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Nonlinear Thomson and Compton processes, in which energetic electrons collide with an intense optical
pulse, are investigated in the framework of classical and quantum electrodynamics. Spectral modulations of
the emitted radiation, appearing as either oscillatory or pulsating structures, are observed and explained. It is
shown that both processes generate a bandwidth radiation spanning the range of a few MeV, which occurs in a
small cone along the propagation direction of the colliding electrons. Most importantly, these broad bandwidth
structures are temporarily coherent, which proves that Thomson and Compton processes lead to the generation
of a supercontinuum. It is demonstrated that the radiation from the supercontinuum can be synthesized into
zeptosecond (possibly even yoctosecond) pulses. This confirms that Thomson and Compton scattering can be
used as sources of an ultrashort radiation, which opens routes to new physical domains for strong laser physics.
We study properties of generated pulses arising in the classical and in the exclusively quantum regime of
electron-laser-field interaction, and we attribute them to the behavior of global phases of Thomson and Compton
scattering probability amplitudes.
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I. INTRODUCTION

Conventionally, a high-energy radiation has been produced
in large-scale electron accelerators, which has resulted in a
pulsed synchrotron radiation lasting for picoseconds. More
compact sources of high-energy radiation have been built
based on laser-wakefield electron acceleration [1]. The latter
typically produce femtosecond-duration pulsed fields and,
in principle, allow for conducting all-optical setup exper-
iments [2,3]. Note that the radiation produced by either
technique is very bright, tunable, nearly monoenergetic, and
well collimated. These unique features make for a plethora
of applications of the generated MeV radiation, including
applications in natural sciences and medicine (for more details,
see, for instance, [4–7]). Here, let us mention that these
radiation sources are the main experimental tool for nuclear
physics and astrophysics research soon to be performed at the
Extreme Light Infrastructure (ELI) [8].

The key idea for generating the MeV radiation in the
aforementioned setups is to allow relativistic electrons to move
in an intense laser pulse, which forces them to oscillate and
radiate; this is the mechanism known as Thomson scattering in
the classical domain, with its quantum generalization known
as Compton scattering. Consider a high-energy electron beam
colliding with an intense pulse. When moving against the
pulse, the electrons experience a nearly flat wave front of the
pulse. Thus, it is physically justified to describe the driving
field as a pulsed plane wave [9]. This approach has been used
recently in connection with not only Thomson and Compton
scattering [10–20], but also with other strong-field processes
such as Bethe-Heitler pair creation [21], bremsstrahlung
[22,23], and Mott scattering [24,25]. We will use this model
in the present paper when investigating the possibility of
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zepto- or even yoctosecond pulse generation from Thomson
and Compton processes.

It is known that Thomson and Compton scattering by a finite
laser pulse lead to a spectral broadening and a modulation
of emitted radiation, which is due to spectral interferences
from the ramp-on and ramp-off parts of the driving pulse
(cf. Refs. [11,15,17]). Note that, in contrast, a very recent
classical calculation by Ghebregziabher et al. [26] showed
that by chirping a driving pulse, the spectral broadening of
high-energy radiation can be reduced. In this paper, which
essentially deals with both Thomson and Compton processes,
we observe additional structures of emitted radiation. We also
demonstrate an appearance of a supercontinuum which arises
from spectral broadening.

It is commonly understood that the supercontinuum is a
broad bandwidth radiation generated by an interaction of a
narrow bandwidth laser beam with matter. Moreover, such
a spectrum should be spatially and/or temporally coherent. In
this paper, we investigate coherence properties of radiation
generated by nonlinear Thomson (Compton) scattering. We
also show that the Thomson-originated (Compton-originated)
supercontinuum allows one to produce zeptosecond (possibly
even yoctosecond) pulses. Note that there are a number
of papers in the literature demonstrating a possibility of
ultrashort-pulse generation based on Thomson scattering
[27–32]. In this paper, we demonstrate the same in the ex-
clusively quantum regime of Compton scattering. In addition,
we perform an analysis of properties of generated ultrashort
pulses of radiation which arise when comparing the quantum
and classical theories.

Currently, the shortest optical pulses produced in a lab-
oratory last for 67 attoseconds [33]. Attosecond pulses are
routinely produced via high-order harmonic generation (HHG)
[34–36] (for recent developments, see also Ref. [37]). In order
to decrease the pulse duration, significant progress has to be
made to allow for the generation of ultrahigh-order harmonics.
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Specifically, this can be achieved using midinfrared driving
laser fields (see, e.g., Refs. [38,39]). Alternatively, x-ray
radiation from free electron lasers [40] can serve as a novel
tool for the synthesis of ultrashort pulses, which are expected
to reach hundreds of zeptoseconds [41]. In the present paper,
we show the possibility of generating subzeptosecond pulses,
which is in line with previously published papers on pulse
generation from Thomson radiation [27–32].

The paper is organized as follows. For the convenience of
the reader, in Sec. II, we repeat the theoretical formulation
of Thomson and Compton scattering as introduced in our
previous papers [17,20]. In Sec. III, we present and compare
the frequency spectra produced in both processes. Numerical
results presented in Secs. IV and V are for such parameters
for which both spectra coincide. In Sec. IV, we observe the
appearance of broad bandwidth radiation, with an energy
spread of a few MeV. The time dependence of this radiation is
investigated in Sec. V. In Sec. VI, we demonstrate the failure
of classical theory in describing properties of ultrashort pulses
synthesized from emitted radiation, which is for parameters
that require one to use the complete quantum theory of
Compton scattering. Finally, Sec. VII summarizes our results
and draws the conclusions which follow from our study.

II. THEORY

The purpose of this section is to introduce notation and to
present key formulas for Compton and Thomson scattering
spectra. For details of the quantum and classical formulation
regarding each process, we refer the reader to Refs. [17,19,20]
and [20,42–46], respectively. Since the nonlinear Compton
scattering is a direct generalization of the nonlinear Thomson
scattering into the quantum domain, we shall compile theory
for these two processes such that the corresponding formulas
are as similar as possible.

Throughout the paper, we keep � = 1. Hence, the fine-
structure constant equals α = e2/(4πε0c). We use this constant
in expressions derived from classical electrodynamics as well,
where it is meant to be multiplied by � in order to restore the
physical units.

