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Impact of interfermionic forces on the pair-creation process
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Using a simplistic model in one spatial dimension, we estimate the impact of the electron-electron, positron-
positron, and electron-positron forces on the yield of the pair-creation process triggered by an external superstrong
force. We separate the scalar and vector potentials in the Dirac equation into external and internal parts, where
the dynamics of the internal potentials are governed by the Maxwell equations with the Dirac charge and current
densities as source terms. In order to explore the impact of the interfermionic forces, we compute the number
of created pairs, the time evolution of the charge, and current density as well as the electronic and positronic
spatial probability density. We find that once the particle pair is created, the electron-positron attraction keeps
the particles from being accelerated out of the interaction zone and the resulting Pauli blocking suppresses the
pair-creation process. On a longer time scale, however, the forces lead to an enhancement of pair creation.
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I. INTRODUCTION

The prospect of producing an electron-positron pair from
the vacuum triggered by a supercritical field has led to
wide theoretical interest [1–6]. However, all studies have
neglected the field theoretical Coulombic interactions between
the created particles. On an accurate quantum field theoretical
level, interfermionic interactions are facilitated by the second
quantized photon field, which would have to be treated as
an independent dynamical quantity with its own dynamics.
Unfortunately, due to the present computational limitations
and also many conceptual problems, such as renormalization
and particle dressing, this approach is presently out of reach.
A first valuable insight into the effect of the back reaction
on the pair-creation process was provided by coupling the
quantum kinetic Vlasov equation for the particles’ momentum
density to the Maxwell equations [7–11]. This approach
provides remarkable insight and is ideally suited to study the
prediction of nonequilibrium quantum mean-field theory for
three-dimensional environments for spatially homogeneous
fields. These works are similar to our work discussed below
in the sense that they also separate between an external and
a self-consistent internal field, whereas the recent work by
Hebenstreit and colleagues [12,13] used a one-dimensional
model system and studied a single and fully coupled initial
field. These studies suggest that the back coupling might
reduce the yield of the created particles. It is presently not
known how these forces would affect the dynamics or by
how much the famous Schwinger threshold field [14,15] for
the pair creation can be increased or even decreased when
these effects are taken into account for a spatially localized
three-dimensional interaction. This question becomes even
more urgent, as new laser-based experiments are being planned
at various laboratories [16].

In order to get a very rough order of magnitude estimate,
one could assume for a moment that the usual nonrelativistic
Coulomb law was valid even on the smallest spatial scales
relevant for the pair-creation process. This length scale is cer-
tainly much shorter than the electron’s Compton wavelength,
λ = h/(mc) (�2.4 × 10−12 m), which is the wavelength of a
photon that has an energy equal to the electron’s rest energy,

mc2 (�8.2 × 10−14 J). The Coulomb energy between an
electron and positron at this distance from each other is kq2/λ

(�9.5 × 10−17 J), which would be about 860 times smaller
than the electron’s rest energy. So if the electron-positron
pair’s separation during its creation were actually larger than
the Compton wavelength and if the classical Coulomb force
law was valid in this form, one could tentatively neglect
interfermionic forces. However, the validity of both of these
assumptions is presently not established. A recent quantum
field theoretical model calculation [17] has suggested that even
the direction of the force between two charges can depend
on which modes of the second-quantized photon field are
permitted.

The purpose of this work is twofold. First, we try to
examine the computational feasibility for a possible theoretical
framework to include (still on an approximate level) the three
interfermionic forces. Here the pair creation is governed by
the Dirac equation and the internal field is approximated by a
classical elecromagnetic field whose space-time evolution is
determined by the Maxwell equations. To study the feasibility
of such an approach we used a one-dimensional system. This
has the advantage that, in addition to computational challenges,
conceptual problems concerning the directions of the forces
can also be addressed. The second goal is to use the data
produced by this model to obtain some qualitative insight into
the pair-creation dynamics and therefore give direction to for
further study.

The paper is organized as follows. In Sec. II we introduce
the coupled Dirac-Maxwell equations for our one-dimensional
model system. In Sec. III we show that a “single-particle”
Dirac wave function is able to predict the mutual repulsion
between electrons (and similarly for positrons) and at the same
time the attractive force between electronic and positronic
portions of the same wave function. Being able to obtain the
expected direction of the three interfermionic forces within a
single wave function is an important consistency test for the
proposed formalism. In Sec. IV we compare the pair-creation
dynamics with and without internal interactions among the
created particles. In Sec. V we provide a discussion of possible
open questions that will be addressed in future work.
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II. ONE-DIMENSIONAL MODEL SYSTEM

A. Electron-positron dynamics

We model the pair-creation process of electron-positron
pairs by the time-dependent Dirac Hamiltonian in one spatial
dimension [18],

h(q) = cσ1[p − q/cA(z,t) − q/cAext(z)] + σ3mc2

+ qV (z,t) + qVext(z), (2.1)

where c is the speed of light and σ 1 and σ 3 are the two Pauli
matrices. In our numerical simulations below we use atomic
and cgs units, where the four fundamental constants [amount
of the charge of the electron |q|, its mass m, and Coulomb’s and
Planck’s constants 1/(4πε0) and �] are all unity by definition.
As a result, the speed of light is c = 137.036 a.u. For q = −1
[q = 1], the Hamiltonian h(e−) [h(e+)] describes the evolution
of an electron [positron]. As the external potentials act only
along the z direction and do not mix spin components, h(q)
can govern the time evolution of the nonvanishing spinor
components. Equation (2.1) can be easily derived from the
usual three-dimensional Dirac Hamiltonian for the four-spinor
component wave functions, c α p + mc2β, with the usual 4 × 4
matrices α = (αx,αy,αz) and β. The energy eigenstates with
positive energy wp ≡ [m2c4 + c2p2]1/2 are proportional to
[s,cσps/(mc2 + wp)], where s is a two-component vector.
When we assume s = (1,0) and px = py = 0 we can eliminate
the vanishing second and fourth spinor component from our
notation and obtain Eq. (2.1).

