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Entanglement in shape phase transitions of coupled molecular benders
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We study the entanglement properties of the shape phase transitions between different geometric limits of
two coupled equivalent molecular benders modeled with the two-dimensional limit of the vibron model. This
system has four possible geometric configurations: linear, cis-bent, trans-bent, and nonplanar. We show how the
entanglement, accessed through the calculation of the linear entropy, between benders and between rotational
and vibrational degrees of freedom changes sensitively in the critical regions of this two-fluid bosonic model.
The numeric calculation is complemented with a variational approach to the ground-state wave function in terms
of symmetry-adapted coherent states.

DOI: 10.1103/PhysRevA.89.032126 PACS number(s): 03.65.Fd, 33.20.Vq, 05.30.Rt, 03.65.Ud

I. INTRODUCTION

A correct understanding and description of entanglement
are a fundamental aim of quantum information science.
The occurrence of entanglement implies inherently quantum
correlations in the system. An appropriate description of these
correlations is of great relevance in fields such as quantum
computing, quantum teleportation, and quantum cryptography.

In recent times, the study of entanglement in quan-
tum many-body systems and its relation to quantum phase
transitions (QPTs) and quantum chaos has acquired great
momentum. The complex correlations and collective behavior
that take place in critical systems have attracted a huge degree
of attention, but a complete theory of many-body entanglement
is still missing.

Large correlations and collective behavior are an intrinsic
part of critical systems, and therefore entanglement measures
should capture the essence of QPTs. In this respect, the
entanglement properties of a single-mode Dicke model [1,2],
a two-mode Bose-Einstein condensate [3], and the vibration-
rotation entanglement in the two-dimensional limit of the
vibron model [4] can be found in the literature.

We are interested in an extension of the latter case. The
vibron model was originally introduced by Iachello in the
1980s [5,6] to study rotational and vibrational spectra in
diatomic molecules. Like other similar algebraic approaches,
e.g., the interacting boson model [7], this model is based
on the concept of spectrum-generating algebra (SGA). The
vibron model was later extended to the study of polyatomic
molecules, and its one- and two-dimensional (2DVM) limits
were introduced for the study of pure vibrations and bending
dynamics, respectively.

The 2DVM, based on a U(3) SGA, describes a planar
system containing a dipole degree of freedom [8]. It is
an appropriate model for the study of critical properties
because it is the simplest two-level model which still retains
a nontrivial angular momentum quantum number. The basic
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physical realization of such a system is the bending vibrational
mode of a molecule [9,10]. In the 2DVM one finds different
phases connected to specific geometric configurations of the
ground state and related to distinct dynamic symmetries of
the Hamiltonian [11] like other algebraic models of nuclear
and molecular structure. The 2DVM, despite its simplicity,
embodies the necessary physical ingredients to reproduce the
spectroscopic signatures of its limiting cases, the rigidly linear
and rigidly bent configurations, as well as the interesting
situations in between these two cases [12,13].

QPTs in algebraic models, also called ground-state phase
transition in the seminal works of Gilmore [14], occur when
qualitative changes of the system’s ground state take place
for small changes of a Hamiltonian control parameter ξ in the
vicinity of a critical value of the parameter. The Hamiltonian is
written as a convex combination H (ξ ) = (1 − ξ )H1 + ξH2. At
ξ = 0 the system is in phase I, characterized by the dynamical
symmetry G1 of H1, and at ξ = 1 the system is in phase
II, characterized by the dynamical symmetry G2 of H2 [11].
Recent reviews on quantum phase transitions in algebraic
models can be found in Refs. [15–17].

The coupling of two U(3) SGAs extends the 2DVM model
to encompass coupled benders [8,18,19]. Because this is a
two-fluid bosonic model, the number of available dynamical
symmetries and limiting geometrical configurations is much
larger in the coupled 2DVM than in the single-bender model.
Therefore the ground-state phase diagram in the coupled U(3)
case is more complex than in the single-bender case [20,21].
This was previously observed in the study of the phase diagram
of IBM-2 (interacting boson model version 2), another two-
fluid bosonic model in the realm of nuclear physics where a
distinction is made between protons and neutrons [22–24].

The coupled 2DVM has been applied to molecular structure
problems to reproduce the bending vibrational spectra of
molecules with coupled benders. The model was originally
used to reproduce the bending vibrational spectrum of the
ground electronic state of acetylene (C2H2, X̃ 1�+

g ) [8,19,25],
was later applied to a nonplanar molecule (ground electronic
state of water peroxide, H2O2) [26], and has recently been
extended to the vibrational bending spectroscopy of nonlinear
planar species in cis and trans configurations [27]. Extensive
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work on the bending dynamics of tetratomic molecules using
other alternative approaches can be found in the literature
[28–32]. In the shape-phase-transition case, works based on
normal-mode bifurcations are of particular relevance [33,34].

The classical, thermodynamic, or mean-field limit of the
different quantum (shape) phases of the vibron model is
investigated by using an algorithm introduced by Gilmore [14]
which makes use of semiclassical (boson-condensate) coher-
ent states (CSs; see, e.g., [35–38] for standard references
on CSs and [39] for a recent review on entangled coherent
states) as variational states to approximate the ground-state
energy. This approach was extended in Refs. [40–42] to nuclear
systems and in Refs. [43–45] to molecular systems.

