
PHYSICAL REVIEW A 89, 032129 (2014)

Relativistic recoil effects on energy levels in a muonic atom: A Grotch-type calculation of the
second-order vacuum-polarization contributions
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Adjusting a previously developed Grotch-type approach to a perturbative calculation of the electronic vacuum-
polarization effects in muonic atoms, we find here the two-loop vacuum-polarization relativistic recoil correction
of order α2(Zα)4m2/M in light muonic atoms. The result is in perfect agreement with the one previously obtained
within the Breit-type approach. We also discuss here simple approximations of the irreducible part of the two-loop
vacuum-polarization dispersion density, which are applied to test our calculations and could be useful for other
evaluations with an uncertainty better than 1%.

DOI: 10.1103/PhysRevA.89.032129 PACS number(s): 12.20.−m, 31.30.J−, 36.10.Gv, 32.10.Fn

I. INTRODUCTION

High-precision tests of any advanced atomic calculations
are possible only for few-body systems, and their accuracy
goes down dramatically when we increase the number of
particles involved. The highest accuracy has been achieved
for two-body (hydrogenlike) atomic systems. To study such
systems not only are binding effects and QED loops important
but also recoil effects. While the nonrelativistic two-body
problem is easily solved by introducing the reduced mass,
the relativistic recoil effects are more complicated.

The problem of relativistic recoil effects was resolved for
the pure Coulomb two-body system a long time ago. The
possible solutions included the Breit equation (see, e.g., [1])
and its expansions as well as the Grotch equation [2]. For
non-Coulomb systems, only the Breit-type approach has
successfully been used to date.

The purpose of this paper is to develop a method suitable
for a calculation of a certain class of corrections of order
α2(Zα)4m2/M . The approach is applicable to medium-Z
muonic and antiprotonic atoms, i.e., to the atoms whose
characteristic atomic momentum Zαm is comparable to the
electron mass me. In such atoms the recoil effects are more
important than in ordinary (electronic) atoms. Meanwhile,
the electronic vacuum-polarization (eVP) effects are also en-
hanced. Thus a calculation of relativistic recoil eVP corrections
is important. Here we calculate such corrections to the energy
levels in the second order of eVP effects, which are of order
α2(Zα)4m2/M .

This paper is the third paper of the series [3,4] devoted to a
general approach to calculate relativistic recoil effects and its
applications. In these papers, as explained in the first paper of
the series [3], we develop an approach which can be applied
for a certain class of potentials (or, rather, to a certain class
of corrections to the interaction between the atomic particles).
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While the expressions are valid for a certain range of atoms
for arbitrary states, the practical importance of the corrections
depends on the value of the nuclear charge, the atomic weight
of the nucleus, the mass of the orbiting particle (which is
indeed different for muons and antiprotons), and the transition
between what levels are studied and with what accuracy.

At this stage we are interested in deriving the method and
its verification, rather than in its application to any particular
transition of practical interest. Below we derive the general
equations that take into account second-order eVP relativistic
recoil effects. For the verification of the method we choose to
calculate the corrections which are known from a calculation
with an alternative (Breit-type) technique in our previous
paper [5].

Generalizing the method developed by Grotch and Yen-
nie [2] to evaluate the relativistic recoil effect in pure Coulomb
systems to effects of eVP in muonic atoms, in [3,4] we derived
the general expression

E = m + mR[fCN (Zα,ZαmR/me) − 1]

− m2
R

2M
[fCN (Zα,ZαmR/me) − 1]2

− m2
R

2M

∂

∂ ln κ
[fCN (Zα,κ) − 1]2

∣∣∣∣
κ=ZαmR/me

−〈ψC |
(

V 2

2M
+ 1

4M
[V,[p2,W ]]

)
|ψC〉, (1)

which is valid for an arbitrary perturbed potential

V = VC + VN,

where VC is the Coulomb potential and in a certain sense VN

is smaller than VC , i.e., VN ∼ εVC , ε � 1. It is important that
VN is a kind of nonrelativistic potential in the sense that its
leading nonrelativistic contribution to the energy is of order
ε(Zα)2m, while the first relativistic correction appears in order
ε(Zα)4m.
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Here, W is a specific auxiliary potential, ψC is the wave
function of the Dirac-Coulomb problem with the reduced
mass, and

fCN (Zα,ZαmR/me) = fC(Zα) + �fCN (Zα,ZαmR/me)

(2)

is the exact dimensionless energy for the Dirac equation
with the reduced mass and potential V , and we separate the
corrections to it, �fCN , induced by VN .