The energy eigenstates of the force-free Hamiltonian
(denoted by h0) with momentum p in the positive (up) energy
continuum are denoted by h0|u; p〉 = wp|u; p〉 whereas those
in the negative (down) continuum are denoted by h0|d; p〉 =
−wp|d; p〉. In the literature they are also wisely called positon
and negaton states [19]. Their spatial representation is given
by

〈z|u; p〉 ≡ Wp(u; z) = χ [1,cp/(mc2 + wp)] exp[ipz],

(2.2a)

〈z|d; p〉 ≡ Wp(d; z) = χ [−cp/(mc2 + wp),1] exp[ipz],

(2.2b)

where χ ≡ (2π )−1/2[1 + c2p2/(wp + mc2)2]−1/2 denotes the
normalization factor. While both states have the same mo-
mentum eigenvalue p, the state in Eq. (2.2b) would evolve
in the direction opposite of p under h0. Furthermore, if
the Hamiltonian has nonvanishing external potentials as in
Eq. (2.1), then a superposition of the states Wp(u; z) would
be accelerated in the opposite direction than states consisting
of Wp(d; z). As it will be important for our discussion below,
we note here that the antilinear operator C ≡ σ1K (where K

denotes complex conjugation) can convert a positive energy
state with momentum p into a state with negative energy and
reversed momentum, σ1K|u; p〉 = |d, − p〉.

While in any description the (up) states |u; p〉 are usually
associated with electrons, the interpretation of the mathe-
matical (down) states |d; p〉 depends on the theory. As we
will discuss below, in relativistic quantum mechanics their

charge conjugated form is viewed as positron states, whereas
in Dirac’s quantum field theory their occupation represents the
vacuum.

The two interaction terms in h, −σ1qA + qV , generate
the time evolution of a state associated with an electron if we
choose a negative charge q =−1. In order to propagate the state
for a positron, in principle one could choose the Hamiltonian
of Eq. (2.1), but with a positive charge q = 1, which we
have denoted by h(e+). However, using a different form of
the Hamiltonian for each type of charge is not advantageous
for dynamics that contain multiple particles and require a
uniform description. Fortunately, the two Hamiltonians h(e−)
and h(e+) can be related to each other via the (antilinear)
charge-conjugation operator, h(e+) = −Ch(e−)C−1, which
effectively reverses the sign of the scalar and vector potentials
in h. Here C = σ1K can be represented as the product of
σ 1 and the complex-conjugation operator K , where KpK =
−p,σ1σ1σ1 = σ1 and σ1σ3σ1 = −σ3. The time evolution of an
electronic state follows from i�∂t |e−(t)〉 = h(e−) |e−(t)〉 and
we will discuss in Sec. III A that it can be used to predict
simultaneously also the corresponding solution of a positron,
whose time evolution is normally governed by i�∂t |e+(t)〉 =
h(e+)|e+(t)〉. These considerations are important below, where
we will show that a “single-particle” wave function can
simultaneously describe a state with an electronic as well as
positronic portion.

The vector and scalar potentials Aext(z,t) and Vext(z,t) in
Eq. (2.1) represent a superstrong external field that can trigger
the pair-creation process from the vacuum. The internal poten-
tials A(z,t) and V (z,t) represent the fields that are generated
by the particles and facilitate their mutual interaction. Their
dynamical evolution is governed by the Maxwell equations
described in the next section.

B. Dynamics of the internal fields A(z,t) and V (z,t)

The Maxwell equations ∂tE = −4π∂tP and ∇ · E =
−4π∇ · P determine the electric field from the polarization
P (where Q = −∇ · P ) and simplify significantly due to the
spatial limitation to only one dimension [20] to ∂zE = 4πQ

and ∂tE = −4πJ , where Q(z,t) and J (z,t) are the charge and
current densities, obtained from the Dirac wave function and
fulfilling the required continuity equation ∂tQ + ∂zJ = 0. In
Appendix A we summarize the more general formalism of
quantum electrodynamics in one spatial dimension.

Due to this spatial limitation, there is no magnetic field
and the electric field E outside a charge distribution does not
depend on the position. For example, according to Gauss’s law,
the static electric field associated with a localized negative unit
charge at z = −d and a positive one at z = d, i.e., Q(z) =
−δ(z + d) + δ(z − d), is simply given by the product of two
Heaviside unit step functions, E(z) = −4πθ (z + d)θ (d − z),
corresponding to a constant field E = −4π inside the dipole
and E = 0 outside, where we have arbitrarily chosen
E(−∞) = 0. Also, the electric field associated with a localized
positive unit charge [Q(z) = δ(z)] is E(z) = −2π + 4πθ (z).
As a result the corresponding electric potential difference
between locations z = 0 and z > 2c2/(4π ) exceeds 2c2 and is
therefore automatically supercritical.
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If we introduce the potentials V and A such that E =
−∂zV − ∂ctA, the two Maxwell equations read ∂z∂ctA +
∂2
z V = −4πQ and c∂2

ctA + c∂z∂ctV = 4πJ . Using the
Lorenz [21,22] gauge, ∂zA = −c−1 ∂tV , we obtain the two
separate equations for the potentials,

(
∂2
ct − ∂2

z

)
V = 4πQ(z,t), (2.3a)

(
∂2
ct − ∂2

z

)
A = 4πc−1J (z,t). (2.3b)

Special attention has to be paid to the boundary conditions
for our numerical box of total length L. As the Dirac equation
for the wave function φ(z) can be solved most efficiently
with periodic boundaries, φ(−L/2) = φ(L/2), we choose
them also for the electric potentials. However, there is an
unavoidable consequence due to this choice. Gauss’s law
prohibits that the electric field associated with a periodic
charge can be periodic as well, in other words, we have
E(−L/2) �= E(L/2). This discontinuity acts numerically like
an additional unphysical charge at z = ± L/2, to which any
portion of the Dirac wave function that is located there would
react.

Furthermore, the required periodicity V (−L/2) = V (L/2)
leads to an unphysical box-size-dependent electric field if L

is finite. For example, the (periodic) potential associated with
a positive unit charge located at z = a (>0), Q(z) = δ(z −
a) is given by V (z) = −4π [θ (z − a)(z − a) + z(a/L − 1/2)],
which leads to the electric field E(z) = 4π [θ (z − a) + (a/L −
1/2)]. Here θ (x) = x/|x| denotes again the Heaviside unit step
function. As a result, a positive test unit charge placed at z =
0 would experience the repulsive L-dependent force E(0) =
−4π (1/2 − a/L)]. This unavoidable L-dependent force can
be also visualized as the periodic boundaries constrain the
fields and particles to a ring of effective diameter L. While the
probe at z = 0 is repelled by the charge at z = a to the left, due
to the ring geometry the same charge is also located at distance
L−a to the left of it and would therefore push it to the right.