However, these trial states do not have a definite parity, and
thus they do not display the intrinsic parity symmetry (see,
e.g., [46]) present in the Hamiltonian. The key role of parity
has recently been noticed in the context of QPT from normal to
superradiant configurations in the Dicke model for matter-field
(spin-boson) interactions [47,48] and in the QPT between
linear and bent configurations of a single bender [4]. We extend
this study to the case of coupled benders and, as anticipated
in the single-bender case, we shall see that disregarding parity
leads to an absence of entanglement for the usual variational
approximations to the ground state in terms of (non-symmetry-
adapted) CSs. To overcome this difficulty we introduce even
(odd) CSs adapted to the parity symmetry of the Hamiltonian
to better describe the ground (first excited) state of our model.
These even and odd CSs are Schrödinger-cat–like states in the
sense that they are a quantum superposition of quasiclassical,
macroscopically distinguishable (having a negligible overlap)
states. We shall show that even-cat states provide finite-
size N approximations to some N = ∞ quantities like the
ground-state energy “per particle” and order parameters like
the equilibrium radius. The finite-size corrections obtained
with these trial states differ from a systematic expansion
of the different observables as a function of system’s size,
computing the relevant corrections for each power of N [49].
However, the main advantage of including even-cat states as a
variational ansatz is that they offer the possibility of capturing,
qualitatively and quantitatively, entanglement measures of the
exact ground state for finite N values.

The outline of this article is as follows. After these
introductory remarks, Sec. II revisits the coupled 2DVM and
its semiclassical analysis based on CSs. Section III introduces
the new, symmetry-adapted, even cat states for the coupled
2DVM and the results of the variational analysis using these
new states compared to the results in the previous section.
Section IV presents the different entanglement schemes
considered and the results of exact (numeric) calculations
compared with the results of traditional and symmetry-adapted
semiclassical approaches. Finally, some concluding remarks
are given in Sec. V.

II. MODEL HAMILTONIAN AND SEMICLASSICAL
ANALYSIS

We briefly review the theoretical framework of the cou-
pled 2DVM; the interested reader can find more details
in Refs. [8,19,27]. The bosonic U1(3) × U2(3) algebra for
coupled 2D systems can be constructed with the bilinear
products of boson creation and annihilation operators. The

Cartesian τ -boson operators {τ †
x,j ,τ

†
y,j ,τx,j ,τy,j } and a scalar σ

boson {σ †
j ,σj } are the basic building blocks for the SGA, where

the subscript j = 1,2 denotes the subsystem. It is convenient
to introduce circular bosons: τ±,j = ∓(τx,j ∓ iτy,j )/

√
2. The

nine generators of each Uj (3) algebra are the possible bilinear
products of creation and annihilation operators with index j .
In particular,

n̂j = τ
†
+,j τ+,j + τ

†
−,j τ−,j ,

n̂σ,j = σ
†
j σj ,

�̂j = τ
†
+,j τ+,j − τ

†
−,j τ−,j ,

D̂+,j =
√

2(τ †
+,j σj − σ

†
j τ−,j ), (1)

D̂−,j =
√

2(−τ
†
−,j σj + σ

†
j τ+,j ),

Q̂+,j =
√

2τ
†
+,j τ−,j ,

Q̂−,j =
√

2τ
†
−,j τ+,j

denote the number operators of vector (n̂j ) and scalar (n̂σ,j )
bosons, the 2D angular momentum �̂j , the dipole operator
D̂±,j , and the quadrupole operator Q̂±,j of j = 1,2 type (see
Ref. [11] for a discussion of the role of the R̂±,j generators,
which will not be used in the present work).

The total number of bosons, N̂ = ∑2
j=1 N̂j , with N̂j =

n̂j + n̂σ,j , and the total 2D angular momentum, �̂12 =∑2
j=1 �̂j , are conserved quantities in the model. Moreover, we

consider henceforth indistinguishable benders (e.g., ABBA-
type molecules), so that N1 = N2 = N/2. We shall deal with
four dynamical symmetry limits [see Eq. (1) in Ref. [21]] in
the same spirit as previous works on the phase diagram for
two-fluid bosonic systems [22–24]. To capture the essentials
of the phase transition it is enough to consider a model
Hamiltonian given by the following convex combination [21]:

Ĥ = ε

{
(1 − ξ )

[
n̂1 + n̂2 + η1

N
Q̂1 · Q̂2

]

+ ξ

[
P̂1 + P̂2

N − 2
+ 2η2

Ŵ1 · Ŵ2

N

]}
, (2)

where P̂j = Nj (Nj + 1) − Ŵ 2
j is the SOj (3) pairing operator.

The operator Ŵ 2
j = (D̂+,j D̂−,j + D̂−,j D̂+,j )/2 + �̂2

j is the
SOj (3) second-order Casimir operator, and

Ŵ1Ŵ2 = (D̂+,1D̂−,2 + D̂−,1D̂+,2)/2 + �̂1�̂2,
(3)

Q̂1Q̂2 = Q̂+,1Q̂−,2 + Q̂−,1Q̂+,2,

are linked with the SO12(3) and U12(2) second-order Casimir
operators, respectively. The parameter ε is an overall energy
scale, whereas ξ,η1, and η2 are control parameters, whose
values determine the system’s geometry and its placement in
the phase diagram.