Expression (1) is valid for nonrecoil terms exactly in Zα,
for the nonrelativistic problem exactly in m/M , and for the
leading relativistic recoil correction (Zα)4m2/M . It may be
applied to an arbitrary order in ε. (In principle, it may also
be applied for an ε that is not small if the appropriate wave
functions and energy are found numerically.)

In [4] we describe a method to calculate the recoil correction
to the energy of order α/π (Zα)4m2/M , and here we aim to
obtain the recoil correction of the next order in α. For that we
consider a potential of the form

VN = VU + V11 + V2, (3)

where

VU = −Zα

∫ 1

0
dv ρ1(v)

e−λr

r

is the Uehling potential,

V11 = −Zα

∫ 1

0
dv ρ11(v)

e−λr

r

FIG. 1. Diagram of the reducible part of the Källen-Sabry
potential V11.

corresponds to the reducible two-loop eVP potential (see
Fig. 1), and

V2 = −Zα

∫ 1

0
dv ρ2(v)

e−λr

r

is for its irreducible part (see Fig. 2). The dispersion parameter
is

λ2 = 4m2
e

1 − v2
,

and the eVP dispersion density functions are defined as [6–9]

ρ1(v) =
(α

π

) v2(1 − v2/3)

1 − v2
, (4)

ρ11(v) = −1

9

(α

π

)2 v2(1 − v2/3)

1 − v2

{
16 − 6v2 + 3v(3 − v2) ln

(
1 − v

1 + v

)}
, (5)

ρ2(v) = 2

3

(α

π

)2 v

1 − v2

(
(3 − v2)(1 + v2)

{
Li2

(
−1 − v

1 + v

)
+ 2Li2

(
1 − v

1 + v

)
+ ln

(
1 + v

1 − v

) [
3

2
ln

(
1 + v

2

)
− ln (v)

]}

+
[

11

16
(3 − v2)(1 + v2) + 1

4
v4

]
ln

(
1 + v

1 − v

)
+ 3

2
v(3 − v2) ln

(
1 − v2

4

)
− 2v(3 − v2) ln(v) + 3

8
v(5 − 3v2)

)
, (6)

where Li2(z) is the Euler dilogarithm [10].
It is important that Eq. (1) includes only the first derivative

with respect to κ . That is because a shift in the effective mass
is at most O((Zα)2(m/M)m) and terms quadratic in the shift
are at most of the order ε(Zα)6(m/M)2m. To evaluate the
derivative we apply the identity

∂[fCN (Zα,κ) − 1]2

∂ ln κ
= −∂[fCN (Zα,ZαmR/me) − 1]2

∂ ln me

,

which allows us to avoid differentiating the α2 term in
fCN (Zα,ZαmR/me), found by means of numerical com-
putation, and instead allows to calculate numerically an
integral which contains a derivative of the potential over the
parameter me.

The result for the Dirac equation with the reduced mass and
the potential defined in Eq. (3) can be, in principle, obtained

by many means. Recently, such a result for low-lying states
in light muonic atoms was found by applying a nonrelativistic
perturbation theory in [5].

FIG. 2. Diagrams of the irreducible part of the Källen-Sabry
potential V2.
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II. eVP RELATIVISTIC RECOIL CORRECTIONS TO THE
SECOND ORDER OF α

Let us expand Eq. (2) in terms of ε:

fCN (Zα,ZαmR/me) = fC(Zα) + fN (Zα,ZαmR/me)

+fNN (Zα,ZαmR/me), (7)

where fN is linear in ε and fNN is quadratic.
It is convenient to consider different parts of the perturbing

potential independently, setting appropriate ε in different
cases.

A. The first-order contribution of V11 and V2

To take into account the contributions of V11 and V2, we
can set ε = (α/π )2 and take the first order of the perturbation
theory (in ε), which has been already studied in Ref. [4]1,

E
(1)
Nq = mRfNq + �E(1)

q , (8)

where the index q corresponds to either V11 or V2,

�E(1)
q = −m2

R

M
(fC − 1)fNq − m2

R

M
(fC − 1)

∂

∂ ln κ
fNq

−〈ψC |
(

VqVC

M
+ 1

4M
[VC,[p2,Wq]]

+ 1

4M
[Vq,[p2,WC]]

)
|ψC〉, (9)

|ψC〉 is the Coulomb wave function, and it is sufficient to
consider it in the nonrelativistic (NR) approximation (cf. [4]).
The related auxiliary potential takes the form [cf. Eq. (10)
of [4]]

Wq(k) = 8π (Zα)
∫ 1

0
dv

ρq(v)

(k2 + λ2)2
,

(10)

Wq(r) = (Zα)
∫ 1

0
dv ρq(v)

e−λr

λ
.