In fact, if the first charge is not placed at z = a but at z =
L/2, the two resulting oppositely directed forces on the test
charge at z = 0 would cancel completely, E(0) = 0, in this case.
As we will show below, due to causality (finite propagation
speed of any field) these undesirable numerical features (due
to a finite L) fortunately do not compromise the solutions to
the Maxwell-Dirac equations. These features only limit the
maximum interaction time of our simulations.

In order to have comparable magnitudes for the one- and
three-dimensional forces, we can introduce a unitless scaling
factor κ in front of the charge and current density in the
Maxwell equations. For example, the three-dimensional (3D)
Coloumb electric field due to a unit charge at a distance
given by the electron’s Compton wave length (λ = 1/c)
is E3D = 1/r2 = c2, while the corresponding 1D field is
E1D = 2π . If we use a factor κ = c2/2π the two forces would
be identical at the distance λ. In our numerical calculations
below we use various prefactors before the internal potentials
in the Dirac equation and the charge and current densities
in the Maxwell equations. In order to solve the coupled
Maxwell-Dirac equations, we have used FFT-based split-
operator technique [23–27] for the Dirac equation and a
finite-difference based and also FFT-based algorithm to solve

the Maxwell equations. The algorithmic details are presented
in Appendices B and C.

III. INTERNAL DYNAMICS FOR NO EXTERNAL FIELDS,
Aext = Vext = 0

We examine using the fully coupled Dirac-Maxwell equa-
tion to study pair creation in a dynamical context with full
space-time resolution. While there are some early works [28–
39] that have examined the mathematical properties and
stability of various numerical algorithms for these equations
for a single charge, it is necessary to confirm first if our
formalism can actually produce reasonable predictions for the
time evolution of the particles in the absence of any external
field.

A. Single-particle dynamics of an electron or positron

Due to their opposite charges, electrons and positrons are
differently coupled to external and internal fields, as described
by h(e−) and h(e+) . However, due to a symmetry relationship
between h(e−) and h(e+) under charge conjugation, the
same Hamiltonian h(e−) can be used to describe the time
evolution of both types of particles. The initial state for an
electron |e−(t = 0)〉 is always chosen as a superposition of
states |u;p〉 with positive energy [see Eq. (2.2a)]. As the
Hamiltonians h0 for electrons and positrons are identical
in the absence of any potential, also the initial positronic
state has to be a superposition of positive energy states,
|e+(t = 0)〉 = �pαp|u; p〉 with expansion coefficients αp.

In the presence of internal and external potentials, the time
evolution of the electronic state is governed by h(e−), leading
to |e−(t)〉 = U (e−) |e−(t = 0)〉. In the propagator U (e−) ≡
T exp[−i ∫t dτ h(e−)], T is the required time-ordering oper-
ator as the potentials A and V are generally time dependent.
On the other hand, the time evolution for the state of the
positron |e+〉 would be governed by a different Hamiltonian
h(e+), leading to |e+(t)〉 = U (e+) |e+(t = 0)〉, where the
corresponding propagator is naturally given by U (e+) ≡
T exp[−i ∫t dτh(e+)].

It turns out, however, that we can also use the
“electronic” propogator U (e−) to obtain the time
evolution of the positron state |e+(t)〉 using a “detour”
based on the charge-conjugation operator C introduced
in Sec. II A. Applying U (e+) = CU (e−)C to the
solution |e+(t)〉 = U (e+) |e+(t = 0)〉, we obtain |e+(t)〉 =
CU (e−)C|e+(t = 0)〉 = CU (e−)�pα∗

p|d; −p〉 ≡ C|s(t)〉,
where we have used that C|u; p〉 = |d; −p〉. In other words,
we can obtain the correct time evolution of the positronic
state �p αp|u; p〉, if we use the coefficients αp and construct
a “mirror” state as a superposition of negative energy states,
|s(t = 0)〉 = �pα∗

p |d; −p〉 and use U (e−) to evolve this
state in time leading to |s(t)〉. We can then use |s(t)〉 to
obtain the resulting time evolved positron state |e+(t)〉 at any
instant of time by simply applying the charge conjugation
to this mathematical state, C|s(t)〉 = |e+(t)〉. This means we
have shown that we can use the same Hamiltonian h(e−) to
compute the time evolution of electrons and positrons in the
presence of external fields. In other words, we can describe
the electron-positron (two-particle) state by a single wave
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function for fields that are weak enough not to couple upper
and lower continuum states. In case the fields are supercritical
and these transitions become non-negligible, a true quantum
field theoretical framework would be needed to correctly
interpret the meaning of the data, similarly as shown in
Ref. [40].

In order to model an initially spatially localized electron
or positron that is initially centered at z = 0 and has a spatial
width of �z0, we use the following two (identically chosen)
initial states:

〈z|e−(t = 0)〉 = (
2�z2

0/π
)1/4

∫
dp exp

[ − p2�z2
0

]
Wp(u; z)

for the electron, (3.1a)

〈z|e+(t = 0)〉=C
(
2�z2

0/π
)1/4

∫
dp exp

[−p2�z2
0

]
W−p(u; z)

for the positron. (3.1b)

While a single electron or positron modeled by a quantum-
mechanical wave function should not be able to interact with
itself, the present description permits such an “unphysical”
interaction due to the intrinsic statistical meaning of a wave
packet. While according to the Born interpretation the spatial
probability density represents only a temporal average of
infinitely many measurements of the same single particle,
in our approach (where the Maxwell field was not second-
quantized) the whole spatial density acts as a source term in
Maxwell equations, which then produces a field to react which
all portions of the wave function simultaneously. In other
words, different portions of the same particle wave packet can
interact with themselves like particles in a classical ensemble
of many particles or in a charge cloud.