The quantum number Nj determines the total number
of bound states for the j th bender and labels the totally
symmetric [(Nj + 1)(Nj + 2)/2]-dimensional representation
[Nj ] of Uj (3). For the direct product U1(3) × U2(3), the
Hilbert space is spanned by the orthonormal basis vectors (in
compact spectroscopic notation, removing Nj labels for the

032126-2



ENTANGLEMENT IN SHAPE PHASE TRANSITIONS OF . . . PHYSICAL REVIEW A 89, 032126 (2014)

sake of brevity):

∣∣n�1
1 ; n�2

2

〉 = 2∏
j=1

(σ †
j )Nj −nj (τ †

+,j )
nj +�j

2 (τ †
−,j )

nj −�j

2√
(Nj − nj )!

( nj +�j

2

)
!
( nj −�j

2

)
!
|0〉, (4)

where the bending quantum number nj = 0,1, . . . ,Nj and
the angular momentum �j = nj − 2mj (mj = 0,1, . . . ,nj ) are
the eigenvalues of n̂j and �̂j , respectively. We recall that we
are considering the particular case N1 = N2 = N/2, so that
the dimension of our Hilbert space is [(N + 2)(N + 4)/8]2.

The matrix elements of the Hamiltonian (2) in the basis (4)
can easily be derived. We direct the reader to Ref. [19] for
an explicit expression of the matrix elements of each operator
in Ĥ , and here we shall just point out that whereas n̂j and
Q̂1Q̂2 preserve the so-called polyad number n̂ ≡ n̂1 + n̂2, the
operators P̂j and Ŵ1Ŵ2 do not conserve the polyad number
n̂; however, they still preserve parity 	̂ ≡ eiπn̂. Indeed, one
can prove that [Ĥ ,	̂] = 0, and both operators can then be
jointly diagonalized. We shall come back to this point in
Sec. III.

We now briefly discuss the classical limit of the coupled
2DVM using the coherent-state formalism (see Refs. [21,27]
for more details). The connection between the abstract alge-
braic description and the conventional potential description is
made through the CS:

|r1,θ1; r2,θ2〉 ≡ 1√
N1!N2!

(b†1)N1 (b†2)N2 |0〉,
(5)

b
†
j ≡ 1√

1 + r2
j

(σ †
j + rj cos θj τ

†
x,j + rj sin θj τ

†
y,j ),

with r1,r2 ∈ R and θ1,θ2 ∈ [0,π ) being free variational pa-
rameters. For future use, we shall provide the expression of
the coefficients of the expansion of (5) in terms of the basis
vectors (4), which is explicitly given by

|r1,θ1; r2,θ2〉

=
N1,N2∑

n1,n2=0

n1,n2∑
m1,m2=0

c(N1)
n1,m1

(r1,θ1)c(N2)
n2,m2

(r2,θ2)
∣∣nn1−2m1

1 ; nn2−2m2
2

〉
,

c
(Nj )
nj ,mj

(rj ,θj )

=
√(

Nj

nj

)(
nj

mj

)
(−rj /

√
2)nj (−1)mj e−i(nj −2mj )θj(

1 + r2
j

)Nj /2 . (6)

The variational parameters rj ,θj are fixed by minimizing
the mean energy per particle [21]:

Eξ,η1,2 (r1,2,φ)

= 〈r1,θ1; r2,θ2|Ĥ |r1,θ1; r2,θ2〉
εN

= (1 − ξ )

⎡
⎣1

2

2∑
j=1

r2
j

1 + r2
j

+ η1 cos(2φ)

4

2∏
j=1

r2
j

1 + r2
j

⎤
⎦

+ ξ

⎡
⎣1

4

2∑
j=1

(
1 − r2

j

1 + r2
j

)2

+ 2η2 cos(φ)
2∏

j=1

rj

1 + r2
j

⎤
⎦ , (7)

which only depends on the dihedral angle φ = θ1 − θ2. Note
that Eξ,η1,2 (r1,2,φ) does not depend on N . Actually, it repro-
duces the ground-state energy density in the thermodynamic
limit N → ∞ (see Ref. [50] and Fig. 3 in this paper).

Following the interpretation of the variational parameters
recently introduced in Ref. [27] for the use in molecular
bending problems, the unitless parameters r1 and r2 are
proportional to physical bending angles and can be both
positive and negative. For bent (rj 
= 0) planar configurations
there are four possible sign combinations, two for the cis
case (r1r2 > 0) and two for the trans case (r1r2 < 0). In the
nonplanar case the dihedral angle φ is taken as 0 � φ � π/2.
Having this in mind, the phase diagram in Ref. [21] has to be
reinterpreted because the η2 parameter in Eq. (2) is limited to
negative values in order to get a physically sound spectrum
once the Hamiltonian is diagonalized. However, in Ref. [21]
only positive rj values were considered, and thus the right half
of the phase diagram (positive η2 values) is equivalent to what
is obtained with r1r2 < 0 for negative η2 values. Henceforward
we have reinterpreted the results in Ref. [21] with this in mind.

