnetic gradients [20]. Recently, how-
ever, single-site imaging [21,22] and single-site addressing
using a strongly focused optical tweezer [23] were achieved.
This paves the way for the realization of the two-qubit gates
proposed for controllable micropotentials [24–30], triple wells
[31,32], and in optical lattices [33–35]. As demonstrated
in Ref. [35], a high-fidelity realization of gates using an
optical tweezer imposes rather strict demands on the pointing
stability of the addressing laser. One solution to the problem
may involve the use of superlattices involving two optical
lattices of separate optical frequencies. Such an arrangement
has already been used to investigate double-well dynamics
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[9,36] and demonstrate patterned loading [37] in a triple-well
superlattice. Recently, an additional long-period addressing
lattice, superimposed on a conventional short-period lattice
with an atomic filling of roughly 1%, has allowed the
demonstration of unitary single-qubit gates with a fidelity of
around 96% [38]. Similar techniques have also been used in
optical cavities with multiple wavelength lattices [39,40].

We propose a superlattice architecture in which both single-
and two-qubit gates can be performed. The large period nature
of our superimposed potentials allows selective addressing
of individual lattice sites periodically spaced throughout the
lattice as seen in Fig. 1(b) in analogy with the architecture
presented in Ref. [38]. Here we present detailed calculations
of the achievable gate speed versus lattice frequency and in
particular focus on the optimum trade-off between speed and
the detrimental effect of spontaneous emission. Two-qubit
gates are facilitated by the merger and interaction of two
initially separated atoms via spin exchange as seen in Fig. 1(c).
For both single- and two-qubit gates we demonstrate errors
below 10−3 including experimental sources of error.

This paper is organized along the following lines. The com-
bination of two optical-lattice potentials to form a superlattice
is introduced in Sec. II. The ability to perform single-qubit
gates by exploiting the differential ac-Stark shift is discussed in
Sec. III. The two-qubit gate using local collisional interactions
is the subject of Sec. IV, where numerical optimization is
applied to determine minimum gate time and maximal fidelity.
Section V summarizes the paper’s conclusions and highlights
perspectives for the future.

II. LONG-PERIOD SUPERLATTICE POTENTIAL

The dipole potential experienced by a ground-state alkali-
metal atom in an optical field with wavelength λ is [41]

U (I (r),λ,P) = πc2�

2ω3
0

(
2 + PgF mF

�2,F (λ)
+ 1 − PgF mF

�1,F (λ)

)
I (r).

(1)

Here the optical polarization P = 0, ±1 for linearly and
circularly σ± polarized light, respectively, gF is the Landé
factor, and mF is the magnetic quantum number. �i,F (λ) is
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FIG. 1. (Color online) Overview of the superlattice and the
single- and two-qubit spin-state gates. (a) Two optical-lattice po-
tentials are superimposed to create a long-period superlattice. (b) The
varying well depth throughout the superlattice results in a varying
spin transition frequency for each atom. A microwave tuned to the
transition of one atom (red) only partially switches another atom
(green). If the partially switched population is kept sufficiently low,
a single-qubit gate is realized. (c) When a lattice potential of longer
wavelength is added to a lattice potential of shorter wavelength, two
wells, each holding an atom, can be merged. Through control of
phase and well depth, atoms are sent into the vibrational ground
and first excited state, where they interact for an arbitrary amount of
time, before reversing the process. The interaction causes a spin state
exchange resulting in a two-qubit gate.

the laser detuning given by �i,F (λ) = ωlaser(λ) − ωi,F , where
i = 1 and 2 refers to the D1 and D2 lines. This equation is valid
for large detunings such that �i,F (λ) > �HFS, the excited-state
hyperfine splitting. In the case of two counter-propagating
fields an optical lattice with a lattice spacing alat = λ/2 is
formed.

Adding two optical-lattice potentials of similar wavelength
light creates a one-dimensional (1D) long-period superlattice
with potential wells of varying depth, as seen in Fig. 1(a).
The length of one superlattice period (SLP) is aSLP = (λ−1

2 −
λ−1

1 )−1/2; three SLPs are seen in Fig. 1(a). In this work,
we consider a SLP in which the longer period lattice passes
through one less cycle than the shorter period lattice, leading
to the relation λ1/λ2 = (n − 1)/n, where n is the number of
cycles in a SLP with λ2 < λ1.