In order to obtain the correct signs for the potentials V and
A in a consistent manner from the Maxwell equation, we have
used in this study the source terms Q ≡ −〈z|e−(t)〉† 〈z|e−(t)〉
and J ≡ −c〈z|e−(t)〉†σ1〈z|e−(t)〉 for the simulation of the
dynamics of the electron, while Q ≡ 〈z|e+(t)〉† 〈z|e+(t)〉 and
J ≡ c〈z|e+(t)〉†σ1〈z|e−(t)〉 is used for the positron. We note
that the charge-conjugation operator does not affect the
corresponding charge or current density as σ 1

2 = 1.
In Fig. 1 we illustrate the unphysical self-repulsion for

an electron wave packet. In addition to the final probability
density 〈z|e−(t)〉† 〈z|e−(t)〉 we have also graphed by the
dashed line the corresponding density in the absence of
any interaction (κ = 0) for comparison, reflecting simply
the usual quantum-mechanical spreading associated with the
nonvanishing variance in momentum.

While the usual quantum wave packet spreading sets in
only after a short time delay that is proportional to 1/�z0 (as
fast and slower portions of the packet are spatially equally
distributed and need some time to evolve to the wings of the
packet), the self-interaction sets in almost instantaneously. The
same repelling self-interaction is also obtained for the positron,
based on the initial state of Eq. (3.1b).

B. Time evolution of an electron-positron state

The Dirac equation is quite remarkable. While h is the
fundamental generator of the time evolution in quantum
field theory for the electron-positron field operator, it is
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FIG. 1. The probability density of an electron wave packet
|Q(z,t)| with (solid line) and without (dashed line) the interaction
potential V (z,t) at final time t = 0.1/c. The corresponding potential
(at time t = 0) which causes the self-interaction is shown below the
probability distributions. (Parameters are L = 0.4 a.u., Nz = 128
spatial gridpoints, initial width �z0 = 0.01 a.u.)

sometimes also used for relativistic quantum mechanics [15]. If
excitations to the negative energy continuum can be neglected,
it can be interpreted as a single-particle equation or even
as a relativistic generalization of the Schrödinger equation.
However, in those dynamical regimes where the states of
positive and negative energies are not coupled directly (no
transitions between these two continua), we can use these two
energy subsets to describe simultaneously an electron and a
positron via a single wave function. Even more, if the internal
vector potential satisfies the Maxwell equations with the
corresponding fermionic charge and current density as sources,
the “single-particle” wave function with its sole dependence on
z and t can even describe the repulsive and attractive interaction
forces (e−−e−, e+−e+ and e−−e+) appropriately.

We will now show that the resulting forces between an
electron and a positron is attractive. We have prepared our
initial state as linear superposition of a Gaussian wave packet
that is solely composed of positive energy states and centered
at location z0 and the charged conjugated version of the same
state, except that it is centered at z = −z0,

|�(t = 0)〉 =
∫

dpA(p) exp[−ipz0]|u; p〉

+
∫

dpA(p) exp[ipz0]|d; −p〉, (3.2)

where A(p) ≡ 2−1/2 (2�z2
0/π )1/4exp[−p2�z2

0]. Once again
we point out that this two-particle state is a sum (not a product)
of two single-particle states and depends only on the single
variable z (and not z1 and z2).

In order to extract the correct sign of the charge and
current density associated with the electronic and positronic
portions of the “single-particle” wave function, we have
to separate out states of positive and negative energy
subspaces. We used the energy “filter” operator, defined
as �u ≡ (1 + h0/|h0|)/2 = �p|u; p〉〈u;p| and �d ≡ (1 −
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FIG. 2. The final spatial probability density of an electron (left)
and positron wave packet (normalized to 2) interacting via their own
internal electric field. For comparison, the dashed line represents the
final density without any coupling. The potential V (z,t) responsible
for the attraction is shown below. (Parameters are L = 0.4 a.u., Nz =
128, �z0 = 0.01 a.u., z0 = 0.08 a.u., t = 0.1/c.)

h0/|h0|)/2 = �p|d;p〉〈d;p|, where h0 is the Hamiltonian of
Eq. (2.1) without the potentials and |h0| denotes the opera-
tor |h0| ≡ [m2c4 + c2p2]1/2. Obviously, for any momentum
p we have �u|u;p〉 = |u;p〉,�u|d;p〉 = 0,�d |u;p〉 = 0 and
�d |d;p〉 = |d;p〉 as desired. The application of these operators
can be performed quite conveniently in Fourier space. In order
to get physically meaningful results from the wave function
� ≡ 〈z|�(t)〉, we have to use the charge and current densities

Q(z,t) ≡ −[�u�]†�u� + [�d�]†�d�, (3.3a)

J (z,t) ≡ −c[�u�]† · σ1�u� + c[�d�]† · σ1�d� (3.3b)

in the Maxwell equations. We have noted already above that
these source terms are invariant under charge conjugation, so
we can omit its application here.

By comparing the final density |�(z)|2 with that of the
uncoupled one (κ = 0), we can see the impact of the three
forces. Each packet itself widens under the repulsive self-
interaction while the centers of both packets move towards
each other, as a consequence of the attractive force between the
electron and positron (see Fig. 2). As we have now established
that it is possible to model the correct interactions, we can now
turn to the much more complicated quantum field theoretical
problem of pair creation.

IV. PAIR CREATION WITH AND WITHOUT
INTERFERMIONIC FORCES

A. Methodology

Our simulations described in the prior sections were for
parameters where the total number of involved particles was
conserved. We will now discuss how we can incorporate
the coupling to the Maxwell equations into the pair-creation
process, where the total number of particles changes and
therefore requires a quantum field theoretical framework.