Since Eξ,η1,2 (r1,2,φ) is symmetric under the interchange
r1 ↔ r2 (we are dealing with ABBA molecules), the equilib-
rium configuration values will be located at |re,1| = |re,2| = re.
We shall focus on the cis configuration (r1 = r2 = r) and
consider the energy surface Eξ,η1,2 (r,φ) ≡ Eξ,η1,2 (r1,2 = r,φ) as
a function of two variational parameters (r,φ) only (the trans
configuration follows similar steps). Minimizing the energy
functional (by solving the coupled set of nonlinear equations
∂Eξ,η1,2 (r,φ)/∂r = 0 and ∂Eξ,η1,2 (r,φ)/∂φ = 0), one can obtain
the equilibrium variational (order) parameters as a function of
the control parameters: r = re(ξ,η1,2) and φ = φe(ξ,η1,2). A
complete phase diagram for η1 = 0 and η1 = 1 was given in
Ref. [21], taking into account the considerations stated above.
Here we shall restrict ourselves to two trajectories in the η1 = 1
phase diagram, denoted as vertical (η2 = −0.5 and 0 � ξ � 1)
and horizontal (ξ = 0.5 and −1 � η2 � 0) cuts (see also [50]).
The system phase diagram as a function of the control

FIG. 1. (Color online) Phase diagram of the coupled 2DVM
Hamiltonian (2) as a function of the ξ and η2 control parameters for
η1 = 1, showing the three different geometric phases (associated with
linear, planar bent, and nonplanar bent molecular configurations). The
defined vertical and horizontal cuts in the phase diagram are plotted
with thin dashed blue lines. Schematic drawings of symmetric ABBA
tetratomic molecular species for each case have also been depicted.
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parameters ξ and η2 (for η1 = 1) and the aforementioned cuts
are depicted in Fig. 1, together with a schematic drawing of
the three possible geometric configurations in a tetratomic

molecular system: linear, cis and trans planar bent, and
nonplanar bent. The equilibrium radius of the system for the
vertical (v) and horizontal (h) cuts is

rv(ξ ) = re(ξ,η1 = 1,η2 = −1/2) =
⎧⎨
⎩

0 if ξ � ξc = 1/4,√
2
3

√
4ξ−1
ξ+1 if ξ > ξc,

(8)

rh(η2) = re(ξ = 1/2,η1 = 1,η2) =

⎧⎪⎨
⎪⎩

√
2+4|η2|
7+4|η2| if −1 � η2 < η2c = −1

8 (
√

41 − 5),√
2
5

√
1 − 4η2

2 if −1
8 (

√
41 − 5) � η2 � 0,

and the equilibrium relative angle is

φv(ξ ) = φe(ξ,η1 = 1,η2 = −1/2) = 0,

φh(η2) = φe(ξ = 1/2,η1 = 1,η2) (9)

=
{

0 if −1 � η2 < η2c,

arccos
( 5η2

4η2
2−1

)
if η2c � η2 � 0.

These two quantities can be considered “order parameters”
for the shape phase transition.

The mean-field energy density values obtained from the
equilibrium values of r and φ for the two trajectories in the
phase diagram under study are

Ev(ξ ) = Eξ,1,−1/2(rv(ξ ),φv(ξ ))

=
⎧⎨
⎩

ξ

2 if ξ � ξc,

−2+17ξ−21ξ 2

2+22ξ
if ξ > ξc,

Eh(η2) = E1/2,1,η2 (rh(η2),φh(η2)) (10)

=
⎧⎨
⎩

7−8η2
2

36+32|η2| if −1 � η2 < η2c,

5−20η2
2

28−32η2
2

if η2c � η2 � 0.

One can prove that ∂2Ev(ξ )/∂ξ 2 and ∂2Eh(η2)/∂η2
2 are

discontinuous at ξ = ξc and η2 = η2c, respectively, which
means that we are dealing with second-order quantum phase
transitions.

III. PARITY AND SCHRÖDINGER-CAT STATES

Semiclassical CSs defined in Eq. (5) are a convenient
tool to analyze the mean-field limit and the phase diagram
of the coupled 2DVM. Nevertheless, the CS (5), as will be
shown in the next section, does not account for entanglement
between benders. This is because it is defined as a direct
product. A way to incorporate entanglement into the direct
product (5) is through the intrinsic parity symmetry present
in the Hamiltonian (2). This has already been done for a
single bender in the 2DVM [4,51]. In fact, we have already
mentioned that the parity operator 	̂ = eiπn̂ commutes with
Ĥ , and thus both operators can be jointly diagonalized. The
ground state must be of even parity, and it is easy to see

that

	̂|r1,θ1; r2,θ2〉 = |−r1,θ1; −r2,θ2〉, (11)

so that the projection of the CS (5) onto even and odd parities
gives as a result

|r1,θ1; r2,θ2; ±〉 ≡ (1 ± 	̂)|r1,θ1; r2,θ2〉
N±(r1,r2)