III. SINGLE-QUBIT GATE

Throughout this work, we treat an array of single 87Rb
atoms confined to lattice sites as our starting point. Such
a situation is readily realized through use of the superfluid
to Mott-insulator transistion [1]. The different spin states
|0〉 ≡ |F = 1,1〉 and |1〉 ≡ |F = 2,2〉 experience different
potentials when using σ± polarized light, as shown in Eq. (1).
The varying intensity of each well in a SLP causes the

hyperfine transition �Ui = Ui(|1〉) − Ui(|0〉) to differ for
different atoms in lattice sites i. If a microwave π pulse
tuned to switch a target atom j is applied throughout the
superlattice, the population Pi of all the atoms will oscillate
Pi = 1

2 ( χi

	i
)2[1 − cos2(	it)], where χi is the Rabi frequency,

the generalized Rabi frequency 	i = (χ2
i + �

ij

R

2
)1/2, and

�
ij

R = (�Ui − �Uj )/� is the detuning of the transition of
atom i compared to the transition of target atom j . Atoms in
the selected wells are switched through a π pulse, while each
of the other atoms of the SLP are kept beneath a threshold
population Pt = (χk/	k)2, where k denotes the site with
minimal detuning. The detuning can be expressed through the
threshold population |�ij

R | = χi[(1 − Pt)/Pt]1/2 ≈ χiP
−1/2
t ,

with the approximation being valid for Pt � 1. For a given
threshold population, the π -pulse duration used to address the
target atom can then be calculated as ta = π/

√
Pt|�ij

R |. Finding
the fastest possible gate time thus reduces to calculating the
detunings �

ij

R for all atoms i �= j in a SLP. We note that this is
of course a conservative approach: with the detailed knowledge
of all detunings in a SLP one may also engineer pulse durations
that produce less residual excitation than Pt.

The 1D potential for atoms in the field of the two standing
waves comes through Eq. (1). The primary laser potential
depth is one unit of recoil energy Er(λ) = h2/2mλ2, while
the wavelength and relative intensity of the secondary laser is
varied through a scaling parameter A. The total potential is
thus given by

USL(x,η,A,λ2,P1,P2)

Er(λ1)

= −η

[
cos2(k1x) + A

U (λ2,P2)

U (λ1,P1)
cos2(k2x)

]
, (2)

where k1,2 are the wave numbers of the two lattice beams and
η is an additional scaling factor. The minus sign arises from
the fact that only red detuned light is taken into consideration.

The potential in a SLP is calculated for both hyperfine
levels, and the difference −|�U (x)| is plotted in Fig. 2(a).
This difference is similar in form to the SLP itself. To calculate
the site-dependent detunings, the potential minima of all wells
within a SLP are found, as in Fig. 2(b). For all atoms, �Ui

can then be found and the detuning ��
ij

R /ηEr is given as
the difference in hyperfine splitting as seen in Fig. 2(c).
The smallest of all �

ij

R sets the threshold, and thus only
that detuning is considered. Note that the potential minima
of the superlattice do not exactly match the corresponding
minima of −|�U (x)|, which tends to increase the detunings.
Additionally, the minima of the different hyperfine levels do
not match either, although, for the red detunings considered
here, this position shift is typically several orders of magnitude
smaller than the laser wavelengths. Since there is no position
shift for the deepest well any neighboring well shifts only serve
to restrict the transition of nontarget atoms even further.

The detuning for a range of secondary lattice wavelengths
and lattice depths is seen in Fig. 3(a). Using Er/h ≈ 2 kHz the
largest shifts of Fig. 3(a) result in a gate time of ∼100 ms/η.
Since lattices of 100–1000Er can be realized routinely using
high-power lasers, gate times of 0.1–1 ms should be feasible.
The largest detunings are seen close to the D1 line and are
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FIG. 2. (Color online) A schematic overview of the mechanism
of the single-qubit gate and how the detuning |�ij

R | is calculated. (a) A
plot of an entire SLP, with both hyperfine levels as the blue line and the
light blue line (left axis) and an enlargement of the hyperfine splitting
as the dashed black line (right axis). The section marked by the thin
black dashed line is enlarged in panels (b) and (c). The values used
to plot are A = 0.28, λ1 = 1064 nm, λ2 = 4/5λ1 = 851.2 nm, and
P1 = P2 = 1. (b) When exposed to precisely controlled microwave
radiation the target atom is switched while keeping the switched
population of neighboring atoms under a threshold Pt. The positions
of the atoms are calculated by taking the potential minima. (c) The
positions of the atoms are used to calculate the hyperfine splitting of
both atoms, and the detuning is the difference in this splitting, which
in this example is �|�ij

R |/ηEr = 0.016.

generally larger when the lattice depths are similar. This seems
to suggest that the single-qubit gate should be performed at the
lowest possible detuning. This conclusion changes when the
probability of scattering a photon, psc = exp(−γscta), during
a gate operation is included. The scattering rate is calculated
using [41]