Proceeding in the same way as in [4] [cf. Eq. (32) there],
we obtain for these contributions (cf. [11,12])

�E
(NR)
Nq = (Zα)4

n3

m2
R

M

n−l−1∑
i,k=0

B
(NR)
ik

×
[
− 1

2n
K

(q)
2,2l+i+k+2(κn)

− 2l + i + k + 2

2nκn

K
(q)
3,2l+i+k+3(κn)

+ 1

κn

K
(q)
3,2l+i+k+2(κn)

]
, (11)

where

B
(NR)
ik = (−1)i+k(n − l − 1)!

i!(n − l − i − 1)!k!(n − l − k − 1)!

× (n + l)!(2l + i + k + 1)!

(2l + i + 1)!(2l + k + 1)!
(12)

1To simplify notation we drop the arguments in terms of Eq. (1).

FIG. 3. The second-order Uehling contributions to the energy.

and functions

K
(q)
bc (κ) =

∫ 1

0
dv

ρq(v)

(1 − v2)b/2−1

(
κ
√

1 − v2

1 + κ
√

1 − v2

)c

(13)

differ from the base integrals Kbc(κ) [11,12], introduced earlier
and expressed in terms of spectral functions.

For the low-lying states of interest (n = 1,2) in light muonic
atoms the results are

�E(NR)
q (1s) = (Zα)4 m2

R

M

× 1

κ

[
−κ

2
K

(q)
22 (κ) + K

(q)
32 (κ) − K

(q)
33 (κ)

]
,

�E(NR)
q (2s) = (Zα)4 m2

R

32M

×
{
−K

(q)
24 (κ2) + 4

κ2

[
K

(q)
34 (κ2) − K

(q)
35 (κ2)

]

+ 2

κ3
2

[
κ2K

(q)
44 (κ2) + 4K

(q)
54 (κ2) − 4K

(q)
55 (κ2)

]}
,

�E(NR)
q (2p) = (Zα)4 m2

R

M

1

κ2

[
−κ2

2
K

(q)
2,4(κ2)

+ 2K
(q)
3,4(κ2) − 2K

(q)
3,5(κ2)

]
. (14)

The required integrals K
(11)
bc and K

(2)
bc should be calculated

numerically. The numerical results are considered in Sec. III.

B. The second-order contribution of VU

To deal with the second-order contributions of VU (see, e.g.,
Fig. 3) we should address terms in (1) which are second order
in ε = α/π .

For the case of general VN , selecting terms of the corre-
sponding order ε2 in Eq. (1), we arrive at

E
(2)
N = mRfNN + �E

(2a)
N + �E

(2b)
N , (15)

where

�E
(2a)
N = −m2

R

M

(
(fC − 1)fNN + (fN )2

2

)

− m2
R

M

(
(fC − 1)

∂

∂ ln κ
fNN + fN

∂

∂ ln κ
fN

)
. (16)

Note that in the last expression we need only the leading
nonrelativistic contribution to various f , and in particular, it
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TABLE I. The α2 eVP relativistic recoil corrections to energies
of the muonic hydrogen in units of (α/π )2(Zα)4m2

R/M . See Eq. (20)
for notation.

1s 2s 2p

�E
(1)
11 0.505 0.0721 0.000133

�E
(1)
2 0.139 0.0576 0.002879

�E
(2a)
U −0.154 −0.0024 −0.000060

�E
(2b)
U 0.678 0.0685 0.000367

�E(rec−VP2) 1.168 0.1958 0.003319

is sufficient to write

fNN = 〈ψC |VNG′
CVN |ψC〉

mR

, (17)

where G′
C is the reduced Coulomb wave function for the

corresponding state.
The second term in (15), �E(2b), corresponds to the W

contribution of the matrix element in (1), which in the second
order of ε provides us with

�E
(2b)
N = −〈ψC |

(
V 2

N

2M
+ 1

4M
[VN,[p2,WN ]]

)
|ψC〉

− 2〈ψC |
(

VCVN

M
+ 1

4M
[VN,[p2,WC]]

+ 1

4M
[VC,[p2,WN ]]

)
|ψN 〉, (18)

where

|ψN 〉 = G′
CVN |ψC〉 (19)

is the correction to the wave function induced by VN .
To calculate the correction to the second order in the

Uehling potential we set VN = VU in general expressions (16)–
(19).