As we discussed in the introduction nearly all works on
pair creation neglected the interfermionic forces. In these
calculations, the theoretical description is consistent with the
Dirac sea formalism, where the quantum field theoretical
vacuum is represented by a peculiar multiparticle state where
each mode (single-particle state) is in a different state, such that
each possible negative energy continuum state of the Hilbert
space is excited exactly once. In the usual second-quantization
procedure of a fermionic system, the expansion coefficients
bp of a general Dirac state �p[bp(u)|u;p〉 + bp(d) |d;p〉] are
replaced with anticommuting operators such that [bp,b

†
p′ ]+ =

δp,p′ . As a second step one associates the operators bp(d)
with the creation of positrons and renames them conveniently
bp(d) ≡ d

†
−p while bp(u) ≡ bp annihilate electrons. This step

leads to a different interpretation of the states |d;p〉 than
discussed in the prior quantum-mechanical sections. In other
words, this initial state is given by the product of all initially
occupied eigenstates associated with the negative energy
continuum, |�(t = 0)〉 = �i |d;pi〉, where the ith particle
(mode) is in the state |d;pi〉 as defined in Eq. (2.2b) as the
energy eigenstates of the free Dirac Hamiltonian h0 with
negative energy and index i = 1,2, . . . N numerates the
modes (single-particle states). In the absence of interparticle
interactions, the initial and final total N -particle Hamiltonian
h is simply the direct sum of the Hamiltonians for each mode,
h = �hi , where the index i labels again each mode. The
time-dependent single-mode solutions denoted by |d;p(t)〉
are obtained from the solution i∂/∂t |φ〉 = h(e−) |φ〉, where
|φ(t = 0)〉 = |d;p〉 and the Hamiltonian h takes the form of
Eq. (2.1) in its spatial representation. Each of these states
|φ(t = 0)〉 = |d;p〉 is then evolved independently of the other
modes in time, |�(t)〉 = �i |d;pi(t)〉. An (upward) transition
to positive energies is interpreted in the usual picture of the
Dirac sea as the generation of an electron-positron pair. The
number of created particle pairs N (t) is then determined by the
expectation value of the operator �i �p |u;pi〉〈u;pi |, where the
operator �p|u;pi〉〈u;pi | removes the negative energy portions
of the ith mode and acts as a unit operator on the other modes,

N (t) = 〈�(t)|�i�P |u;pi〉〈u;pi ||�(t)〉
= �i�p�i〈d;pi(t)||u;pi〉〈pi ||d;pi(t)〉
= �i ′�p|〈u;pi ′ |d;pi(t)〉|2. (4.1)

As the dynamics were assumed to be fully decoupled
between the different modes, it is not surprising that the total
number of created electrons (=particle pairs) is simply the sum
of all scalar products between the time evolved modes |d;p(t)〉
and all single-particle states with positive energy |u;p〉. As was
shown numerous times in the literature [15,41], this expression
is identical to the one obtained from quantum field theory. In
other words, all aspects of the above multiparticle quantum-
mechanical description are identical to a full quantum field
theory in the case where the interfermionic forces can be
neglected.

As indicated in the introduction, all quantum field theo-
retical approaches to pair creation assume that the initially
occupied negative energy eigenstates (Dirac sea) are depleted
independently from each other due to the external potential. In
an energy discretized (and truncated) numerical description,
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we assume that the negative energy portion of the Hilbert space
is spanned by a total of Nz states. The parameter Nz is also
identical to the number of spatial grid points.

As an initially occupied negative energy state represents
parts of the neutrally charged quantum field theoretical
vacuum, we have to guarantee that each initial Dirac sea state
does not contribute to the charge and current source terms in
the Maxwell equation. The pair-creation induced “holes” in
the negative energy states (=created positrons) correspond to
the positive charge in the Maxwell equation.

B. Numerical results

Similarly as in many prior works [41], we have used the
Sauter potential well [42] of the form

Vext(z) = V0{tanh[(z + D/2)/W ] + tanh[(D/2 − z)/W ]}/2

(4.2)

with an amplitude V0, a spatial extension D, and spatial width
W to model the external supercritical field and use Aext = 0. It
satisfies the required periodic boundary conditions and permits
us to explore two pair-creation zones centered at z = ± D/2,
where the external force is largest. Due to the short-range char-
acter of this potential, the (long-time) charge density associated
with this potential [ρ(z) = −∂2

z Vext/(4π )] would have two
maxima and minima, reflecting a vanishing total charge. This
charge density is therefore different from the one associated
with a single supercritical positively charged nucleus. The
total charge under each maximum is approximately V0/(8πW )
which amounts to the rather large charge of 6 × 105 a.u. for our
parameters (V0 = 3c2, W = 0.5/c) taken in our simulations
below. If the created electron-positron pair were to interact
with the coupling strength κ = 1, the corresponding force
between both particles would be negligable in this gigantic
external charge cloud.

In order to avoid any sudden population burst due to a too
abrupt turn-on, we have increased the amplitude smoothly to
V0 = 3c2 with the function sin2[πt/(2Ton)] during the early
time interval 0 < t < Ton. We chose Ton = 0.01/c in most
calculations.

To give the reader a brief summary of the numerical
convergence of the algorithm and the scaling of the total user
cpu time with the size of the space-time grid, we show the
final number of created particle pairs for various numerical
parameters in Table I. Similarly as in our simulations below
we used V0 = 3c2, W = 0.5/c, D = 0.2 a.u., κ = 300 and
examined a total interaction time of T = 0.1/c on a spatial grid
of total length L = 0.4 a.u. We note that the interaction time
(and the unusal unit system) was chosen such that a particle
(or field) that evolves with the speed of light c could cover a
distance 0.1 a.u., which is the separation between the center
of our force creation zone and the right edge of our numerical
box.

For simplicity, we ran the simulation on just 16 processors
of a 2.6-GHz Dell PowerEdge R815. The user execution times
per processor are comparable to those runs performed on a
2.26-GHz Macintosh Pro. It should be clear that the total
cpu time used for the time evolution scales roughly linearly
in Nt while the underlying algorithms for the fast Fourier
transformations (FFTs) are the principle bottleneck of the

TABLE I. The total number of created electron-positron pairs
for simulations with various number of spatial (Nz) and temporal
(Nt ) gridpoints for the FFT-based Dirac and Maxwell algorithm. For
comparison, for κ = 0 we find N (t) = 1.1316. (Parameters are L =
0.4 a.u., T = 0.1/c, κ = 300, V0 = 3c2, W = 0.5/c, D = 0.2 a.u.,
Ecut = 7.3c2.)

Nz Nt cpu time (s) No. pairs N (t)

128 1000 102 1.2479
256 1000 278 1.2360
512 1000 768 1.2360
1024 1000 2956 1.2360
256 50 14 1.1977
256 100 27 1.2218

code and determine the scaling with Nz. The accuracy and
the rather short execution times for even large grids with small
Nt and Nz suggest that the code might become computationally
feasible in the future also in two (or possibly even three) spatial
dimensions.

