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Quantum theory realizes all joint measurability graphs

Chris Heunen
Department of Computer Science, University of Oxford, Oxford, United Kingdom

Tobias Fritz
Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada

Manuel L. Reyes
Department of Mathematics, Bowdoin College, Brunswick, Maine, USA

(Received 27 August 2013; published 20 March 2014)

Joint measurability of sharp quantum observables is determined pairwise, and so can be captured in a graph.
We prove the converse: any graph whose vertices represent sharp observables and whose edges represent joint
measurability is realized by quantum theory. This leads us to show that it is not always possible to use Neumark
dilation to turn unsharp observables into sharp ones with the same joint measurability relations.
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I. INTRODUCTION

One of the characteristic features of quantum theory is
that not every two observables can be measured jointly. This
raises the question, what rules govern the relationship of
joint measurability between quantum observables? In this
article, we prove that we can label the vertices of any
given graph with sharp quantum observables in such a way
that two observables are jointly measurable precisely when
their vertices are connected by an edge. This leads us to
a shortcoming of the idea that any quantum operation can
be regarded as unitary evolution of a larger, dilated, system,
and in particular that any unsharp quantum observable can be
regarded as a sharp one on a dilated system. The caveat is that
dilation does not respect joint measurability.

The latter result is important to be aware of for quantum
information theorists, whose bread and butter is dilation [1]; in
particular, unsharp quantum observables are used in quantum
state discrimination [2–4], photonic qubit measurement [5],
quantum state tomography [6], quantum cryptography [7],
and remote state preparation [8]. The former result is of
foundational interest in its own right. Joint measurability plays
a pivotal role in contextuality, the phenomenon that the result of
measuring an observable depends on which other observables
it is measured jointly with. It has given rise to Gleason’s
theorem [9], Bell’s inequalities [10–12], the Kochen-Specker
theorem [13], Hardy’s paradox [14], GHZ impossibility results
[15], and generalized probabilistic theories [16,17]. All of
these are under active study; see, e.g., [18–20].1 In particular,
there are (non)contextuality inequalities that are violated by

1Abramsky and Brandenburger [20] derive abstract Kochen-
Specker, Bell, Hardy, and GHZ results “without any presupposi-
tion of quantum mechanics.” Our results could be interpreted as
strengthening this approach by showing that it fully captures such
“characteristic mathematical structures of quantum mechanics, such
as complex numbers, Hilbert spaces, operator algebras, or projection
lattices,” after all. See especially Sec. 7.1, which discusses [21]. That
paper has results similar to those of this article, but with orthogonality
instead of joint measurability, requiring extra conditions.

quantum mechanics and hence can be used to experimentally
detect quantum effects [22], that come from graph theory
[23,24].

II. REALIZATION AS YES-NO QUESTIONS

Let G be a graph. Write v,w,x,y, . . . ∈ G for its vertices,
and v ∼ w when v and w are connected by an edge. By
convention, we agree that v ∼ v for any vertex v. Think of the
vertices as observables, that are jointly measurable precisely
when they are connected by an edge.

We will be concerned with several kinds of observables: all
will be particular types of structures on a Hilbert space, but
what joint measurability means will vary. By a realization of
G as observables on a Hilbert space H , we mean a function
x �→ Ox that sends vertices to observables in such a way that
Ox and Oy are jointly measurable if and only if x and y are
connected by an edge. As the basic step, we will first consider
yes-no questions, that is, projections. A set of projections is
defined to be jointly measurable when each pair in it commutes.
We now prove that any graph is realizable as projections on
some Hilbert space.

Theorem 1. Any graph has a realization as projections on
some Hilbert space.

Proof. First, consider the special case of a graph Gv,w where
all pairs of vertices are connected by an edge, except for two
fixed vertices v,w that are not connected. Fix two projections
on C2 that do not commute, for example:

|0〉〈0| =
(

1 0
0 0

)
, |+〉〈+| = 1

2

(
1 1
1 1

)
.