Equation (15) presents the complete result for the relativis-
tic terms of order α2(Zα)4m and α2(Zα)4m2/M in terms of the
sum of the Dirac term with the reduced mass mRfNN and the
recoil corrections �E

(2a)
U and �E

(2b)
U . Since the expressions

for the corrections deal with nonrelativistic wave functions
and Green’s functions, the result for the eVP relativistic recoil
correction depends on orbital momentum l and does not
depend on total muon angular momentum j , which means
that there is no corrections to the fine splitting in this order
behind the result of the Dirac equation with the reduced mass.

III. RESULTS

The expressions presented above allow us to calculate the
recoil correction to the energy of order (α/π )2(Zα)4m2

R/M .
The contributions to the correction for the lowest states of the
muonic hydrogen

�E(rec−VP2) = �E
(1)
11 + �E

(1)
2 + �E

(2a)
U + �E

(2b)
U (20)

are listed for muonic hydrogen in Table I.
The first-order Källen-Sabry potential contributions are

calculated numerically in a rather straightforward way. To
control the calculation of the irreducible part we have also

TABLE II. The α2 relativistic recoil eVP corrections to en-
ergies of the light muonic hydrogenlike atoms in units of
(α/π )2(Zα)4m2

R/M .

1s 2s 2p

H 1.168 0.1958 0.003319
D 1.192 0.2016 0.003551
3He+ 1.445 0.2867 0.006866
4He+ 1.447 0.2878 0.006900

used various approximate representations for the dispersion
function. They are discussed in Appendix A.

The corrections of the second order in the Uehling potential
were computed using two different representations of the
reduced nonrelativistic Coulomb Green’s functions, which are
summarized in Appendix B. The results produced with two
representations are consistent.

The calculations were also performed for various isotopes
of muonic hydrogen and helium ions. The results are presented
in Table II.

It is interesting to compare results obtained with the Grotch-
type calculations in this paper with the Breit-type calculation
we performed previously [5].

A comparison of the Grotch-type results with the complete
Breit-type ones is summarized in Table III. The Breit-type
results are exact in m/M , while the Grotch-type recoil
correction includes only a term linear in m/M . As explained
in [4,5] (see also [13]), one can rearrange the Breit Hamiltonian
and separate the linear recoil and higher-order terms. As stated
in [5], the linear recoil terms in the Breit-type approach are
consistent with the results obtained here; in fact they agree
within an uncertainty of numerical integration, and therefore
all digits in the results given for the Grotch-type evaluation in
Table III are valid.

As one can see from Table III, the higher-order terms in
m/M are important for the complete recoil results. For the s

states in muonic hydrogen they are about 10% of the linear
term. [Here in Table III the Darwin-Foldy-type terms are
included for all atoms. If, following [14,15], we exclude them,

TABLE III. The α2 relativistic recoil eVP corrections to energies
of light muonic hydrogenlike atoms in units of μeV. The eVP2 results
of the Grotch-type evaluation of this paper are given in roman type.
The complete results of the Breit-type calculations [5] are presented
in italics. Note that the complete Breit-type recoil results [5] of
order α2(Zα)4m are exact in m/M , while the Grotch-type recoil
contributions include only terms linear in mR/M .

Atom 1s 2s 2p1/2 2p3/2

H 0.172 0.0288 0.000488 0.000488
0.155 0.0259 0.000737 0.000289

D 0.0973 0.0165 0.000290 0.000290
0.0921 0.0156 0.000370 0.000227

3He+ 1.31 0.259 0.00621 0.00621
1.26 0.250 0.00810 0.00492

4He+ 1.00 0.200 0.00478 0.00478
0.97 0.194 0.00590 0.00403
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the results are shifted and become 0.0635 μeV (1s), 0.0126
μeV (2s) for muonic deuterium and 0.75 μeV (1s), 0.172
μeV (2s) for muonic helium-4]. For the p states the (m/M)2

contribution is even larger in fractional units; however, the
total recoil contribution for the 2p state is small in comparison
with the related 2s contribution and can be neglected for
the 2p − 2s difference while calculating the Lamb shift. A
similar situation actually also takes place for the one-loop
eVP contribution [4,13].