In order to have confidence in the correct implementation
of the algorithm it is also important to check the scaling of
the numerical error associated with the finite size of the space-
time lattice. As a measure for the convergence of the code
we have considered here the deviation of the final number
of created electron-positron pairs N from the one obtained
from a simulation with the smallest temporal grid spacing �t

(associated with the largest number of temporal steps Nt ). In
Fig. 3 we show this error scaling using doubly logarithmic axis,
where we have decreased �t = 2.92 × 10−5 a.u (associated
with only Nt = 25 temporal steps) to �t = 9.13 × 10−7 a.u.
(associated with Nt = 800). The comparison with the reference
line that has the exact slope 2 shows that the global error of
our code scales quadratically with �t , fully consistent with

10-4

10-3

10-2

10-1

10-6 10-5

slope = 2

slope = 1

Δt

Error(Δt)

FIG. 3. The scaling of the global error Error(�t) ≡ |N (�t) −
Nexact| associated with the final number of created electron-positron
pairs N as a function of 21 temporal grid spacings �t = T/Nt used in
each simulation. As a reference value for Nexact = 1.236 130 006 we
used here the number of created pairs computed from the simulation
with the smallest time step (�t = T /1600). The two reference lines
are Error(�t) = 108.45 �t2 and Error(�t) = 102.4 �t (dashed).
(Parameters are L = 0.4 a.u., T = 0.1/c, κ = 300, V0 = 3c2,
W = 0.5/c, D = 0.2 a.u., Nz = 256, Ecut = 7.3c2.)
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FIG. 4. The total number of created electron-positron pairs N (t)
as a function of time t for three coupling strengths κ of the
interfermionic forces. (Parameters are L = 0.4 a.u., Nz = 512, Nt =
1000, V0 = 3c2, W = 0.5/c, D = 0.2 a.u., Ecut = 7.3c2.)

a local error O(�t3) as expected and derived in Appendix B
for this FFT based code. We used a spatial grid with Nz =
256 grid points. And the data are graphically indistinguishable
with the data for Nz = 512, as already suggested by Table I.
For example, for �t = T /1600 we obtain N = 1.236 130 006
for Nz = 256 while for Nz = 512 we got N = 1.236 130 001.

Let us now analyze the physical impact of the interfermionic
forces on the pair-creation process. In Fig. 4 we compare the
time dependence of the number of created pairs N (t) = �p

〈〈vac||b†p(t)bp(t)||vac〉〉 with (κ = 200 and 300) and without
(κ = 0) the interfermionic forces. We see that at very early
times internal forces play no role and all three curves match.
This is consistent with the finding that the electrons and
positrons are being created “on top of each other” [43] such
that the initial charge density remains zero. If the initial birth
velocities of both particles were equally distributed, the early
time current density vanishes as well. Only at later times when
the particles are accelerated in the supercritical field do the
interfermionic potentials grow.

In the next time regime (0.02/c < t < 0.07/c) we see that
the interfermionic forces suppress the yield; the larger the
coupling κ , the smaller actually is the number of created pairs.
This could be consistent with the general expectation that it is
more difficult to create (and separate) particles that mutually
attract. At even longer times (t > 0.07/c for κ = 300) the
mutual attraction leads to an increase of the pair creation
yield. We also see that the onset time of this pair-creation
enhancement decreases with increasing coupling κ .

Below we will now illuminate this process from a spatial
perspective by computing the charge density [Q(z,t)], the
internal scalar [V (z,t)] and vector potential [A(z,t)] as well as
the spatial probability distribution of the electrons [ρ(e−; z,t)]
and positrons [ρ(e+; z,t)]. The total charge and current
densities are usually calculated from the expectation value
of the corresponding operators as

Q(z,t) ≡ 〈vac|q[�(z,t)†�(z,t) − �(z,t)�(z,t)†]/2|vac〉,
(4.3a)

-10

0

10

0.04 0.08 0.12 0.16

κ=0
κ=300Q(z)

z (a.u.)

t1 t2 t3

FIG. 5. Snapshots of the charge density Q(z,t) (top) at three
different times (tn = n0.025/c with n = 1,2,3). For comparison, the
dashed lines are the density in the absence of the interfermionic force
(κ = 0). (Parameters as in Fig. 4, except Nt = 900.)

J (z,t) ≡ 〈vac|qc[�(z,t)†σ1�(z,t)

−�(z,t)σ1�(z,t)†]/2|vac〉. (4.3b)

The total charge and current densities defined in Eq. (4.3a)
and (4.3b) contain also the propagation of the vacuum’s
polarization density associated with the external potential
Vext(z) as we illustrate in Appendix C. As we want to focus
in this study solely on the effect of the electron-positron
force on the pair-creation process, we have used only the
particle-pair induced charge and current densities as source
terms in the Maxwell equation. This density based on the
difference between the positronic and electronic mass densities
Q(z,t) = ρ(e+; z,t) − ρ(e−; z,t), as defined below.

In Fig. 5 we show the time evolution of the charge
density Q(z,t). For reasons of symmetry, we focus only on
the right pair-creation zone around z = 0.1 a.u. At each
moment the spatial integral over Q(z,t) vanishes, reflecting
the expected conservation of the total charge ∫ dz Q(z,t) = 0.
As mentioned above, at the spatial location z = 0.1 a.u. (where
the force given by the gradient of the external potential is
maximum) most of the particles are created. In the absence of
any interfermionic forces, the positrons are ejected mainly to
the right (and correspondingly to the left from z = −0.1 a.u),
while the corresponding electrons are accelerated in the
opposite direction. The simulation results in the absence of
any interferminic forces (κ = 0) are indicated by the dashed
lines. For example, for 0.1 a.u. < z we see that the internal
forces are responsible for a clear reduction of the total charge
density. This could either be associated with a reduction of
the number of created positrons or the occurrence of electrons
that neutralize the charge locally. The first mechanism would
certainly contradict the observed increase of the created
number of pairs at a later time. The corresponding current
density can be obtained from the continuity equation and is
consistent with the findings of the charge density and does not
necessarily provide us with additional information about the
dynamics.

In Fig. 6 we show how the birth of charged particles is
directly associated with the birth of the corresponding force
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FIG. 6. Snapshots of the created internal scalar V (z,t) (top) and
vector A(z,t) potential (bottom) at the same times as in Fig. 5.
(Parameters as in Fig. 5.)

field between them. While the velocity of massive particles is
below the speed limit c, their created scalar vector potentials
evolve with the speed of light c. We might add here that once
the internal potentials reach the boundaries of our numerical
box, the simulation data become more difficult to interpret due
to the assumed periodic boundary.