= |r1,θ1; r2,θ2〉 ± |−r1,θ1; −r2,θ2〉
N±(r1,r2)

, (12)

where N±(r1,r2) = √
2(1 ± 〈−r1,θ1; −r2,θ2|r1,θ1; r2,θ2〉)1/2

is a normalization constant, with

〈−r1,θ1; −r2,θ2|r1,θ1; r2,θ2〉 =
2∏

j=1

(
1 − r2

j

1 + r2
j

)Nj

. (13)

Note that the overlap (13) is negligible in the large-N (thermo-
dynamic) limit for any rj ; therefore, in this limit, the states (12)
are a superposition of two nonoverlapping (distinguishable)
quasiclassical (coherent) wave packets (see [47,48] and [52–
54] for a similar behavior in the Dicke model). This justifies the
denomination of Schrödinger-cat–like for these states. We only
discuss the even case (ground-state ansatz); the odd case would
correspond to the first-excited-state ansatz. Expanding (12) in
the basis (4), as we did in Eq. (6) for the plain CS, we arrive
at the new coefficients:

|r1,θ1; r2,θ2; +〉

=
N1,N2∑

n1,n2=0

n1,n2∑
m1,m2=0

sn1,n2
m1,m2

(r1,θ1; r2,θ2)
∣∣nn1−2m1

1 ,n
n2−2m2
2

〉
,

(14)
sn1,n2
m1,m2

(r1,θ1; r2,θ2)

≡
∏2

j=1 c
(Nj )
nj ,mj

(rj ,θj ) + ∏2
j=1 c

(Nj )
nj ,mj

(−rj ,θj )

N±(r1,r2)
.

Note that now sn1,n2
m1,m2

(r1,θ1; r2,θ2) = 0 for odd polyad number
n = n1 + n2.

Again, the variational parameters rj ,θj are fixed by mini-
mizing the mean energy per particle in the (even) cat state (12):

E (N,+)
ξ,η1,2

(r1,2,φ) = 〈r1,θ1; r2,θ2; +|Ĥ |r1,θ1; r2,θ2; +〉
εN

, (15)
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FIG. 2. (Color online) Comparison of the mean-field (N = ∞)
order parameters with the Schrödinger-cat order parameters for
different values of N in the horizontal and vertical cuts in the phase
diagram of Fig. 1. (a) r (N)

v (ξ ), (b) r
(N)
h (η2), and (c) φ

(N)
h (η2). The

critical control parameter values ξc = 1/4 and η2c = −1
8 (

√
41 − 5)

are marked with a vertical thin dot-dashed line in the three cases.

which can be computed in terms of (7) and the off-diagonal
matrix elements:

〈r1,θ1; r2,θ2|n̂j |−r1,θ1; −r2,θ2; 〉

= −Nj

r2
j

1 − r2
j

2∏
k=1

(
1 − r2

k

1 + r2
k

)Nk

, (16)

〈r1,θ1; r2,θ2|Q̂1Q̂2|−r1,θ1; −r2,θ2; 〉

= cos(2φ)
2∏

k=1

Nk

r2
k

1 − r2
k

(
1 − r2

k

1 + r2
k

)Nk

, (17)

〈r1,θ1; r2,θ2|Ŵ 2
j |−r1,θ1; −r2,θ2; 〉 = 2Nj

2∏
k=1

(
1 − r2

k

1 + r2
k

)Nk

,

(18)

〈r1,θ1; r2,θ2|Ŵ1Ŵ2|−r1,θ1; −r2,θ2; 〉 = 0. (19)

Contrary to Eξ,η1,2 (r1,2,φ) in Eq. (7), the new energy density
E (N,+)

ξ,η1,2
(r1,2,φ) depends on N . Since E (N,+)

ξ,η1,2
(r1,2,φ) is also

symmetric under the interchange r1 ↔ r2, the absolute value of
the equilibrium radius coincide, |re,1| = |re,2| = re. For the cis
configuration, the energy surface E (N,+)

ξ,η1,2
(r,φ) ≡ E (N,+)

ξ,η1,2
(r1,2 =

r,φ) is again a function of two variational parameters (r,φ).
The minimization of the cat energy functional E (N,+)

ξ,η1,2
(r,φ)

has to be done numerically in this case. Contrary to the
mean-field case, the equilibrium variational (order) param-
eters r = r (N)

e (ξ,η1,2) and φ = φ(N)
e (ξ,η1,2) now depend on

N and provide finite-N approximations to the mean-field
parameters re and φe in Eqs. (8) and (9). A comparison
between the cat and CS order parameters for different values
of N is depicted in Fig. 2. We denote by E

(N)
cat (ξ,η1,2) =

E (N,+)
ξ,η1,2

(r (N)
e (ξ,η1,2),φ(N)

e (ξ,η1,2)) the minimum mean energy of
the cat state. In Fig. 3 we compare the ground-state energy per
particle for the mean-field [Eq. (10)], numeric, and cat cases
for different values of N . We realize that the cat energy actually
provides a better approximation to the exact (numerical)
energy density than the CS or mean-field energy (7) for finite
N . Like the exact energy, the cat energy density (15) also tends
to the mean-field energy density (7) in the thermodynamic
limit N → ∞ [at which the overlap (13) is zero]. Actually,
the convergence of the cat energy density to the mean-field
energy density is faster than for the numeric case. The biggest
difference between the exact and variational energies is located
around the critical points, where the ground-state structure
deviates from the coherent and cat structures, as expected.
To better appreciate this fact, we also represent in Fig. 4 the
departure (difference) of the even-cat and mean-field results
with the exact (numeric) ground-state energy as a function of
the control parameter.