A. Basic notation

Our aim is to define the frequency-angular distribution
of the electromagnetic energy that is emitted during either
Compton or Thomson scattering in the form of outgoing
spherical waves. Their polarization is given by a complex
unit vector εKσ , where σ = ± labels two polarization degrees
of freedom, and where K is the wave vector of radiation
emitted in the direction nK . Note that K also determines the
frequency of the emitted radiation since ωK = c|K |. The wave
four vector K is therefore K = (ωK /c)(1,nK ), where K2 = 0
and K · εKσ = 0 [we keep εKσ = (0,εKσ ) and εKσ · ε∗

Kσ ′ =
−δσσ ′]. We also assume that three vectors (εK+, εK−, nK )
form the right-handed system of mutually orthogonal unit
vectors such that εK+ × εK− = nK .

The laser field which drives both the nonlinear Compton
and Thomson scattering is modeled as a linearly polarized,
pulsed plane-wave field, with the following vector potential:

A(φ) = A0Bεf (φ). (1)

Here, the real vector ε determines the linear polarization of the
pulse, and the shape function f (φ) is defined via its derivative,

f ′(φ) =

⎧⎪⎨
⎪⎩

0, φ < 0,

sin2
(

φ

2

)
sin(Noscφ), 0 ≤ φ ≤ 2π,

0, φ > 2π,

(2)

where we assume that f (0) = 0. Above, Nosc determines the
number of cycles in the pulse.

Let us further assume that the duration of the laser pulse is
Tp. This allows us to introduce the fundamental, ω = 2π/Tp,
and the central frequency, ωL = Noscω, of the laser field.
Moreover, if the laser pulse propagates in a direction given
by the unit vector n, we can define the laser-field four vector
k = (ω/c)(1,n) such that k2 = 0. Hence, the phase φ in Eq. (1)
becomes

φ = k · x = ω
(
t − n · r

c

)
. (3)

For our further purposes, we introduce the dimensionless and
relativistically invariant parameter

μ = |e|A0

mec
, (4)

where e = −|e| and me are the electron charge and the electron
rest mass, respectively. With these notations, the laser electric
and magnetic fields are equal to

E(φ) = ωmecμ

e
Bεf ′(φ), (5)

and
B(φ) = ωmeμ

e
B(n × ε)f ′(φ). (6)

The vector potential, given by Eq. (1), and the electric
component of the laser pulse, given by Eq. (5), normalized
to their maximum values, are presented in Fig. 1 as functions
of φ.

In what follows, we put B = Nosc, as with this choice and
for a given central laser-field frequency ωL, the averaged
intensity I of the laser pulse is independent of Nosc [21].
Specifically,

I = AI

(
ωL

mec2

)2

μ2〈f ′2〉, (7)

where

〈f ′2〉 = 1

2π

∫ 2π

0
f ′2(φ)dφ (8)

is equal to 3/16 for Nosc > 1, and 5/32 for Nosc = 1. If
the intensity I is measured in units of W/cm2, then AI =
4.6 × 1029.

B. Energy distributions

The theory of nonlinear Compton scattering induced by
an intense laser pulse was presented in detail in Ref. [17]. It
follows from there that the frequency-angular distribution of
radiated Compton energy (Eqs. (51) and (52) in Ref. [17]) can
be written as

d3EC(K ,σ ; pi,λi; pf,λf)

dωK d2
K
= α|AC,σ (ωK ,λi,λf)|2. (9)

032125-2



SUPERCONTINUUM AND ULTRASHORT-PULSE . . . PHYSICAL REVIEW A 89, 032125 (2014)

−1 −0.5 0 0.5 1

0

0.5

1

1.5

2

normalized eAx(φ) and eEx(φ)

φ
/
π

↑n →ε

FIG. 1. (Color online) The φ dependence of the vector potential
(solid line), given by Eq. (1), and the electric field (dashed line),
given by Eq. (5), multiplied by the electron charge and normalized to
their maximum values are plotted for Nosc = 3. The pulse propagates
in the z direction, n = ez, and the linear polarization vector points
into the x direction, ε = ex . The vector potential curve possesses the
mirror symmetry with respect to the horizontal line φ/π = 1, and
the electric-field line exhibits the axial symmetry with respect to the
point (0,1).

The above formula relates to the electromagnetic energy
emitted (as spherical outgoing waves) if the initial electron
has momentum pi and spin polarization λi, whereas the final
electron has the spin polarization λf and its momentum is
determined by the momentum conservation equations (cf.
Eqs. (47) in Ref. [17]). We shall call the complex function
AC,σ (ωK ,λi,λf) the Compton amplitude; it is worth noting that
it also depends on the remaining parameters of the Compton
scattering, but we display explicitly only those which are
essential for our further discussion. If one is not interested
in the dependence of emitted radiation on the electron spin
degrees of freedom, then the distribution above has to be
summed over the final and averaged over the initial spin
polarizations. This leads to

d3EC(K ,σ )

dωK d2
K
= α

2

∑
λi,λf=±

|AC,σ (ωK ,λi,λf)|2, (10)

where all irrelevant electron degrees of freedom are hidden.
The complete theory of nonlinear Thomson scattering is

presented in Jackson’s textbook [42] (see, also, Ref. [20]).
The relevant frequency-angular distribution of energy emitted
during this process can be expressed as

d3ETh(K ,σ )

dωK d2
K
= α|ATh,σ (ωK )|2, (11)

and it should be compared with Eqs. (9) or (10) for Compton
scattering. In analogy with the Compton theory, the complex
function ATh,σ (ωK ) will be called here the Thomson ampli-
tude. As shown in Ref. [20], its explicit form can be represented
as an integral,

ATh,σ (ωK ) = 1

2π

∫ 2π

0
dφϒσ (φ) exp[iωK �(φ)/c], (12)

where

�(φ) = c
φ

ω
+ (n − nK ) · r(φ), (13)

ϒσ (φ) = ε∗
Kσ · nK × {[nK − β(φ)] × β ′(φ)}

[1 − nK · β(φ)]2
, (14)

and where the electron position r(φ) and reduced velocity β(φ)
fulfill the system of ordinary differential equations,

d r(φ)

dφ
= c

ω

β(φ)

1 − n · β(φ)
,

dβ(φ)

dφ
= μ

√
1 − β2(φ)

1 − n · β(φ)
[{ε − β(φ)[β(φ) · ε] + β(φ)

× (n × ε)}f ′(φ)]. (15)

Let us recall that these equations can be derived from the
Newton-Lorentz relativistic equations, with time t which
relates to the phase φ by Eq. (3).