The Breit-type calculations [5] delivered all the contribu-
tions within a nonrelativistic perturbation theory (NRPT) with
various relativistic perturbations of the Coulomb potential.

Within the Breit-equation approach, the recoil and nonre-
coil terms of the Breit Hamiltonian are treated in the same
way (see, e.g., [1]). As a result, the technique applied in [5]
to obtain the relativistic nonrecoil term (i.e., the relativistic
correction to the one-particle equation with the reduced mass)
was the same as for the recoil term. Actually, within the NRPT
approach there is no need for a separation between the recoil
and nonrecoil terms.

Here, the recoil correction is obtained in a quite different
way. Thus, we conclude that our NRPT calculation of both the
nonrecoil and recoil relativistic contributions [5] is correct.

To conclude, the results of this paper include the de-
velopment of a method to calculate the second-order eVP
relativistic recoil correction for an arbitrary state in an arbitrary
hydrogenlike muonic atom. That is a purely theoretical result.
As for an application to practically important transitions,

we have calculated the relativistic recoil correction of order
α2(Zα)4m2/M for the Lamb shift in muonic hydrogen. It is
small by itself. As we explain above, such a calculation serves
as a confirmation of our eVP results previously obtained by
means of NRPT [5]. Because of the way relativistic recoil
and nonrecoil contributions were treated there, the result of
this paper confirms the whole relativistic eVP contribution
of [5] and, in particular, its relativistic nonrecoil correction
of order α2(Zα)4m. That correction, in contrast to the recoil
term, is somewhat smaller than, but still compatible with, the
uncertainty of actual experiments (see [5] for details).
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APPENDIX A: APPROXIMATION FOR THE
IRREDUCIBLE PART OF THE KÄLLEN-SABRY

DISPERSION FUNCTION WITH AN UNCERTAINTY
BETTER THAN 1%

The exact expression for the irreducible part of the
dispersion weight function of the Källen-Sabry potential [6–8],

ρ2(v) = 2

3

(α

π

)2 v

1 − v2

(
(3 − v2)(1 + v2)

{
Li2

(
−1 − v

1 + v

)
+ 2Li2

(
1 − v

1 + v

)
+ ln

(
1 + v

1 − v

)[
3

2
ln

(
1 + v

2

)
− ln (v)

]}

+
[

11

16
(3 − v2)(1 + v2) + 1

4
v4

]
ln

(
1 + v

1 − v

)
+ 3

2
v(3 − v2) ln

(
1 − v2

4

)
− 2v(3 − v2) ln(v) + 3

8
v(5 − 3v2)

)
, (A1)

is somewhat complicated. It does not allow us exact analytic
evaluations in muonic atoms. Meanwhile, an approximate
representation by Schwinger [6],

ρ
(s)
2 (v) =

(α

π

)2 v2
(
1 − v2

3

)
1 − v2

{
π2

2v
− 3 + v

4

(
π2

2
− 3

4

)}
,

(A2)

is a well-known successful approximation. It allows us to find
contributions of the irreducible two-loop vacuum polarization
to various values with a high accuracy. Since it reproduces the
correct behavior of the dispersion density at v � 0 (i.e., for s �
sthreashold) and v � 1 (i.e., for s → ∞), it may be considered
as an extrapolation formula. Because of that, it is useful not
only to approximately find various numeric contributions but
also to approximate certain asymptotics.

Here, we present a few more extrapolations which in certain
respects are more accurate than Schwinger’s [6]. They are

ρ
(1)
2 (v) =

(α

π

)2 v

1 − v2

×
{

1

2
v2 + (1 − v2)

(
π2

2
− 2.62 v

)}
, (A3)

ρ
(2)
2 (v) =

(α

π

)2 v

1 − v2

{[
1

2
+ 0.288(1 − v2)

]
v2

+ (1 − v3)

(
π2

2
− 3.695 v

)}
, (A4)

ρ
(3)
2 (v) =

(α

π

)2 v

1 − v2

{[
1

2
+ 1.08(1 − v2)

]
v2

+ (1 − v3)

(
π2

2
− 3.97 v − 0.28 v3

)}
. (A5)