The improvement in the results for these quantities obtained
with the newly derived cat states is not their most important
characteristic. In fact, beyond mean-field corrections for finite
N values can be obtained in a systematic way using an
expansion in powers of N [49]. However, as we show in the
next section, considering parity in the definition of the cat states
allows them to reproduce the exact entanglement properties of
the coupled 2DVM model.

IV. ENTANGLEMENT IN COUPLED MOLECULAR
BENDERS

In this section we quantify the entanglement between
the two coupled benders and the rovibrational entanglement
through the vertical and horizontal cuts in the phase diagram
in Fig. 1. Let us denote the normalized ground-state wave
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FIG. 3. (Color online) Ground-state energy per particle for the (a) vertical (Ev , η1 = 1,η2 = −0.5 ⇒ ξc = 1/4) and (b) horizontal [Eh,
η1 = 1,ξ = 0.5 ⇒ η2c = −1

8 (
√

41 − 5)] cuts in the phase diagram (see Fig. 1). Mean-field results are depicted with a dot-dashed black line,
even-cat results for N = 4,8,16 are depicted with dotted, dashed, and solid blue (dark gray) lines, and exact (numeric) results for the same N

values are depicted with dotted, dashed, and solid orange (light gray) lines. The critical values of the control parameters are marked with a
vertical thin dot-dashed line in both panels.

function by

∣∣ψξ,η1,η2

〉 =
N/2∑

n1,n2=0

n1,n2∑
m1,m2=0

cn1,n2
m1,m2

(ξ,η1,η2)
∣∣n�1

1 ; n�2
2

〉
,

�1,2 = n1,2 − 2m1,2, (20)

where the c coefficients are obtained by a numerical diagonal-
ization of the Hamiltonian (2).

A. Entanglement between benders

Let us first consider the two coupled molecular benders j =
1,2 as a bipartite system, with density matrix ρ(ξ,η1,η2) =
|ψξ,η1,η2〉〈ψξ,η1,η2 |. Taking, for example, the partial trace with

respect to the second bender, we obtain the reduced density
matrix (RDM) ρ1 = Tr2(ρ) for the first bender, with matrix
elements

ρ1
n1,n

′
1

m1,m
′
1
(ξ,η1,η2) =

N/2∑
n2=0

n2∑
m2=0

cn1,n2
m1,m2

(ξ,η1,η2)c
n′

1,n2

m′
1,m2

(ξ,η1,η2).

(21)

The purity of ρ1 is then given by

Tr
[
ρ2

1 (ξ,η1,η2)
]

=
N/2∑

n1,n
′
1=0

n1,n
′
1∑

m1,m
′
1=0

ρ1
n1,n

′
1

m1,m
′
1
(ξ,η1,η2)ρ1

n′
1,n1

m′
1,m1

(ξ,η1,η2). (22)
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FIG. 4. (Color online) Departure (difference) of the even-cat [blue (dark gray) lines] and mean-field [orange (light gray) lines] results from
the exact (numeric) results for the ground-state energy density in the (a) vertical (�Ev , η1 = 1,η2 = −0.5 ⇒ ξc = 1/4) and (b) horizontal
[�Eh, η1 = 1,ξ = 0.5 ⇒ η2c = −1

8 (
√

41 − 5)] cuts in the phase diagram (see Fig. 1). The difference between mean-field results and exact
results for N = 4,8,16 are depicted with dotted, dashed, and solid orange (light gray) lines. The difference between even-cat and exact results
for the same N values are depicted with dotted, dashed, and solid blue (dark gray) lines. The critical values of the control parameters are
marked with a vertical thin dot-dashed line in both panels.
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FIG. 5. (Color online) Exact (numeric) linear entropy LN (ξ,η1,η2) for N = 4,8,16 as a function of the control parameters (a) ξ (vertical
cut; η1 = 1,η2 = −1/2 ⇒ ξc = 1/4) and (b) η2 [horizontal cut; η1 = 1,ξ = 1/2 ⇒ η2c = −1

8 (
√

41 − 5); see Fig. 1]. The critical values of the
control parameters are marked with a vertical thin dot-dashed line in both panels.

We shall use the linear entropy (“impurity”)

LN (ξ,η1,η2) = 1 − Tr
[
ρ2

1 (ξ,η1,η2)
]

(23)

as a measure of the entanglement between the two benders. The
exact (numerical) results for the ground-state linear entropy are
depicted in Fig. 5 for the two particular cuts mentioned above:
(1) phase transition from linear to bent (cis) as a function of
ξ (critical point at ξc = 1/4) for η1 = 1 and η2 = −1/2 and
(2) phase transition from cis to nonplanar [critical point at
η2c = −1

8 (
√

41 − 5)]. The transition from trans to nonplanar
gives similar results. We see that, in the first case, the impurity
LN grows with ξ and N in passing from the linear to bent-cis
phase, and this growth becomes sharper as N increases. In the
second case, the two benders are more entangled in the cis
(and trans) phase than in the nonplanar configuration.