III. SCATTERING AMPLITUDES

Let us start by comparing the quantum Compton process
with its classical approximation which is the Thomson process,
in which both are driven by a three-cycle laser pulse (Nosc = 3)
with the electric and magnetic fields defined by the shape
function (2) (see, also, Fig. 1). We choose the reference frame
such that the pulse propagates in the z direction, n = ez, and its
linear polarization vector is ε = ex , whereas the initial electron
velocity vanishes, i.e., initially electrons are at rest. In Figs. 2
and 3, we compare the quantum and classical theories for
the same pulse configuration but for two different directions
of observation of scattered radiation. For both directions of
emission, we see that the Compton spectrum is compressed
in comparison with the Thomson spectrum. As discussed
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FIG. 2. (Color online) Energy spectra for Compton scattering
(upper panel), given by Eq. (10), and for Thomson scattering (lower
panel, reflected with respect to the horizontal black line), given by
Eq. (11). The laser-field parameters are such that μ = 10, Nosc = 3,
ωL = 0.03mec

2, and the scattered radiation is linearly polarized in
the scattering plane, i.e., in the (xz) plane. The direction of scattered
radiation is given by the polar and azimuthal angles, θK = 0.1π and
ϕK = π , respectively. These parameters are specified in the rest frame
of incident electrons.
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FIG. 3. (Color online) The same as in Fig. 2 but for the polar and
azimuthal angles, θK = 0.1π and ϕK = 0, respectively. In the inset,
we present the enlarged portion of the Compton distribution with
regular oscillations of the energy spectrum.

in Ref. [20], such a nonlinear compression of the Compton
distribution (note that the larger the frequency, the more
compressed the spectrum is) indicates the quantum nature of
Compton scattering. If for the Thomson scattering we denote
the frequency as ωTh

K and scale it to ωK according to the
rules

ωcut = c
n · pi

n · nK
= mec

2

1 − cos θK
≈ 20.4mec

2, (16)

and

ωTh
K − ωK = ωTh

K ωK

ωcut
, (17)

then both spectra become similar to each other. Namely, they
have maxima and minima for the same frequencies, but their
absolute values can differ. In Eq. (16), we have introduced the
cutoff frequency ωcut, which defines the maximum frequency
for the Compton scattering. It appears that both quantum and
classical approaches give the same results for the aforemen-
tioned absolute values, provided that ωK � ωcut. Moreover,
as it follows from the discussion presented in Ref. [20], even
for frequencies close to the cutoff, both distributions remain
similar when helicities of the initial and final electron states
are the same.

However, when comparing Figs. 2 and 3, we observe that
the presented distributions look qualitatively different. While
for the first case we observe slowly pulsating spectra, for the
second case the spectra are modulated and exhibit very rapid
oscillations. It is well known that the reason for the oscillatory
behavior of energy distributions is the interference of scattered
radiation, but this does not explain the qualitative difference
between these two cases. It could be attributed, for instance,
to the right-left asymmetry of the laser-field potential (Fig. 1),
as it has been discussed for the case of electron-positron pair
creation [47]. In order to analyze this problem in detail, we
found it very difficult (if not impossible) to dwell on the
Compton theory, due to its complicated character. However,
such a discussion can be based on the Thomson theory, which
we present below. We stress that electron-laser-field scattering
with emission of extra photons is actually described by the

0 0.5 1 1.5 2

−500

0

500

φ/π

Υ
σ
(φ

)
(r

el
.
un

it
s)

0 0.5 1 1.5 2
0

200

400

600

800

1000

φ/π
(φ

)
an

d
(φ

)
(r

el
.
un

it
s)

FIG. 4. (Color online) The functions ϒσ (φ) (upper frame), given
by Eq. (14), and �(φ) and its derivative �′(φ) (lower frame), given by
Eq. (13), for the scattering parameters of Fig. 2. Two thin vertical lines
mark the positions of the dominant extrema of ϒσ (φ), for φ1 ≈ 0.9π

and φ2 = 2π − φ1. In the lower frame, the blue (dark; monotonously
increasing) line represents the �(φ) function, whereas the magenta
(gray; exhibiting extrema) line represents the �′(φ) function.

Compton scattering, and that Thomson scattering can only be
treated as its approximation. Therefore, the classical theory can
be used to interpret the results whenever (within the range of
its applicability) it is difficult to provide a reasonable physical
interpretation based on the more complete quantum theory.

Let us consider the first case, shown in Fig. 2, and draw the
functions ϒσ (φ), �(φ), and its derivative �′(φ), as presented
in Fig. 4. We observe here two main extrema of ϒσ (φ) for
φ1 ≈ 0.9π and φ2 = 2π − φ1, the position of which coincide
with two global minima of �′(φ). Since

�′(φ) = c

ω

1 − nK · β(φ)

1 − n · β(φ)
> 0, (18)

we attribute these extrema to the minimum value of the
denominator in Eq. (14). Moreover, the function ϒσ (φ)
exhibits a very sharp maximum and minimum, therefore, the
Thomson amplitude, given by Eq. (12), can be approximated
by two terms,

ATh,σ (ωK ) ≈ A(eiωK �(φ1)/c − eiωK �(φ2)/c). (19)

Here, A is roughly equal to the area under the peak. More
precisely, A is a slowly varying function of ωK which can be
calculated by applying a better approximation, for instance,
the saddle-point method for sufficiently large ωK . However,
for the purpose of our further discussion, it is sufficient to
consider A as a constant.
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FIG. 5. (Color online) The same as in Fig. 4 but for the scattering
parameters of Fig. 3. Four thin vertical lines indicate positions
of the dominant extrema of ϒσ (φ), for φ1 ≈ 0.58π , φ2 = 0.75π ,
φ3 = 2π − φ1, and φ4 = 2π − φ2. The analysis of the numerical
data shows that �(φ1) = τ0 − τbig − τsmall, �(φ2) = τ0 − τbig + τsmall,
�(φ3) = τ0 + τbig − τsmall, and �(φ4) = τ0 + τbig + τsmall, with τ0 ≈
420/mec, τbig ≈ 233/mec, and τsmall ≈ 2.14/mec.