We can use these to build a realization of Gv,w as projections
on C2. Define pv = |0〉〈0|, pw = |+〉〈+|, and px = 0 for all
other vertices x �= v,w. By construction, all pairs px and py

for vertices x,y ∈ Gv,w commute, except for pv and pw. Hence
x �→ px realizes Gv,w as projections on C2. We will denote
the dependency on v and w of this realization by writing p

v �∼w
x

for px .
Now that we know how to obstruct a single pair of vertices

from being jointly measurable, we return to an arbitrary graph
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G. Let the Hilbert space H = ⊕
v �∼w C2 be the direct sum

of copies of C2, where the direct sum ranges over all pairs
of vertices that are not connected by an edge. For any vertex
x ∈ G, then px = ⊕

v �∼w p
v �∼w
x gives a well-defined projection

on H [25]. Now, if x ∼ y, then all pv �∼w
x and p

v �∼w
y commute by

construction, and so px and py commute. Similarly, if x �∼ y,
then p

x �∼y
x and p

x �∼y
y do not commute, and so px and py do not

commute. All in all, we have constructed a realization x �→ px

of G as projections on H . �
If f : G1 → G2 is an injective function between graphs

satisfying f (v) �∼2 f (w) when v �∼1 w, then the realizations
are related by px = V †pf (x)V for an isometry V .

III. DIMENSION BOUNDS FOR YES-NO QUESTIONS

There is a well-defined minimal dimension in which a graph
with V vertices can be realized as projections. The construction
in the proof of Theorem 1 showed that this minimal dimension
is at most 2N , where N is the number of non-edges, i.e.,
pairs of vertices that are not connected by an edge. Notice that
Theorem 1 makes sense for graphs of arbitrary size; if the graph
is infinite, then the number N should be regarded as a cardinal
number. In particular, the theorem implies that finite graphs
can be realized as projections on a finite-dimensional Hilbert
space, namely in dimension 2N . Clearly N � |G|(|G|−1)

2 , so that
the minimal dimension is at most |G|(|G| − 1); this inequality
is saturated for graphs without edges, for which N = |G|(|G|−1)

2 .
We will now show that the minimal dimension that any

graph can be realized in is at most |G|.
Theorem 2. Any graph has a realization as projections on a

Hilbert space whose dimension is at most |G|, the number of
vertices of G.

Proof. If |G| is an infinite cardinal number, then |G|(|G| −
1) = |G|, and the claim follows from the above considerations.

We may therefore assume that the graph is finite. Consider
the Hilbert space of dimension |G| + N , with orthonormal
basis vectors |x〉 for each vertex x ∈ G and |{v,w}〉 for each
nonedge v �∼ w. For each vertex x ∈ G, define a vector |ψx〉 =
|x〉 + ∑

x�v |{x,v}〉, where the sum ranges over all vertices v

not adjacent to x. For distinct vertices x and y then

〈ψx | ψy〉 =
{

0, x ∼ y,

〈{x,y} | {y,x}〉 = 1, x �∼ y.

Thus |ψx〉 and |ψy〉 are orthogonal when x ∼ y, but not
orthogonal or parallel when x �∼ y (because 〈ψx | ψy〉2 = 1 <

2 · 2 � 〈ψx | ψx〉〈ψy | ψy〉).
Letting px be the projection onto |ψx〉 constructs a

realization x �→ px as projections. Finally, notice that each
px has rank 1. So we may restrict the Hilbert space down
to just the linear span of the |G| vectors |ψx〉. This restricts
the realization x �→ px to a Hilbert space of dimension at
most |G|. �

The construction in the proof relied on the fact that
projections onto single vectors commute precisely when the
vectors are parallel or orthogonal. This is closely related to
orthogonal representations of graphs, which have been studied
in the literature [26 Sec. 9.3]. For example, if the complement
of the graph is connected after removing any V − d − 1
vertices, then one can assign unit vectors in Rd to the vertices

such that all these vectors are different, and two vectors are
orthogonal if and only if they share an edge. In general, if we
insist that the projections px have rank one, then the minimal
dimension in which the complement of the “path” graph

• • · · · •

can be realized is |G| − 1 [27,28]. In that sense, Theorem 2
is very close to being optimal. We leave open the question
of whether allowing px to have higher rank can lead to more
efficient realizations.