The quality of these approximations can be discussed in
the following way. We note that the density function is always
positive. If we are to calculate a matrix element which does
not change sign, such as an average of the irreducible part
of the Källen-Sabry potential over a certain state, then the
fractional error cannot exceed the maximal fractional error
of the approximation of ρ2(v) in (A1) by an approximate
function. In general, if there are not specific cancelations, the
fractional error determines the fractional uncertainty of any
integrals.
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FIG. 4. Fractional deviation δapprox(v) of the approximations from
the exact dispersion density ρ2(v). The dotted line presents a deviation
for the original Schwinger extrapolation ρ

(s)
2 , the dot-dashed line is

for ρ
(1)
2 , the dashed is for ρ

(2)
2 , and the fractional deviation for ρ

(3)
2 is

plotted as a solid line.

Such an error

δapprox(v) = ρ
approx
2 (v) − ρ2(v)

ρ2(v)

is plotted for the considered approximations in Fig. 4 along
with the Schwinger approximation. The maximal values δmax

of the fractional deviation are collected in Table IV.
We note that the accuracy of polynomial approximations

for the expression in the large parentheses in Eq. (A1) is
limited. It is clear that the behavior close to v = 0 and
v = 1 should include logarithmic factors ln(v) and ln(1 − v),
respectively. Those cannot be approximated with polynomials.
However, approximations of ρ2(v) with uncertainty below 1%
are possible.

The application of the approximate formulas to the calcu-
lation of the relativistic and relativistic recoil corrections is
summarized in Tables V and VI. The fractional errors do not
exceed the values of δmax collected in Table IV.

The application of the approximations could be useful not
only for tests but also for approximate analytic expressions
(cf. [11,12,16,17]).

APPENDIX B: REPRESENTATION OF THE REDUCED
NONRELATIVISTIC COULOMB GREEN’S FUNCTION IN

COORDINATE SPACE

The nonrelativistic Coulomb Green’s function

GE(r,r′) =
∑ |λ〉〈λ|

E − Eλ

TABLE IV. The maximal values δmax of the fractional deviation
δapprox(v) for various approximations.

Approximation δmax

ρ
(s)
2 (v) 4%

ρ
(1)
2 (v) 2%

ρ
(2)
2 (v) 0.55%

ρ
(3)
2 (v) 0.3%

TABLE V. The relativistic contribution to the energies for the
irreducible part of the Källen-Sabry potential in muonic hydrogen.
Units are (α/π )2(Zα)4mR . The numerical results are for the solution
of the Dirac equation with the reduced mass.

ρ2(v) 1s1/2 2s1/2 2p1/2 2p3/2

Exact ρ2(v) −0.5856 −0.1026 −0.03110 −0.003754
ρ

(s)
2 (v) −0.5909 −0.1035 −0.03124 −0.003763

ρ
(1)
2 (v) −0.5844 −0.1024 −0.03100 −0.003754

ρ
(2)
2 (v) −0.5861 −0.1027 −0.03114 −0.003759

ρ
(3)
2 (v) −0.5859 −0.1027 −0.03112 −0.003756

and its reduced form

G′
E,nlm(r,r′) =

∑′ |λ〉〈λ|
E − Eλ

,

where one has to sum over all intermediate states λ for GE and
over all but the reference state nlm for the reduced one, have
a number of useful representations.

It is helpful to separate the radial and angular parts for the
partial contributions in the full Green’s function

GE(r,r′) =
∑
lm

GE,nl(r,r
′) Y �

lm(
)Ylm(
′)

= 2l + 1

4π
GE,nl(r,r

′) Pl(cos θ ), (B1)

where Ylm(
) are spherical harmonics, m is the projection of
orbital momentum, 
 is the angular variable, Pl(cos θ ) is the
Legendre polynomial, and θ is the angle between r and r′. A
similar separation can be also done for the reduced Green’s
functions.

In our calculations we deal with matrix elements as

〈nlm|AG′
Enlm,nlmB|nlm〉,

where A and B are for central potentials. In such a case the
only partial contribution surviving in the sum over lm in (B1)
is GE,nlm. The result for the matrix element does not depend
on m. For further consideration we denote it as GE,nl . For
the reduced Green’s function with E = Enl , we denote the
surviving term in the partial sum as G′

nl .
In our paper we apply two representations, which are

described below.