It follows from the numerical data that

�(φ1) = τ0 − τsmall and �(φ2) = τ0 + τsmall, (20)

with τ0 ≈ 541.5/mec and τsmall ≈ 5.9/mec. The modulus
squared of the pulsating part of Thomson amplitude is
therefore proportional to

|ATh,σ (ωK )|2 ∝ sin2

(
5.9

ωK

mec2

)
. (21)

This means that two consecutive minima in the Thomson
distribution are separated by �ωK /mec

2 ≈ π/5.9 ≈ 0.53,
which agrees very well with the data presented in Fig. 2.

A similar interpretation can be attributed to the modulated
and rapidly oscillating energy distributions presented in Fig. 3.
In this case, we have four main extrema (cf. Fig. 5). Although
the outer extrema are smaller in magnitude than the inner
ones, they are also more spread out. Therefore, in the first
approximation, we can assume that the related areas (under
the maxima and above the minima) are equal to each other.
This leads to the approximate form for the Thomson amplitude,

ATh,σ (ωK ) ≈ A

4∑
s=1

(−1)s+1eiωK �(φs )/c. (22)

Hence,

|ATh,σ (ωK )|2 ∝ sin2

(
2.14

ωK

mec2

)
sin2

(
233

ωK

mec2

)
, (23)

which again agrees very well with the data presented in Fig. 3.
In this case, the consecutive minima of fast oscillations are
separated by �ωK /mec

2 ≈ π/233 ≈ 0.013, whereas for the
modulation, we obtain δωK /mec

2 ≈ π/2.14 ≈ 1.46. In other
words, there are more than 100 oscillations within a single
modulation.

IV. GENERATION OF SUPERCONTINUUM

Since its demonstration in the early 1970s [48], the
supercontinuum generation has been the focus of significant
research activity. It has attracted much attention owing to its
enormous spectral broadening (for instance, it is possible to
obtain a white-light spectrum covering the entire visible range
from 400 to 700 nm), which have many useful applications
in telecommunication [49], frequency metrology [50], optical
coherence tomography [51], and device characterization [52].
It has to be mentioned, however, that the supercontinuum
generation in photonics is, in general, a complex physical
phenomenon involving many nonlinear optical effects such
as self-phase modulation, cross-phase modulation, four-wave
mixing, and stimulated Raman scattering [53]. It seems to be
simpler to analyze the generation of a broadband spectrum of
radiation by the Thomson and Compton scattering.

A closer look at Fig. 2 suggests that the Thomson (or
Compton) process could be used for the generation of a
supercontinuum with the bandwidth of a few keV and with
a small change of its intensity. It is shown, for instance, by the
first pulsation in the energy distribution, the width of which
is around 200 keV in the reference frame of electrons. In
order to further investigate such a possibility, below we study
the nonlinear Thomson scattering in the laboratory frame.
Since we are going to consider the spectrum of frequencies
much smaller than the cutoff frequency (16), the Thomson
and Compton theories give practically the same results. The
former, however, can be numerically treated much faster.

In the analysis of Thomson and Compton processes in the
laboratory frame, we have to account for the fact that the initial
energy of electrons has to be large, as compared to mec

2,
in order to generate sufficiently intense pulses of scattered
radiation. Moreover, the laser pulse central frequency ωL is
much smaller than mec

2. This means that the majority of
the generated radiation is emitted in a very sharp cone. In
particular, for a head-on collision of the laser and electron
beams, when electrons are moving in the direction opposite
to the z axis, the radiation is scattered for θK very close to π .
In this case, the parametrization of all possible directions of
emission by two spherical angles θK and ϕK is not convenient,
as it will follow shortly. It is better to consider another system
of Cartesian coordinates (x ′,y ′,z′) such that (cf. Refs. [17,54])

(x ′,y ′,z′) = (z,x,y). (24)

If, in the new system of coordinates, we denote the polar
angle by �K (0 ≤ �K ≤ π ) and the azimuthal angle by �K

(0 ≤ �K < 2π ), then they can be related to the original polar
and azimuthal angles θK and ϕK by the equations

�K = arccos(sin θK sin ϕK ) (25)
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and

tan �K = tan θK cos ϕK . (26)

In addition, the scattering plane (xz), which before was
defined by two conditions, ϕK = 0 and ϕK = π , now is
defined by the single condition �K = π/2. The discontinuous
change of angles (θK ,ϕK ) = (π − ε,0) → (π − ε,π ), ε � 1,
which corresponds to the continuous change of directions
near the south pole of the unit sphere, now is described by
the continuous change of angles (�K ,�K ) = (π/2,π − ε) →
(π/2,π + ε). It is, therefore, more convenient to use the angles
(�K ,�K ) in our analysis. Since the infinitesimal solid angle
becomes

d2
K = sin �K d�K d�K , (27)

we can define the partially integrated energy spectrum of
emitted radiation for the Thomson process,

d2ETh(K ,σ )

sin �K dωK d�K
=

∫ 2π

0
d�K

d3ETh(K ,σ )

dωK d2
K
, (28)

and similarly for the Compton process. Next, we can define
the angular distribution,

d2ETh(nK ,σ )

d2
K
=

∫ ωmax

0
dωK

d3ETh(K ,σ )

dωK d2
K
, (29)

where we have introduced the maximum frequency, ωmax.
This frequency is infinite for Thomson scattering, but it is
equal to the cutoff frequency (16) for Compton scattering [20],
independent of the incident pulse duration.