γsc(r) = πc2�2

2�ω3
0

(
2

�2
2,F

+ 1

�2
1,F

)
I (r) (3)
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FIG. 3. (Color online) Results for single-qubit gate calculations.
(a) The absolute detuning �|�ij

R |/ηEr calculated for an array of
different wavelengths and secondary lattice depths. The contour lines
represent logarithmic scaling. The addressing time can be calculated
through the detuning via ta = π/

√
Pt|�ij

R |, with Er/h ≈ 2 kHz. (b)
The corresponding probabilities of an operation without scattering
the target atom. There is a maximum of high probability 0.9995 and
the thick and thin contour lines represent steps of 0.001 and 0.0002.
The black area represents probabilities beneath 0.99. Calculated with
λ1 = 1064 nm and P1 = P2 = 1.

and rewriting the expression similarly to Eq. (2) into γsc/Er,
including A and η. In calculating the scattering rate, three fixed
retroreflected lasers with equal intensities and wavelengths,
one for each dimension, are included plus the secondary laser
in a single dimension. When calculating psc only the target
atom is taken into consideration. Because both the detuning
�

ij

R and scattering rate scale linearly with lattice depth, the
gate-time scattering probability is independent of the depth
and the scaling factor η.

The probabilities of a successful operation 1 − psc are
mapped in Fig. 3(b) for the detunings calculated in Fig. 3(a).
At the optimum the maximum probability of 1 − psc = 0.9995
is reached. Increasing the primary wavelength increases the
probability slightly; however, we have chosen to represent
the results corresponding to λ1 = 1064 nm due to the high
availability of such a laser system. Other polarizations have
been tested, and the detunings �

ij

R were examined for j not
being the atom in the deepest well, both yielding similar or
worse results than those presented above. When scaling up
to a longer period superlattice a naive estimate of the total
probability of not scattering an atom for N atoms is the N th
power of the probability of not scattering the target atom.
The result would scale poorly with hundreds of atoms as
0.9995100 ∼ 0.95. As can be seen in Fig. 2(a), however, the
intensity will decrease away from the maximum one resulting
in a reduced error probability at larger distances.

IV. TWO-QUBIT GATE

Having initialized an array of atoms in specific lattice sites,
a two-qubit gate on a selected pair of neighboring atoms can
be performed by exploiting the spin-exchange interaction. To
achieve such a gate in this architecture requires the merging
of two atoms in the same lattice site such that their wave
functions overlap, as sketched in Fig. 1(c). The optimization
of this nontrivial merger process is the subject of Sec. IV B.
In this section, we describe the gate mechanism and identify
the requirements of performing such a gate in an optical
superlattice. To minimize the gate time, we also numerically
optimize the lattice depth and phase throughout the merging
process and consider the detrimental effects of experimental
preparation errors.

A. Gate description

The mechanism driving the two-qubit gate is the mutual
interaction between two overlapping atoms which leads to
spin exchange [9,35,42]. Two initially separated qubits are
combined in the same well in the ground and first excited
vibrational levels of the well

α |1〉L + β |0〉L → α |1〉g + β |0〉g ,

α̃ |1〉R + β̃ |0〉R → α̃ |1〉e + β̃ |0〉e ,
(4)

where |1〉 and |0〉 denote the spin-based qubit states; α, β,
α̃, and β̃ are the amplitudes; |·〉L and |·〉R denote the wave
functions of the atoms in the left and right wells; and |·〉g and
|·〉e denote the wave functions of the atoms in the ground and
excited vibrational levels of the merged well.

The two atoms in the merged well are identical bosons,
so the two-particle wave function is symmetric under particle
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exchange. The new eigenenergy basis of the system is formed
by the singlet and triplet states:

|s〉 = 1√
2

(|1〉g |0〉e − |0〉g |1〉e),

|t−1〉 = |0〉g |0〉e ,

|t0〉 = 1√
2

(|1〉g |0〉e + |0〉g |1〉e),

|t+1〉 = |1〉g |1〉e .

(5)

The two-qubit state of the atoms can now be expressed via the
basis of singlet/triplet states as |1〉g |0〉e = (|t0〉 + |s〉)/√2 and
|0〉g |1〉e = (|t0〉 − |s〉)/√2.

The singlet spin state |s〉 is antisymmetric, and hence its
spatial wave function must be antisymmetric as well. In this
wave function there is no density overlap between the two
particles. The ultracold atoms primarily interact by contact,
which means that there is negligible interaction in the state
|s〉. However, the wave function of the symmetric spin state
|t0〉 must be symmetric, which leads to an interaction between
the atoms and hence a change in energy Uint when compared
to the state |s〉.