The charge density Q(z) does not allow us to distinguish
between the density of the individual electrons and positrons.
For example, if an electron and a positron have identical spatial
probability densities, then the total charge density is zero, as
if there were no particles at all. It is also therefore not possible
to compute the total number of created electron-positron pairs
directly from Q(z). In order to be able to distinguish both
cases, we have to compute also a spatial probability density
for each type of particle. Consistent with prior works [41],
we propose here to define spatial probability densities that
are based on the assumption that we can separate the total
electron-positron field operator into a positronic and electronic
portion. These two densities can be obtained from the
expectation value of the corresponding electronic [�(e−; t)]
and positronic [�(e+; t)] portion of the total field operator
�(t) = �(e−; t) + Cop �(e+; t). We obtain ψ(e−; t) ≡ �u �

and �(e+; t) ≡ �uCop � Cop, where Cop is the quantum field
theoretical generalization of the charge-conjugation operator
C. This definition of �(e−; t) and �(e+; t) allow us to compute

0
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κ=300ρ(e

+
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FIG. 7. Snapshots of the spatial probability density of the created
electrons ρ(e−; z,t) (top) and positrons ρ(e+; z,t) (bottom) with and
without (dashed lines) the interfermionic forces. (Parameters as in
Fig. 4.)

the total number of particles,

ρ(e−; z,t) ≡ 〈vac|�(e−; z,t)†�(e−; z,t)|vac〉, (4.4a)

ρ(e+; z,t) ≡ 〈vac|�(e+; z,t)†�(e+; z,t)|vac〉. (4.4b)

Here it is important to note that the total charge operator
q[�†� − ��†]/2 [of Eq. (4.3a)] and the “particle pair-
induced” operator q[�(e−)†�(e−) − �(e+)†�(e+)] are not
necessarily identical if the vacuum’s polarization charge
density due to the fact that the external potential is large. We
note that for consistency the area under each curve ρ(e−; z,t)
is identical to the number of particles. We also refer to the
literature [44,45] for a more careful description of how these
densities have to be interpreted in the region where the external
field is supercritical. We should note that an unambiguous
identification of electrons and positrons inside the pair-creation
zone is still a major unresolved problem in theoretical physics.

Finally, in Fig. 7 we show the spatial probability distribution
of each particle species, denoted by ρ(e±; z,t). The pair-
creation suppression observed for early times in Fig. 4 finds
its direct confirmation in the spatial density. While for early
times the electronic densities ρ(e−; z,t1) with and without the
coupling are similar at later times, the density for κ = 300 is
less than the one without any internal interaction. The electrons
ejected to the left side of the right creation zone at z = 0.1 a.u.
attract the ejected positrons escaping to the right. As a result we
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find less probability close to the front edge of the distribution.
While some positrons cannot flow out of the creation zone so
efficiently, they reduce the creation of additional positrons due
to Pauli blocking [46–48]. The density close the creation zone
therefore also decreases.

The second and third temporal snapshot show that the
unique assignment of each spatial region with a specific charge
is no longer possible due to the internal forces. The interaction
κ = 300 leads to the occurrence of electrons on the right side
(0.1 a.u < z) of the pair-creation zone. In fact, the occurrence
of electrons in the region z > 0.1 a.u. is fully consistent with
the reduction in the charge observed above in Fig. 5. The
density at t3 shows the modification of the pair-creation yield
due to the interaction. A more detailed analysis of the spatial
implications of the internal forces is beyond the framework of
the present work and will be examined in future studies.

V. SUMMARY AND OUTLOOK

The purpose of this work was twofold. First, we out-
lined a theoretical and also computational procedure that
permits us to include the effects of the electron-positron,
electron-electron, and positron-positron interactions into the
pair-creation process. This was done on an approximate
level where the second-quantized character of the force
intermediating bosonic field was neglected and the photons
were approximated by a classical field whose time evolution
is given by the Maxwell equations. Second, we used this
framework under the simplifying situation of only one spatial
dimension to show that the attractive and repulsive character
of the Coulombic interaction can be correctly described.
Furthermore we obtained some preliminary data on the effect
of the Maxwell equations on the pair-creation process. The
availability of this approach permits us now to tackle several
new challenges for future studies, five of which we briefly
outline below.

We have shown that the absence of the second quantization
leads unavoidably to an unphysical self-repulsion of a single
free particle. By comparing the effect on the enhancement
of wave packet spreading with those of a classical ensemble
of fully interacting charged quasiparticles [49,50] in the
relativistic regime, we will obtain a better estimate of the
magnitude (and therefore dynamical relevance) of this effect.
It is presently not clear if this effect is intrinsically quantum
mechanical or can be fully explained in terms of classical
mechanics. A better understanding of the self-repulsion mech-
anism would also help us to distinguish it from the physically
relevant (multiparticle) repulsion between two equally charged
particles.

As the proposed computational algorithm is fully paral-
lelizable we expect that the generalization of this approach to
two (and possibility even three) spatial dimensions and four
spinor-component Dirac states could be feasible. In this case
it might be interesting to learn about the relevance of the spin
and its coupling to the fields for the pair creation, which could
not be studied in a reduced dimensional system.

As the system and all interactions are fully relativistic, all
retardation effects and the back reaction of the particles onto
the fields are included. It might be interesting to compare two-
particle interactions on a level where they are approximated by

a simple instantaneous Coulomb force without the feedback
onto the fields. Furthermore, using a simplified Yukawa
model system, some recent work [51] has suggested how this
interaction is modified if the boson field is second quantized
and the true absorption and emission of photons are included.

For longer interaction time t > D/c it is well known [52,53]
that the pair creation due to a finite well will eventually
come to a complete halt, associated with the creation of
the fully occupied trapped states. Due to the Pauli exclusion
principle, the captured electrons block a further pair creation.
We have seen in Fig. 7 that due to the interfermionic forces
also positrons can occur inside the well. It is therefore very
interesting to monitor their impact on Pauli blocking and the
formation of the trapping states.