In Fig. 6, we present the color map of energy distributions
for the Thomson process as a function of frequency and
emission angle in the scattering plane, i.e., for �K = π/2.
It clearly demonstrates that, for frequencies around 8mec

2

(4 MeV) and 16mec
2 (8 MeV), intense and very broad (of

the order of 2 MeV) candidates for the supercontinuum

FIG. 6. (Color online) Color map of the energy distribution for
the Thomson process, given by Eq. (11). We assume a three-cycle
driving pulse, linearly polarized in the x direction [for the shape func-
tion of the electric-field component, see Eq. (2)], counterpropagating
an electron beam. The pulse central frequency in the laboratory frame
equals ωL = 1.548 eV ≈ 3 × 10−6mec

2 and its averaged intensity
is determined by μ = 1 [Eq. (7)]. Electrons move in the opposite
z direction, with momentum | pi| = 1000mec and the scattering
process occurs in the plane �K = π/2 [see Eqs. (25) and (26) for the
definitions of angles �K and �K ]. The emitted radiation is linearly
polarized in the (xz) plane [or, equivalently, in the (x ′y ′) plane].
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FIG. 7. (Color online) The energy differential distribution of
emitted radiation integrated over �K , given by Eq. (28), and
normalized to its maximum value, for the same geometry and
parameters as in Fig. 6.

are created. Note also that for the considered electron- and
laser-beam parameters, the radiation is scattered within a
very narrow cone. Although we have presented results for
a particular �K , the pattern also preserves its structure for
the polar angle �K close to π/2. Figure 7 shows the partially
integrated energy distribution, given by Eq. (28), for �K =
π/2 with two broad peaks. In order to call these structures
the supercontinuum, we have to investigate their coherent
properties. For Compton processes, this problem has been
partially discussed in [55]. We have shown there that the
phase of the Compton probability amplitude is not random
and it linearly increases with ωK in the frequency intervals
sufficiently wide in order to cover at least a few interference
peaks in the energy distribution. We have checked that the same
occurs for Thomson scattering. This suggests that a synthesis
of frequencies from the supercontinuum indeed can lead to the
generation of very short pulses of radiation.

V. TEMPORAL POWER DISTRIBUTIONS

In the previous section, we have demonstrated the possibil-
ity of the generation of a very broad spectrum of radiation, with
the bandwidth of a few MeV. In order to show the coherent
properties of this spectrum, one has to investigate the time
dependence of scattered radiation and check if it can be used
for the synthesis of very short pulses. This is the case, for
instance, of HHG in gases [56], plasmas [57], and crystals
[58], which are routinely used for the synthesis of attosecond
pulses (for a review concerning HHG, see, also, Ref. [37]).
Thus, we need to relate the frequency-angular distributions
of the energy of generated radiation to the temporal power
distribution of the emitted radiation. For simplicity, we shall
do it now for the classical theory.

By analyzing the Liénard-Wiechert potentials [42,43], it is
straightforward to relate the Thomson amplitude ATh,σ (ωK ) to
the electric field of the scattered radiation. Indeed, the Fourier
transform of the electric field of polarization εKσ , in the far
radiation zone, has the form of the outgoing spherical wave

Ẽσ (ωK ) = ei|K |R

R

e

4πε0c
2πATh,σ (ωK ), (30)
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with its space-time form,

Eσ

(
t − R

c

)
=

∫ ∞

−∞

dω

2π
e−iωt Ẽσ (ω). (31)

In this notation, we show explicitly the time dependence of the
electric field, whereas the decay 1/R, being less important for
our further discussion, is hidden. To make the notation shorter,
we introduce the retarded phase

φr = ω0

(
t − R

c

)
, (32)

and rewrite Eq. (31) as

Eσ (φr) = e

4πε0cR
ÃTh,σ (φr), (33)

where

ÃTh,σ (φr) =
∫ ∞

−∞
dωATh,σ (ω)e−iωφr/ω0 . (34)

In the definition of φr, we have introduced an arbitrary
frequency ω0. We shall discuss below which value for this
parameter should be chosen.

Since the electric field is real, we have ATh,σ (−ω) =
A∗

Th,σ (ω). Defining

Ã(+)
Th,σ (φr) =

∫ ∞

0
dωATh,σ (ω)e−iωφr/ω0 , (35)

we find that

Eσ (φr) = e

4πε0cR
2ReÃ(+)

Th,σ (φr), (36)

where the symbol Re means the real value. Applying the
Poynting theorem of classical electrodynamics [42,43], we
find that the total energy of scattered radiation transmitted
through an infinitesimal surface R2d
K equals

d2ETh,σ = d2
K
α

π

∫ ∞

−∞
dt[ReÃ(+)

Th,σ (φr)]
2. (37)

This allows us to define the angular distribution of temporal
power of emitted radiation,

d2PTh,σ (φr)

d2
K
= α

π
[ReÃ(+)

Th,σ (φr)]
2. (38)

For the Compton scattering, the corresponding temporal power
distribution looks similar, except that the Compton amplitude,
AC,σ (ωK ; λi,λf), depends also on the electron spin degrees of
freedom.

Similarly to the integrated energy distributions, given by
Eqs. (28) and (29), we can define the integrated power
distribution of Thomson radiation,

dPTh,σ (φr)

sin �K d�K
=

∫ 2π

0
d�K

d2PTh,σ (φr)

d2
K
, (39)

and its angular distribution,

d2ETh(nK ,σ )

d2
K
= 1

ω0

∫ φmax

0
dφr

d2PTh,σ (φr)

d2
K
. (40)

Here, we have introduced the maximum value φmax for the
retarded phase φr, which has the purely numerical origin and
it is closely related to the parameter ω0 used in Eq. (32).

Indeed, numerically, the Thomson and Compton amplitudes
are calculated for some discrete values ωK ; in our case,
we choose the equally spaced values with a step �ωK . For
instance, in our calculations presented in Fig. 6, we have
chosen 104 points in the frequency interval [0,100mec

2], which
means that �ωK = 0.01mec

2. The Fourier transform of the
amplitudes [for the Thomson scattering, see Eq. (35)] is then
calculated using the trapezoid algorithm for the integration.
This means that we observe artificial revivals of Ã(+)

Th,σ (φr),
separated by

�φr = 2π
ω0

�ωK
. (41)

Therefore, in order to make them well separated from the real
contribution, we have to choose ω0 much larger than �ωK .
In the numerical analysis presented above, we have put ω0 =
mec

2, which means that the closest artificial revivals appear
for φr ≈ ±200π , and by increasing ω0, we also increase their
distance. This also puts the bound on φmax; the maximum
phase φmax should be large but cannot exceed �φr. Lastly, it
is important to note that two integrated distributions, given by
Eqs. (29) and (40), represent the same quantity and should give
the same results.