As already mentioned, the coherent state (5), being a direct
product, does not capture the entanglement between the two

benders. Let us see how the projection (12) of (5) on good
parity (i.e., the cat state) does capture the qualitative behavior
of the linear entropy across the phase transition. Indeed,
plugging the cat coefficients cn1,n2

m1,m2
(ξ,η1,2) = sn1,n2

m1,m2
(r (N)

e ,φ(N)
e )

[given in Eq. (14)] into (21)–(23), we can compute the linear
entanglement entropy of the cat state (12). Figure 6 shows the
linear entanglement entropy of the cat state for the two cases
mentioned above. We see that the cat state captures the growth
of entanglement in the bent (cis and trans) phase, although it
does not match the numerical values of Fig. 5.

This means that the adaptation of the variational coherent
state to parity (which results in a catlike state) is necessary to
account for entanglement between benders (at least to capture
the exact linear entropy qualitative behavior), but it does not
seem to be sufficient to reach a good quantitative agreement
too. To better fit the exact (numerical) entropy values, further
structure should be allowed for the variational state, perhaps in
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FIG. 6. (Color online) Variational (even-cat) linear entanglement entropy LN (ξ,η1,η2) for N = 4,8,16 as a function of the control
parameters (a) ξ (vertical cut; η1 = 1,η2 = −1/2 ⇒ ξc = 1/4) and (b) η2 [horizontal cut; η1 = 1,ξ = 1/2 ⇒ η2c = −1

8 (
√

41 − 5); see Fig. 1].
The critical values of the control parameters are marked with a vertical thin dot-dashed line in both panels.
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the form of extra variational parameters. Anyway, it is always
complicated to find variational states which reproduce several
exact state properties at the same time, especially for finite-N
nonlinear coupled systems like the one at hand.

B. Rovibrational entanglement

Now we shall study a second case of interest, the entangle-
ment between rotational and vibrational degrees of freedom.
Let us denote by

ψξ,η1,2 (q1; q2) = 〈
q1; q2|ψξ,η1,η2

〉
(24)

the system wave function in “position” representation qj =
(q0

j ,�qj ),j = 1,2, where q0
j denote the coordinates for the

scalar bosons σj (carrying zero angular momentum) and
�qj = (q+

j ,q−
j ) are the coordinates for the vector bosons �τj =

(τ+,j ,τ−,j ) representing dipole excitations of the molecule
and carrying unit angular momentum (in three-dimensional
configurations). The wave function (24) can be expanded in
terms of Hermite polynomials Hk(q) by noting that basis (4)
comprises wave functions

〈
q1; q2

∣∣n�1
1 ,n

�2
2

〉 =
2∏

j=1

2−Nj /2π−3/4e−[(q0
j )2+(�qj )2]/2√

(Nj − nj )!
( nj +�j

2

)
!
( nj −�j

2

)
!

×HNj −nj

(
q0

j

)
Hnj +�j

2
(q+

j )Hnj −�j

2
(q−

j ). (25)

We consider the bipartite system given by scalar (q0) and
vector [�q = (q+,q−)] degrees of freedom. Then, we can
compute the reduced density matrix for scalar degrees of
freedom (we call it ρ

(v)
ξ,η1,2

for the reasons given below) by
integrating out the vector degrees of freedom

ρ
(v)
ξ,η1,2

(
q0

1 ,q0
2 ; q ′0

1 ,q ′0
2

)
=

∫
R2

∫
R2

d �q1d �q2 ψξ,η1,2

(
q0

1 ,�q1; q0
2 ,�q2

)
×ψ̄ξ,η1,2

(
q ′0

1 ,�q1; q ′0
2 ,�q2

)
. (26)

The purity of ρ
(v)
ξ,η1,2

is given by

Tr
(
ρ

(v)
ξ,η1,2

)2 =
∫
R

∫
R

∫
R

∫
R

dq0
1dq0

2dq ′0
1 dq ′0

2 ρ
(v)
ξ,η1,2

×(
q0

1 ,q0
2 ; q ′0

1 ,q ′0
2

)
ρ

(v)
ξ,η1,2

(
q ′0

1 ; q ′0
2 ; q0

1 ,q0
2

)

=
N/2∑
n1=0

N/2∑
n2=0

(
n1∑

m1=0

n2∑
m2=0

∣∣cn1,n2
m1,m2

(ξ,η1,η2)
∣∣2)2

,

(27)

where we have used the orthogonality properties of the basis
functions (25) and the coefficients of the expansion (20).
Integrating out vector degrees of freedom, as in Eq. (26),
is equivalent to taking the partial trace with respect to
angular momentum (rotational) quantum numbers �j = nj −
2mj,mj = 0, . . . ,nj (j = 1,2) for fixed vibrational quantum
numbers nj ,j = 1,2. Indeed, the reduced density matrix ρ

(v)
ξ,η1,2

elements in the discrete basis (4) can be written as

(
ρ

(v)
ξ,η1,2

)n2,n
′
2

n1,n
′
1
=

n1∑
m1=0

n2∑
m2=0

∣∣cn1,n2
m1,m2

(ξ,η1,η2)
∣∣2δn1,n

′
1
δn2,n

′
2
, (28)

whose purity is precisely (27). This justifies our proposal
of ρ

(v)
ξ,η1,2

as the reduced density matrix for vibrational (v)
modes.