IV. REALIZATION AS SHARP OBSERVABLES

The above results easily extend from yes-no questions
to sharp observables, that is, projection valued measures
(PVMs). A PVM is a set P of mutually orthogonal projections
that sum to 1. A family P1,P2, . . . of PVMs is jointly
measurable when p and q commute for all p ∈ Pi and
q ∈ Pj and all i,j [29]. Hence a specification of sharp
quantum observables and which ones are jointly measurable
is determined pairwise, and can also be captured in a graph.

Theorem 3. Any graph has a realization as PVMs on a
Hilbert space whose dimension is at most the number of
vertices.

Proof. Given a graph G with vertices x,y, . . ., simply
replace the projection px of Theorem 2 by the PVM Px =
{px,1 − px}: the PVMs Px and Py are jointly measurable if
and only if px and py commute. �

In the joint measurability graph of all projections on a
Hilbert space, a special role is played by maximal cliques:
maximal sets of vertices, every two of which are connected
by an edge. They correspond to PVMs P that are maximally
fine-grained, in the sense that all p ∈ P have rank one. More
precisely, given such a PVM P , the set of all projections
commuting with all p ∈ P form a maximal clique. Conversely,
a maximally fine-grained PVM can be recovered as the
minimal projections in a maximal clique.2

It is not always possible to realize a graph as projections
in a way that sends maximal cliques to PVMs. For a
counterexample, consider the “fork” graph with three vertices
and two edges,

y z

x

Suppose there were a realization as projections with
px + py = 1 = px + pz. Then py = 1 − px = pz, making
px and py commute, contradicting the fact that y �∼ z. We
leave open the interesting question of characterizing which
graphs can be realized as projections in a way that sends
maximal cliques to PVMs.

We call a realization as projections x �→ px faithful when
distinct vertices x �= y give rise to distinct projections px �= py .

2Given a maximal clique of projections in a Hilbert space, the C*
algebra it generates is commutative. Therefore it has a commutative
projection lattice. By maximality, this lattice coincides with the
clique, which is therefore a Boolean sublattice of the full projection
lattice.
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The previous example might have given pause to the reader
who intuitively expected a realization as projections of a
graph to be faithful. The construction of Theorem 1 might
not be faithful, because vertices x ∈ G that are connected
to all others end up being realized by the projection px = 0
commuting with anything. Any realization as projections can
be made faithful as follows. Enlarge the Hilbert space to
H ⊕ H ′, where H ′ has orthonormal basis {|x〉 | x ∈ G}, and
send x ∈ G to px ⊕ |x〉〈x|. This is clearly faithful, and has the
same commutativity properties as the original realization.

We can similarly extend to realizations as sharp quantum
observables that are not dichotomic. If the vertices x ∈ G

are labeled with numbers nx � 2, we can realize the graph
as PVMs such that Px has nx elements. Enlarge the Hilbert
space to H ⊕ ⊕

x∈G Hx , where Hx has orthonormal basis
{|3x〉, . . . ,|nx〉}, and send x ∈ G to Px = {px ⊕ 0,(1 − px) ⊕
0} ∪ {0 ⊕ |i〉〈i| | i = 3, . . . ,nx}. This has the same commuta-
tivity properties as the original realization.