In Fig. 8, we present the energy distribution of radiation
emitted in the direction (θK ,ϕK ) = (0.99999π,π ) or, equiv-
alently, for (�K ,�K ) = (π/2,1.00001π ). The distribution
shows typical interference structures. The synthesis of this

0 50 100

10
−5

10
0

ωK/mec
2

en
er

gy
 d

is
tr

. (
ar

b.
 u

ni
ts

)

0 0.2 0.4 0.6
0

0.5

1

φr/π

po
w

er
 d

is
tr

. (
ar

b.
 u

ni
ts

)

FIG. 8. (Color online) The energy distribution (upper panel),
given by Eq. (11), and the power distribution (lower panel), given
by Eq. (38), for the Thomson scattering. The geometry and the
laser- and electron-beam parameters are the same as in Fig. 6, except
that the results are presented for �K = 1.00001π [or, equivalently,
(θK ,ϕK ) = (0.99999π,π )]. The emitted radiation is polarized in the
(xz) plane and the distributions are normalized to their maximum
values. For the power distribution, we put ω0 = mec

2, while the upper
limit of the frequency integration in (35) we set to 100mec

2.
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FIG. 9. (Color online) The real (upper panel) and imaginary
(lower panel) parts of the Fourier transform of the Thomson
amplitude, given by Eq. (35), normalized to the maximum value
of ReÃ(+)

Th,σ . The plots are for the parameters from Fig. 8. The real
part of the Fourier transform is proportional to the electric field of the
emitted radiation.

frequency pattern to the time domain exhibits two main peaks
together with two small side lobes. The width of these peaks
are of the order of δφr ≈ 0.1, which means that they last
for roughly δt ≈ 0.1/mec

2 = 0.1tC, where tC is the Compton
time,

tC = λ̄C

c
= 1

mec2
≈ 1.3 × 10−21 s. (42)

This time is many orders of magnitude smaller than the
interaction time of electrons with the laser pulse, which
for the considered energy of electrons is a bit larger than
Tp/2.

This clearly proves the coherent properties of the high-
frequency supercontinuum generated in the laser-induced
nonlinear Thomson (Compton) scattering. This supercon-
tinuum can be synthesized to very short (zepto- or even
yoctosecond) pulses. Let us also remark that within such a
pulse, the electric field does not oscillate, as it is presented
in Fig. 9. This means that the emitted radiation is generated
practically in the form of a “one-cycle” pulse, or even well
separated into two “half-cycle” pulses. This is, of course,
the consequence of the three-cycle pulse used as a driving
force.

For completeness of our discussion, in Fig. 10 we plot the
components of position, reduced velocity, and acceleration
vectors of the electron classical trajectory for the physical
parameters and geometry considered in Fig. 8. For this
geometry, the classical dynamics occurs in the scattering plane.
Moreover, since the energy of the electron beam is much
larger than the ponderomotive energy of the laser pulse, the z

components of the position and reduced velocity vectors are
only marginally modified by the laser pulse, and so they are
not presented in the figure. As expected, the x component of
the reduced velocity, βx(φ), follows the temporal dependence
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FIG. 10. (Color online) The electron classical trajectory for the
parameters considered in Fig. 8. In the upper row, the projections
of the position and reduced velocity vectors on the laser-field
polarization axis are presented as functions of the phase φ, given
by Eq. (3). In the lower row, two nonvanishing projections of
the acceleration vector a(φ) on the laser-field polarization and
propagation vectors, ε and k, are shown. While the reduced velocity
β(φ) is dimensionless, the quantities r(φ) and a(φ) are in the
relativistic units of length, λ̄C ≈ 3.86 × 10−13 m, and acceleration,
λ̄C(mec

2)2 ≈ 2.3 × 1029 m/s2.

of the vector potential (solid line in Fig. 1), whereas the x

component of the acceleration vector, ax(φ), shows similarities
with the temporal behavior of the electric field (dashed line in
Fig. 1). The latter determines the shape of the real part of the
Fourier transform of the Thomson amplitude, given by Eq. (35)
and shown in Fig. 9, as well as the temporal dependence
of the power distribution, shown in Fig. 8. Let us remark
that for the considered laser- and electron-beam parameters,
we observe a rather smooth dependence of the position,
reduced velocity, and acceleration on the phase φ. For larger
intensities, this dependence starts to exhibit sharp features.
This will lead to more complicated structures in the differential
energy distribution of emitted radiation, as presented in
Sec. VI.

It is well known that the structure of the frequency distribu-
tion of emitted radiation is very sensitive to even a small change
of emission angles (cf. Fig. 6). Therefore, the question arises:
How sensitive is the temporal power distribution of emitted
radiation to such a change? To investigate this problem, we
shall consider, as above, the emission in the scattering plane.
The synthesis of the energy spectrum shown in Fig. 6 leads
to the temporal power distribution presented as the color map
in Fig. 11. We observe that radiation is emitted in the form
of sharp stripes and that, even after integrating with respect to
�K , the main temporal peaks from Fig. 8 show up for the same
φr. Note that this happens with a smaller contrast, as presented
in the upper frame of Fig. 12. In the lower frame of Fig. 12,
we also depict the partially integrated energy distribution,
given by Eqs. (29) and (40). It shows that, as expected, the
high-frequency radiation is emitted in a very narrow cone.
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FIG. 11. (Color online) Color map of the power distribution,
given by Eq. (38), for the same geometry and parameters as in Fig. 6
and for ω0 = mec

2.

This explains why the very sharp temporal structure survives
the integration over the emission angles.

A deeper insight into the coherent properties of the
supercontinuum investigated in this paper can be gained by
analyzing the phase of the Thomson amplitude, ATh,σ (ωK ).
By inspecting Figs. 4 and 5, we find that for the laser pulse
considered here, the real functions ϒσ (φ) and �(φ) satisfy the
following symmetry relations:

ϒσ (φ) = −ϒσ (2π − φ), (43)

and

�(φ) + �(2π − φ) = 2�(π ). (44)
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FIG. 12. (Color online) Upper panel: Integrated over �K power
distribution, given by Eq. (39), as a function of the retarded phase
φr for ω0 = mec

2. Lower panel: the integrated energy distribution,
given by Eqs. (29) and (40), as a function of �K for �K = π/2.
Both distributions are normalized to their maximum values, and the
remaining parameters are the same as in Figs. 6 and 11.