We shall denote the rovibrational linear entanglement
entropy by

L
(v)
N (ξ,η1,η2) = 1 − Tr

(
ρ

(v)
ξ,η1,2

)2
(29)

to distinguish it from (23). Figure 7 gives a comparison
between exact (numeric) and variational (cat) rovibrational
linear entanglement entropies for the linear-cis and cis-
nonplanar transitions. We observe good agreement between
numeric and variational results, mainly for rigid molecules.
The entanglement entropy captures the QPT, especially the
one from linear to cis (and trans), that causes a sudden growth
at the critical point ξc, which sharpens as the N value increases.

0.0 0.2 0.4 0.6 0.8 1.0
Control parameter ξ

0.00

0.20

0.40

0.60

0.80

1.00

R
ov

ib
. L

in
. E

nt
ro

py
 L

(v
) N
 (

di
m

en
si

on
le

ss
)

N = 4
N = 8
N = 16

ξc = 0.25

(a)

-1.0 -0.8 -0.6 -0.4 -0.2 0.0
Control parameter η2

0.00

0.25

0.50

0.75

1.00

R
ov

ib
. L

in
. E

nt
ro

py
 L

(v
) N
 (

di
m

en
si

on
le

ss
)

N = 4
N = 8
N = 16

η2c = -0.1754

(b)

FIG. 7. (Color online) Rovibrational linear entropy L
(v)
N (ξ,η1,η2) for the exact [numerical, orange (light gray) lines] and even-cat

[variational, blue (dark gray) lines] cases. Results are depicted for N = 4,8,16 as a function of (a) ξ (vertical cut; η1 = 1,η2 = −1/2 ⇒
ξc = 1/4) and (b) η2 [horizontal cut; η1 = 1,ξ = 1/2 ⇒ η2c = −1

8 (
√

41 − 5); see Fig. 1]. The critical values of the control parameters are
marked with a vertical thin dot-dashed line in both panels.
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The asymptotic behavior for the rovibrational linear en-
tanglement entropy for η1 = 1,η2 = −1/2,ξ = 1 and η1 =
1,η2 = −1,ξ = 1/2 scales with N according to

L
(v)
N � 1 − 4

πN
, (30)

as can be directly checked in Fig. 7 for N = 4,8, and 16.

V. CONCLUSIONS

We have studied quantum ground-state correlations of
coupled molecular benders across several possible geometric
configurations: from linear to bent (cis or trans) and from
bent (cis or trans) to nonplanar. In particular, we have
computed quantum correlations between benders and quantum
correlations between rotational and vibrational degrees of
freedom using the linear entanglement entropy (impurity) to
quantify them. A variational approach in terms of coherent
states has been used for a semiclassical (mean-field) study
and to complement numerical calculations. We realize that a
projection of coherent states on good parity (which results in a
Schrödinger-cat–like state) is necessary to reproduce numeri-
cal results of entanglement. For bender-bender entanglement,
variational (even-cat) results qualitatively reproduce numerical
results, both displaying a sudden change of impurity at the
critical points. The results indicate that benders are correlated
in bent and nonplanar configurations but not in the linear phase.

For rovibrational entanglement, variational results not only
capture the qualitative behavior but also show a quite good
quantitative agreement with numerical calculations. The purity
results show that rotational and vibrational degrees of freedom
are entangled in the bent (cis or trans) and nonlinear phases.
In the bent phase, purity scales with N as 4

πN
, which means

that rovibrational entanglement is not maximal since minimal
rovibrational purity would be 1

(N+1)2 . In the thermodynamical
N → ∞ limit, rovibrational linear entropy (purity) attains its
maximum (minimum).

The question of how to use this entanglement between
molecular benders for potential quantum information pro-
cesses remains. Emission, absorption, and scattering of
phonons and rotons have been extensively studied in superfluid
helium. Perhaps quantum correlations between rotational and
vibrational degrees of freedom in coupled molecular benders
could also provide feasible quantum (communication and
computation) protocols. For the time being, we think that it
is interesting to show the existence of quantum correlations in
these vibron models.

ACKNOWLEDGMENTS

The authors thank J. M. Arias and F. Iachello for discussions
and valuable comments. Work was partially supported by the
Spanish MINECO under projects FIS2011-29813-C02-01 and
FIS2011-28738-C02-02 and by the University of Granada
under project PP2012-PI04.

[1] N. Lambert, C. Emary, and T. Brandes, Phys. Rev. Lett. 92,
073602 (2004).

[2] N. Lambert, C. Emary, and T. Brandes, Phys. Rev. A 71, 053804
(2005).
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