TABLE VI. The relativistic recoil contribution to the energies
�E

(1)
2 for the irreducible part of the Källen-Sabry potential in muonic

hydrogen in units of (α/π )2(Zα)4m2
R/M .

ρ2(v) 1s 2s 2p

Exact ρ2(v) 0.1390 0.05762 0.002879
ρ

(s)
2 (v) 0.1425 0.05837 0.002895

ρ
(1)
2 (v) 0.1401 0.05765 0.002868

ρ
(2)
2 (v) 0.1392 0.05767 0.002881

ρ
(3)
2 (v) 0.1391 0.05765 0.002880
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1. The Hostler presentation

One of the efficient representations of the nonrelativistic
Coulomb Green’s function was derived by Hostler [18],

GE,nl(r,r′) = 4Zα m2
r

ν z>z<

�(1 + l − ν)

�(2l + 2)

×Wν,l+1/2(z>)Mν,l+1/2(z<), (B2)

where

ν = Zα mr√−2mrE
, (B3)

z> = 2Zα mr

ν
max(r,r ′), (B4)

z< = 2Zα mr

ν
min(r,r ′), (B5)

�(x) is the Gamma function, and Mμν(x) and Wμν(x) are the
Whittaker functions [19].

The required radial parts of the reduced Coulomb Green’s
functions of the states of interest are [20–22]

G′
1s(r,r

′) = 4Zα m2
r exp

(
−z> + z<

2

)

×
{

1

z>

+ 1

z<

+ 7

2
− z> + z<

2
+ Ei(z<) − 2C

− ln(z>z<) − ez<

z<

}
, (B6)

G′
2s(r,r

′) = Zα m2
r

exp
(− z>+z<

2

)
4z>z<

{8z< − 4z2
< + 8z>

+ 12z>z< − 26z>z2
< + 2z>z3

< − 4z2
>

− 26z2
>z< + 23z2

>z2
< − z2

>z3
< + 2z3

>z<

− z3
>z2

< + 4(z> − 2)z>(1 − z<)ez<

+ 4(z> − 2)z>(z< − 2)z<

× [−2C + Ei(z<) − ln(z>z<)]}, (B7)

G′
2p(r,r ′) = Zα m2

r

exp
(− z>+z<

2

)
36(z>z<)2

{24z3
< + 36z>z3

<

+ 36z2
>z3

< + 24z3
> + 36z3

>z< + 36z3
>z2

<

+ 49z3
>z3

< − 3z3
>z4

< − 3z4
>z3

<

− 12z3
>(2 + z< + z2

<)ez< + 12z3
>z3

<

× [−2C + Ei(z<) − ln(z>z<)]}, (B8)

where C = 0.577 216 . . . is the Euler constant and

Ei(x) =
x∫

−∞

et

t
dt

is the exponential integral.

2. The Sturmian representation

The Sturmian presentation of the nonrelativistic Coulomb
Green’s function is a presentation in terms of a basis set which
consists of solutions of the related Sturm-Liouville problem.

The basis functions satisfy the equation

p2�klm(ν; r) = 2mr

(
k

ν

Zα

r
+ E

)
�klm(ν; r), (B9)

where

ν =
√

− (Zα)2m

2E
.

They can be presented in the form

�klm(ν; r) = Rkl(ν; r)Ylm(
),

where

Rkl(ν; r) =
(

k

ν

)3/2

Rkl

(
k

ν
r

)
and Rkl(r) stands for the radial part of the standard wave func-
tion of the nonrelativistic Coulomb problem (see, e.g., [23]).

The radial part of the Coulomb Green’s function is of the
form [24]

GEl(r; r ′) = ν2

(Zα)2m

∞∑
k=l+1

k

k − ν
Rkl(ν; r)Rkl(ν; r ′).

(B10)

The required radial part of the reduced Coulomb Green’s
function (at E = En) is of the form [24]

G′
nl(r,r

′) = n2

(Zα)2mr

⎧⎪⎨
⎪⎩

∞∑
k=l+1
k �=n

k

k − n
Rkl(n; r)Rkl(n; r ′)

+ 3

2
Rnl(n; r)Rnl(n; r ′) + rR′

nl(n; r)Rnl(n; r ′)

+ r ′R′
nl(n; r ′)Rnl(n; r)

⎫⎪⎬
⎪⎭ , (B11)

where

R′
nl(n; r) = ∂

∂r
Rnl(n; r).
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