These relations allow us to write the Thomson amplitude in
the form

ATh,σ (ωK ) = 1

π
ei�Th(ωK )

∫ π

0
dφϒσ (φ)

× sin

{
ωK

c
[�(φ) − �(π )]

}
, (45)

where the Thomson phase �Th(ωK ),

�Th(ωK ) = argATh,σ (ωK ) = ±π

2
+ �(π )

c
ωK , (46)

is linear in ωK . Here, “+” corresponds to the case when the
last integral in (45) is positive, whereas “−” relates to the
case when it is negative. In either case, the constant term
does not play a physical role, whereas the linear term only
introduces an extra time delay, �(π )/c, for the arrival of the
generated radiation to a detector. This time delay increases
with increasing the intensity of the laser pulse, but does not
modify the temporal shape of the emitted radiation. Moreover,
for �K close to π , we find the following expression, exact up
to the quadratic term in �K − π :

�(π ) = cπ

ω
+2z(π )+x2(π )

2z(π )
− 1

2
z(π )

[
�K − π − x(π )

z(π )

]2

.

(47)

This explains qualitatively well the parabolic shape of stripes
presented in Fig. 11 [for the laser- and electron-beam param-
eters considered, x(π ) ≈ 97λ̄C and z(π ) ≈ −0.16 × 107λ̄C].

It is important to note that synthesis of the Thomson energy
distribution into a sequence of well-separated and ultrashort
pulses of generated radiation is only possible if the phase of
the Thomson amplitude is well approximated by the linear
dependence on the frequency of emitted radiation. In fact,
any significant deviation from such a rule washes away the
ultrashort structure of generated radiation. It appears that the
genuine quantum recoil of electrons during the emission of
photons generates a nonlinear dependence of phases of the
Compton amplitudes AC,σ (ωK ,λi,λf) [see Eq. (9)] on ωK and,
hence, it can lead to the disappearance of ultrashort temporal
structures of emitted radiation.

VI. ULTRASHORT-PULSE GENERATION—THOMSON
VERSUS COMPTON PROCESSES

We note that the Thomson process can only be considered
as an approximation of the fundamental Compton scattering,
which describes the actual physical situation with the electron
spin degrees of freedom and its recoil included. Therefore, it is
important to analyze not only similarities but also differences
between these two approaches. These problems have been
studied in Ref. [20] in the context of the frequency scaling law.
The aim of this section is to discuss discrepancies between the
predictions of these two approaches for the generation of very
short pulses of emitted radiation.

A great advantage of the classical approach is that calcu-
lations can be easily performed even for arbitrary space- and
time-dependent laser fields. For this reason, it is extensively
used in plasma physics and also in the context of ultrashort-
pulse generation [27–32]. However, Thomson theory has some
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important shortcomings. For instance, it does not account for
the spin of electrons, which for the high-frequency part of
the spectrum becomes important [19,20], especially if the
spectrum is generated by very short and intense laser pulses.
Another defect of the classical theory, which appears to be
very crucial for the extremely short-pulse generation, is that
it neglects the recoil of electrons during the emission of
high-frequency photons [59]. On the other hand, the quantum
approach, based on strong-field quantum electrodynamics
(QED), accounts for the spin and recoil effects, but the
calculations for arbitrary space- and time-dependent laser
fields are at the moment not possible. The reason is that the
exact solutions of the Dirac equation for such laser pulses
are not known. In fact, the pioneering analyses of funda-
mental QED processes in strong laser fields were limited to
monochromatic infinite plane waves [60–62] or to pulses with
slowly changing envelopes [10]. However, starting with the
seminal paper by Boca and Florescu [11], precise calculations
of Compton scattering became possible for arbitrary short
and intense plane-wave-fronted laser pulses [9]. Although still
computationally demanding, such investigations allow for a
reliable comparison of predictions of quantum and classical
approaches for temporarily shaped laser pulses. Note that
such pulses very well describe the interaction with sufficiently
energetic electron beams, provided that the kinetic energy of
electrons is much larger than their ponderomotive energy in
the laser field (see, e.g., [63,64]).

As it was noted by Sarachik and Schappert [59], the electron
recoil effects are small if

ωK � ωcut = c
n · pi

n · nK
, (48)

which does not depend explicitly on either the laser-field
intensity (measured by the dimensionless parameter μ) or the
laser-field carrier frequency, ωL. Note that for small μ, only
the low-frequency part of the emitted spectrum is generated
with a significant probability and, therefore, the condition
above is typically satisfied. Hence, the inequality (48) can
be interpreted as the one which implicitly puts bounds for
intense laser fields when the emission of photons from the
high-frequency spectrum (of ωK that is smaller but comparable
to ωcut) takes place with significant probabilities. In this sense,
the applicability condition (48) is important for the laser-field
parameters considered in Sec. III, where the coincidence
between the quantum and classical theory has been clearly
demonstrated only for the low-frequency part of the spectrum.
On the other hand, for smaller laser-field intensities investi-
gated in Secs. IV and V, this condition can be considered
as carrying no information since the high-frequency part of
the spectrum is generated with marginal probabilities anyway.
Sometimes another applicability condition for the classical
theory is formulated as an inequality,

μωL
n · pi

m2
ec

3
� 1, (49)

in which the laser-field intensity and the laser carrier frequency
appear. This condition is also very well satisfied by parameters
considered in Secs. IV and V.

It follows from the Fourier analysis that broader energy
spectra have to be used in order to synthesize shorter radiation
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FIG. 13. (Color online) The same as in Fig. 8, but for μ = 10.
The energy distribution of emitted radiation extends now to larger
frequencies. The synthesis of this energy spectrum leads to the
temporal power distribution of emitted radiation similar to the one
presented in the lower frame in Fig. 8, except that now individual
peaks are approximately ten times narrower. For this reason, only
one of the two main peaks is shown in the lower frame.

pulses. There are two possibilities to increase the bandwidth
of the energy distribution in Thomson or Compton processes.
Namely, one can either increase the energy of a colliding
electron beam or increase the intensity of a driving laser beam.
Mostly, the second scenario is used [27,29–32]. In this context,
we consider the same particle and laser-beam parameters as
in Fig. 8, but for μ = 10, which for the Ti:sapphire laser
field of the wavelength 800 nm corresponds to the intensity
of the order of 1020 W/cm2. The upper panel in Fig. 13
presents the energy distribution calculated from the classical
Thomson theory. As anticipated, the energy bandwidth is
now 10 times broader as compared to the case of μ = 1.
As it was mentioned above, for larger laser-field intensities,
the pulses are more delayed in time as compared to lower
intensities, but their structure remains the same; it consists
of two main central half pulses and two smaller side pulses,
as in Fig. 8. All of these pulses are now 10 times shorter,
which means that they last for around 10 yoctoseconds. This
is demonstrated for one of the main peaks in the lower panel
of Fig. 13. The question arises: Is this picture real? In order
to answer this question, let us remark that, for the considered
geometry and electron energies, the cutoff frequency ωcut is
around 1000mec