In principle, one could imagine physical theories in which
joint measurability of observables is not determined pairwise.
(Indeed, we will see shortly that unsharp observables in
quantum mechanics form a case in point.) To model joint
measurability, we then have to generalize to hypergraphs, in
which a hyperedge can connect any number of vertices [23,24].
Any graph induces a hypergraph, where a set of vertices forms
a hyperedge when every two vertices in it are connected by
an edge. Our definition of realizability easily carries over to
hypergraphs: vertices still represent observables, and a set
of vertices forms a hyperedge precisely when it is jointly
measurable. Combining the above results with the well-known
fact that sharp observables are jointly measurable when they
commute [30,31], we obtain the following characterization: a
hypergraph is realizable as sharp quantum observables if and
only if it is induced by a graph.

Just as we have discussed dimension bounds for the real-
izations of graphs by projections, we can also ask what the
minimal dimension is to realize a given graph by PVMs. As the
proof of Theorem 3 shows, any realization as projections can be
turned into a realization as PVMs, and hence the PVM minimal
dimension is at most the projection minimal dimension. As
witnessed by the multitude of proofs of the Kochen-Specker
theorem in C3 and C4 [32], there is quite a lot of “room”
already in these low dimensions, and one may wonder whether
this is already enough to realize every graph as a PVM. This
turns out not to be the case.

Theorem 4. There is no dimension d in which all graphs
can be realized as PVMs.

Proof. For a given d, we construct a graph which cannot be
realized in dimension d as follows. Let Bd be the number of
partitions of {1, . . . ,d}; this is the dth Bell number. Now take a
graph with Bd + 1 vertices designated as “action” vertices and
n := �log2(Bd + 1) many “control” vertices. Enumerate the
action vertices using bitstrings of length n. Then, action vertex
v shares an edge with control vertex number k if and only if
the kth bit in the bitstring associated to v is 1. Also, every two
action vertices share an edge, while two control vertices may
or may not share an edge.

This graph cannot be realized in dimension d: since every
action vertex is connected to a different set of control vertices,

no two action vertices can map to the same PVM. On the other
hand, all these PVMs must be jointly measurable, and hence all
their elements can be diagonalized in the same basis. In this
fixed basis, every PVM therefore corresponds to a partition
of {1, . . . ,d}. But since we have Bd + 1 many PVMs, which
is higher than the number of partitions of {1, . . . ,d}, this is
impossible. �

V. UNSHARP OBSERVABLES AND NEUMARK DILATION

We now turn to the most general kind of (unsharp) quan-
tum observables, namely positive operator valued measures
(POVMs). These are defined as functions E from some
outcome space I to operators on a Hilbert space that are
bounded between 0 and 1 and form a resolution of the
identity3 ∑

i∈I E(i) = 1, and 0 � E(i) � 1 for each i ∈ I .
If E(i) is a projection for each i, we actually have a PVM.
Therefore we may also write P (i) instead of pi for PVMs
P = {pi | i ∈ I }. A family of POVMs E1,E2, . . . is defined
to be jointly measurable when there exists a joint POVM E

of which they are the marginals: if POVMs En have outcome
space In, then E should have outcome space

∏
n In and satisfy

E1(i1) =
∑

i2∈I2,i3∈I3,...

E(i1,i2,i3, . . .),

E2(i2) =
∑

i1∈I1,i3∈I3,...

E(i1,i2,i3, . . .),

and so on [29,34]. This reduces to the previously considered
notions of joint measurability for yes-no questions and sharp
quantum observables.

Neumark’s famous dilation theorem says that any POVM
can be dilated to a PVM on a larger Hilbert space, or in other
words, that any POVM is the compression of a PVM on a
larger Hilbert space: if E is a POVM on a Hilbert space H

with outcome space I , then there exist a Hilbert space K , an
isometry V : H → K , and a PVM P on K with outcome space
I , such that E(i) = V †P (i)V [29,33]. This forms an important
part of the philosophy that John Smolin called “the church of
the larger Hilbert space,” which holds that one need not care
about unsharp observables as long as ancilla spaces are taken
into account.