As the two-qubit state � evolves in time, the energy shift
between the two states |s〉 and |t0〉 will induce a phase shift,

�(t) = 1√
2

(eiUintt/�|t0〉 + |s〉), (6)

which will induce periodic oscillations between |1〉g |0〉e and
|0〉g |1〉e. At time TSWAP = π�/Uint the spin states are swapped
and at time T√

SWAP = π�/2Uint the entangling
√

SWAP gate
is implemented, which is universal for quantum computation.
The qubits can subsequently be separated by reversing the
merging operation.

The gate time is set by the interaction between two 87Rb
atoms and can be modeled by an effective 1D contact potential
[43,44],

Vint (|x1 − x2|) = g1Dδ(x1 − x2) , (7)

where x1 and x2 are the coordinates of the two atoms, δ is the
Dirac δ function, and g1D is the effective 1D coupling strength.
This strength is given by g1D = 2ash

√
νyνz, where as is the

scattering length of the atoms, h is the Planck constant, and νy

and νz are the trap frequencies in the y and z directions. For
87Rb, the scattering length as = 110a0, where a0 is the Bohr
radius [45].

B. Lattice site merging

In this section we show how, by controlling the phase
and depth of an optical superlattice, one can merge pairs of
interacting atoms into a single lattice site in which they can
perform the SWAP gate described above. An illustration of
the superlattice potential during the merging process is seen in
Fig. 4(a) with the corresponding values of amplitude and phase
of the added lattice seen in Figs. 4(b) and 4(c). The potential
minimum of the right well is shifted towards the −x direction
so that both atoms move into the well at x = −0.5alat. This is
shown in Figs. 4(d) and 4(e) where the density profiles of the
two atoms are seen as a function of time. After being initially
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FIG. 4. (Color online) An example of the operation required to
realize a two-qubit gate. (a) The time evolution of the potential leading
to two atoms being sent into one well. (b) and (c) Optimal control
pulses for the amplitude and phase of the primary lattice leading to
the potential deformation seen in panel (a). Density profiles of the
two atoms as a function of time illustrating the mapping of one atom
into the excited state of a neighboring well (e), while the other atom
ends in the ground state (d).

separate, one atom is promoted to the first excited vibrational
state while the other remains in the ground state.

Starting from the total optical-lattice potential,

U (x)

Er(λ2)
= −A1 cos2 (k1x + φ) − A2 cos2 (k2x + π/2) , (8)

we search for the optimum values of phase and depth that
merge atoms with the highest fidelity. This is achieved by
using the split-step method to simulate the time evolution of
the atoms and optimizing using a simplex algorithm. During
an operation, the primary laser phase φ and depth A1 are varied
while the secondary laser phase and depth are fixed at π/2 and
1Er(λ2). A primary phase of φ = 0 merges the wells at x ≈ 0.
Note that when combining atoms into a single well, merging
is more easily achieved when a longer wavelength lattice is
added to an initially populated short-wavelength lattice.

Precise experimental control of the lattice phases can be
achieved in a retroreflected optical lattice geometry by varying
the primary beam frequency �ν to give the phase change
�φ = 2πd�ν/c, where d is the distance to the retroreflector
mirror. To achieve �φ = π with λ = 1064 nm and d = 1 m, a
change in frequency �ν = 150 MHz is required. The fact that
the dynamics are controlled using the laser frequency—one of
the most well-controlled quantities in physics—illustrates one
of the appealing features of our proposal.
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FIG. 5. (Color online) Fidelity, F , for the simulations of the superlattice two-qubit gate. (a) Different fidelities obtained at different operation
times with n = 5, with two results of interest highlighted as I and II. The optimized merging scheme at II corresponds to the example shown in
Fig. 4. (b) The change in fidelity for II as a function of error also illustrating how Ferror is calculated, i.e., by including all fidelities within the
dashed lines and assuming the worst. The contour lines represent steps of 10−4. (c) Results for the lattice configuration n = 10 with one more
point of interest highlighted as III. The lattice beam wavelength λ2 is fixed at 1064 nm. Further results for I–III are given in Table I.