2, which is equal to the bandwidth of the
energy spectrum used for the synthesis of such short radiation
pulses. In the actual physical situation, which is described
by the quantum Compton theory, such frequencies cannot be
achieved due to the electron recoil. Indeed, the corresponding
calculation for Compton scattering shows that the energy
distribution is now twice as narrow, as presented in the upper
panel of Fig. 14. However, this does not mean that the emitted
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FIG. 14. (Color online) The same as in Fig. 13, but for the
quantum Compton process with the electron spin conserved, λiλf = 1.
In contrast to classical results, now the energy distribution extends to
smaller frequencies and the synthesized temporal power distribution
becomes much broader.

pulses are two times longer. The reason being that, except for
squeezing in the frequency domain, the phase of the Compton
amplitude depends nonlinearly on the frequency of emitted
photons, which we have checked numerically. Even though
the condition (49) is quite well satisfied for the parameters of
laser and electron beams considered in Figs. 13 and 14, we
observe a significant difference between pulses synthesized
from classical (Fig. 13) and quantum (Fig. 14) radiation.
It follows from classical theory that for the driving pulses
considered in this paper, the global phase of the scattering
amplitude depends linearly on ωK . As explained in Sec. V,
this leads only to a time delay of the generated ultrashort
pulses of radiation. On the other hand, in the quantum case, the
global phase of scattering amplitude has significant nonlinear
dependence on ωK . This prevents the coherent synthesis of
the frequency spectrum into very short pulses, as illustrated in
the lower panel of Fig. 14. In order to avoid this problem, one
has to increase the electron-beam energy, while increasing the
laser-field intensity as well.

VII. CONCLUSIONS

An appearance of a broad bandwidth radiation (spanning a
few MeV), which is sharply elongated around the propagation
direction of the electron beam, has been demonstrated from
nonlinear Thomson (Compton) scattering. Our analysis of
temporal distributions of the observed radiation shows that
it can be used for the synthesis of zeptosecond (likely even
yoctosecond) pulses. Note that this is possible provided that the
broad bandwidth radiation is coherent, which clearly proves
that nonlinear Thomson or Compton scattering can lead to a
generation of a supercontinuum.

When analyzing properties of the formed zeptosecond
pulses, we discovered that these are one-cycle (half-cycle)
pulses. We have also seen that Thomson (Compton) radiation is
very sensitive to a change of its emission direction. However, as
we showed in this paper, the ultrashort pulses survive the space
averaging. In light of this fact, we conclude that the Thomson
(Compton) process can be used as a source of zeptosecond
(yoctosecond) pulsed radiation. This, in further perspective,
will enable the entrance to new physical regimes of intense
laser physics.

Additionally, we demonstrated an important role of the
global phase for the synthesis of ultrashort-pulse generation.
Specifically, we showed that the global phase of the Thomson
probability amplitude is a linear function of the energy of
emitted radiation, ωK . This guarantees that emitted radiation
is coherent and can be synthesized into ultrashort pulses,
which is in line with previously published papers [27–32]. We
also demonstrated that increasing the driving field intensity
does not lead to the synthesis of shorter pulses of radiation.
Once the intensity is increased, an electron recoil becomes
important. In this case, which can be accounted for only by
the Compton theory, the global phase of scattering probability
amplitude becomes a nonlinear function of ωK . This results
in the broadening of temporal characteristics of produced
radiation. While the classical calculations always result in
very short pulses of radiation with symmetric temporal profiles
(see Fig. 13 and Refs. [27–32]), the actual physical situation
is different, as described by means of quantum theory (see
Fig. 14). This proves the crucial role played by the global
phase of Thomson and Compton amplitudes in the synthesis
of short radiation pulses.
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[14] D. Seipt and B. Kämpfer, Phys. Rev. A 83, 022101
(2011).

[15] M. Boca and V. Florescu, Eur. Phys. J. D 61, 449
(2011).

[16] M. Boca, V. Dinu, and V. Florescu, Phys. Rev. A 86, 013414
(2012).

[17] K. Krajewska and J. Z. Kamiński, Phys. Rev. A 85, 062102
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062107 (2013).
[22] S. P. Roshchupkin, A. A. Lebed’, E. A. Padusenko, and A. I.

Voroshilo, Laser Phys. 22, 1113 (2012).
[23] S. P. Roshchupkin, A. A. Lebed’, and E. A. Padusenko, Laser

Phys. 22, 1513 (2012).
[24] M. Boca, Cent. Eur. J. Phys. 11, 1123 (2013).
[25] A. A. Lebed’ and S. P. Roshchupkin, Laser Phys. 23, 125301

(2013).
[26] I. Ghebregziabher, B. A. Shadwick, and D. Umstadter, Phys.

Rev. ST Accel. Beams 16, 030705 (2013).
[27] A. L. Galkin, V. V. Korobkin, M. Yu. Romanovsky, and O. B.

Shiryaev, Contrib. Plasma Phys. 49, 593 (2009).
[28] S.-Y. Chung, M. Yoon, and D. E. Kim, Opt. Express 17, 7853

(2009).
[29] K. Lee, Y. H. Cha, M. S. Shin, B. H. Kim, and D. Kim, Phys.

Rev. E 67, 026502 (2003).
[30] P. Lan, P. Lu, W. Cao, and X. Wang, Phys. Rev. E 72, 066501

(2005).
[31] A. E. Kaplan and P. L. Shkolnikov, Phys. Rev. Lett. 88, 074801

(2002).
[32] F. Liu and O. Willi, Phys. Rev. ST Accel. Beams 15, 070702

(2012).
[33] K. Zhao, Q. Zhang, M. Chini, Y. Wu, X. Wang, and Z. Chang,

Opt. Lett. 37, 3891 (2012).
[34] M. Ferray, A. L’Huillier, X. F. Li, L. A. Lompré, G. Mainfray,
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