There is an extension of Neumark’s dilation theorem
for families of observables. We call a family E1,E2, . . . of
POVMs, with outcome spaces I1,I2, . . ., on a Hilbert space
H jointly dilatable when there exist a Hilbert space K , an
isometry V : H → K , and a single PVM P with outcome
space

∏
n In such that En(i) = ∑

j V †P (i,j )V , where j ranges
over

∏
m�=n Im, and we write (i,j ) for the obvious element4 of∏

m Im. It is now a matter of unfolding definitions to prove that

3While we only consider discrete POVMs here, all our results hold
unabated for positive-operator valued measures on the Borel sets on
a compact Hausdorff space, by reformulating them in the language
of C* algebras and completely positive maps; see, e.g., Theorem 4.6
of [33].

4That is, for i ∈ In and j ∈ ∏
m �=n Im, the element (i,j ) ∈ ∏

n In

has nth component i and other components given by the components
of j .
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a family of POVMs on a Hilbert space is jointly measurable if
and only if it is jointly dilatable.

We now study how joint measurability behaves under Neu-
mark dilation. Suppose POVMs E1, E2, and E3 are compres-
sions of PVMs P1, P2, and P3 with respect to different isome-
tries. If {E1,E2,E3} are jointly measurable there is a single
isometry V123 that dilates the joint POVM E123 (to, say, P123).
But if the Ei are merely pairwise jointly measurable, then there
exist PVMs Pij and three isometries Vij that dilate Eij to Pij .
What we will show is that even if one has all three pairwise
dilations Pij via isometries Vij at hand, it may be the case that
there is no triplewise dilation P123 via any isometry V123. Thus
Neumark dilation cannot always turn unsharp observables into
sharp ones with the same joint measurability relations. In this
sense, Neumark dilation does not reflect joint measurability.

Theorem 5. There is a family {En} of POVMs on a Hilbert
space H that does not allow an isometry V : H → K and a
family of PVMs {Pn} (with the same outcome spaces as En) on
K with En(i) = V †Pn(i)V in such a way that a subset of {En}
is jointly measurable if and only if the corresponding subset
of {Pn} is jointly measurable.

Proof. Perhaps the simplest counterexample starts with a
family {E1,E2,E3} of POVMs on the Hilbert space H = C2,
every pair of which is jointly measurable, but which is not
jointly measurable itself [12,18,30,31,34]. Its hypergraph is a
“hollow triangle”:

E2 E3

E1

In other words, this (hyper)graph is realizable as POVMs.
In contrast, as noted above, joint measurability of PVMs

is determined pairwise, which will lead us to a contradiction.
Suppose PVMs {P1,P2,P3} as in the statement of the theorem
existed. Then, by our assumptions, the pairwise joint mea-
surability of the En would imply pairwise joint measurability
of the Pn, so the Pn would necessarily be triplewise jointly

measurable as well. In other words, then the {En} would be
(triplewise) jointly dilatable. But this contradicts the fact that
the {En} are not (triplewise) jointly measurable. In summary:
joint measurability of the putative Pn would imply joint
measurability of the En, since a joint POVM can be constructed
as the compression of a joint PVM. �

We could interpret the previous theorem as a warning
against an unreflected belief in “the church of the larger
Hilbert space.” If you care about (non-)joint measurability
of observables, you cannot simply ignore unsharp quantum
observables in favor of their dilated sharp observables, even if
ancilla spaces are taken into account, and you have to take the
unsharpness involved seriously.

This plays a role in quantum protocols that rely on unsharp
observables that are not jointly measurable, in which case
the usual analysis by dilation to sharp observables should
not be used. For example, [5] explicitly constructs a PVM
implementation of a POVM and mentions that this “faithfully
represents the POVM.” However, PVM implementations
cannot always represent joint measurability relations within
families of POVMs. We suspect that it may be possible to turn
this apparent problem into a feature which can be exploited
in new quantum information protocols. More concretely, we
imagine situations in which a number of parties share some
quantum information resource, but only certain subgroups of
these parties are allowed joint access to it.
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