We choose to independently optimize the merger for three
different fidelity classifications. The first, Ftarget atoms = PgPe,
is the population of the two target atoms in the ground and
excited states. To reflect the effects of the merger sequence
on nontarget atoms, we optimize a second fidelity, Fall atoms =
PgPe

∏
i Pg,i , where i is the atoms in each SLP which are

not involved in the gate. For each simulation, experimental
sources of errors are added to the time-dependent amplitude
and phase of the added lattice corresponding to error in
intensity and frequency. The sources of noise are assumed
to be of a sufficiently low frequency to be considered constant
during the operation and are therefore incorporated by adding
a global shift to the obtained control pulses. Based on this, a
third fidelity, Ferror, is optimized which takes the worst obtained
fidelity within the array of errors used, also including all atoms
in the SLP.

The existence of several local maxima in the optimizational
landscape necessitated optimization starting from long times
moving towards shorter times and vice versa. At each point in
time, the highest fidelity was selected.

Two secondary lattice wavelengths λ2 = 851.2 nm and
957.6 nm and a primary lattice wavelength of λ1 = 1064 nm
are studied. These wavelengths correspond to n = 5 and
n = 10 superlattices. The error boundaries used to optimize
Ferror are set to 0.1% for amplitude and a phase offset of
0.2%, as shown by the box in Fig. 5(b). As can be seen, with
appropriate control of the phase (i.e., the relative frequency

TABLE I. Further results for the three highlighted merging
processes I–III from Fig. 5. The total gate times TSWAP and T√

SWAP

are calculated by requiring the total interaction to cause a fixed phase
shift. From the the merging process, the probabilities Psc,SWAP and
Psc,

√
SWAP of scattering an atom within the SLP during a gate are also

calculated.

τ (μs) Ferror T√
SWAP (μs) TSWAP (μs) Psc,

√
SWAP Psc,SWAP

I 141 0.9960 460 366 4.0 × 10−4 3.2 × 10−4

II 289 0.9994 634 728 5.5 × 10−4 6.3 × 10−4

III 305 0.9964 769 638 8.3 × 10−4 7.0 × 10−4

difference) one can tolerate power fluctuations of the order of
1%, while still remaining below 10−3 infidelity.

The total gate times for the SWAP and
√

SWAP gates are set by
calculating the interaction during the merging operation. For
the SWAP (

√
SWAP) gate, the interaction-induced phase shift

is required to be niπ ( niπ

2 ), where ni is an integer. The total
phase shift picked up during the merging operation will also
be picked up when reversing the merging operation to split up
the atoms into separate wells again. When requiring a certain
phase shift, a total gate time is then given by twice the operation
time τ plus a time given by the stationary interaction. From
the total gate times, the probabilities of scattering an atom in
the SLP during a gate is calculated including spatially varying
intensity and 1064-nm lattice in the y and z dimensions with
a depth of 32Er.

The resulting fidelities at different operation times τ are
seen in Figs. 5(a) and 5(c). Three points of interest are I–III,
and total gate times and scattering rates for these operations
are shown in Table I.

Merging sequence II is also depicted in Fig. 4. In this case
the operation is plotted without errors included. The change in
fidelity when including various errors for II is seen in Fig. 5(b)
where the area marked by the dashed line represent the errors
included to optimize Ferror. This high-fidelity result is achieved
at a modest operation time of less than 300 μs. Even choosing
a larger SLP corresponding to n = 10, the operation time is
comparable at a slightly reduced fidelity. This illustrates that
larger qubit registers are feasible.

V. CONCLUSION

We have presented an architecture for quantum computing
using the spatially dependent potential of neutral atoms in
long-periodicity optical superlattices implemented by super-
posing two optical lattices with close-lying periodicity. We
have identified the fastest possible single-qubit gate times
given a maximum tolerable rotation error on the remaining
atoms at various different values of the lattice wavelengths.
Including the detrimental effect of spontaneous emission, we
show that gates in the submillisecond regime can be realized
with less than 10−3 total error probability. The proposed
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two-qubit gate takes advantage of the fact that at the node
of the superlattice period there is an isolated double-well
system in which merger can be realized by controlling the
relative intensity and frequency of the two lattices. When
the relative phase of the two lattices is controlled, the
node can be positioned at an arbitrary pair of wells. We
numerically optimize the merger to implement an entangling√

SWAP two-qubit gate. Including realistic sources of error
and the accumulated errors of atoms not participating in the
merger we still obtain total gate error probabilities of the
order of 10−3 with periodicities up to n = 10. Future work
will focus on extending the merging scheme to fractional n

superlattices to achieve selectivity across even larger qubit

registers and the optimization of custom pulse protocols [38]
to increase the single-qubit gate robustness. Finally, we would
like to point out that although this work has focused on the
manipulation of individual atoms the method could also be
used to select a single plane in 1D lattices as an alternative
to current techniques relying on magnetic field addressing
[20,22].
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