In order to focus exclusively on the effect of the forces
between the charges we have separated in this work the force
fields into external supercritical and internal ones. Similarly
to a recent study by the group in Heidelberg [12,13], one can
also assume that there is no externally given force field and
include all forces into the Maxwell dynamics. In this case we
have total-energy conservation and one can observe how the
initial field energy is converted to create particles.
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APPENDIX A: THE HAMILTONIAN FOR
ONE-DIMENSIONAL QED

In one spatial dimension the covariant form of the QED
Lagrangian density [54–57] is given by

L(z,t) = �bσ3[i�∂t − cσ1p − σ3mc2]�

+ (1/8π )(∂zV + ∂ctA)2 − q�b(σ3V − iσ2A)�,

(A1)

where σ i denotes again the Pauli matrices, �b ≡ �†σ3 is the
adjoint electron-positron field, and V (z,t) and A(z,t) are the
total scalar and vector potentials. The coupling q is the charge,
which we put equal to −1 a.u. in atomic units. Except the
prefactor (1/8π ) in front of the field energy, the Lagrangian
can be derived from the three-dimensional form if we identify
the usual γ matrices as γ 0 = σ3 and γ 1 = iσ2. This arbitrary
choice for the γ matrices has been made such that the resulting
Dirac equation matches the one frequently studied in the
past [41]. The electric field is given from the potentials as
E(z,t) = −(∂zV + ∂ctA). It is equal to the (0,1) component
of the antisymmetric electric-field tensor, which has only two
nonvanishing components.

The Dirac and Maxwell equations follow directly from the
corresponding Euler-Lagrange equations, which minimize the
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corresponding action integral,

∂ct [∂L/∂(∂ctφ)] + ∂z[∂L/∂(∂zφ)] − ∂L/∂φ = 0. (A2)

Here the place holder symbol φ represents either �b, A, or V .
For example, using φ = �b the first two terms ∂L/∂(∂ct�b)
and ∂L/∂(∂z�b) vanish, as L does not depend on any spatial
or temporal derivative of the adjoint field. Using σ3σ2 = −iσ1

we obtain

∂L/∂φ = σ3[i�∂t − cσ1(p − qA/c) − σ3mc2 − qV ]� = 0,

(A3)

which is the time-dependent Dirac equation [i�∂t − h]� =
0 where h ≡ cσ1(p − qA/c) + σ3mc2 + qV . Furthermore,
using φ = V the term ∂L/∂(∂ctV ) vanishes and we obtain

∂z[∂L/∂(∂zV )] = ∂z(1/4π )(∂zV + ∂ctA) = −(1/4π )∂zE,

(A4a)

∂L/∂V = −q�bσ3� = −q�†�, (A4b)

which leads immediately to Gauss’s law ∂zE = 4πq�† �.
The second Maxwell equation follows if we use φ = A. Using
that ∂L/∂(∂zA) = 0 we obtain

∂ct [∂L/∂(∂ctA)] = ∂ct (1/4π )(∂zV + ∂ctA) = −(1/4π )∂ctE,

(A5a)

∂L/∂A = q�biσ2� = q�†σ1� (A5b)

leading to the equation ∂tE = −4πcq�† σ1�.
In order to examine the energy balance between the elec-

trons, positrons, and the electric field, we have to reconstruct
QED in its Hamiltonian formulation. To do so we have to find
first the corresponding canonical momenta to the three fields.
We obtain

�� = ∂L/(∂ct�) = �bci�σ3, (A6a)

�A = ∂L/(∂ctA) = (1/4π )(∂zV + ∂ctA), (A6b)

�V = ∂L/(−∂ctV ) = −(1/4π )(∂zV + ∂ctA). (A6c)

If we apply the Legendre transformation to the Lagrangian
density we obtain

H (z) = ��∂ct� + �A∂ctA + �V (−)∂zV − L

= �bσ3[cσ1(p − qA/c) + σ3mc2 + qV ]�

+ (1/8π )(∂zV + ∂ctA)2. (A7)

While the original fields commute with each other, the
quantum field operators do not; we therefore replace the
Hamiltonian here by a form for which the fermionic degrees
of freedom are antisymmetrized for any possible exchange of
the operators,

H (z) = [�bσ3,h�]/2 + (1/8π )(∂zV + ∂ctA)2. (A8)

Similarly, we also introduce the total charge and current den-
sity operators as Q ≡ q[�†,�]/2 and J ≡ cq[�†,σ1�]/2.
Using the Hamiltonian density from Eq. (A8) we can construct
the total Hamiltonian H��dzH(z).

As a side issue, we should mention [58] that by applying
the Heisenberg equations of motion to the Hamiltonian

i�∂φ/∂t = [φ,H ], we recover the time-dependent equations
of motion

i�∂E/∂t = [E,H ] ⇒ ∂E/∂t = −4πJ, (A9a)

i�∂A/∂t = [A,H ] ⇒ ∂A/∂t = −cE − c∂V/∂z, (A9b)

i�∂�/∂t = [�,H ] ⇒ i�∂�/∂t = h�. (A9c)

In the first equation we have used that the pairs of canonical
variables fulfill the anticommutator [�i,�

†
j ]+ = δi,j δ(z − z′)

and commutator relationship [E,A] = 4πiδ(z−z′). We also
used that [A,BC] = [A,B]+C − B[A,C]+. As H is only
the generator of the time evolution, it should be clear that
Gauss’s law cannot be derived from a Hamiltonian formalism
alone. However, one can show that if the initial fields satisfy
∂zE(t = 0) = 4πq�†(t = 0)�(t = 0), then this equation will
be automatically fulfilled at all later times as well [58]. In
this sense the Hamiltonian formalism is equivalent to the
Lagrangian formulation.

APPENDIX B: NUMERICAL ALGORITHM

The solution to the time-dependent Dirac equation with the
Hamiltonian h = h0 + hint,

h0 ≡ cσ1p + σ3c
2, (B1a)

hint ≡ −σ1κqA(z,t) − σ1qAext(z,t) + κqV (z,t) + qVext(z),

(B1b)

is standard by now and we use the well-documented FFT based
split-operator algorithm for this [23–26]. Here the action of
the force-free part h0 is performed in Fourier space, while the
action of the second portion hint can be efficiently done in
coordinate space.

As solution techniques to the Maxwell equation are not
so well documented [59], we summarize here the essential
steps of our algorithm. It is based on the fact that for a given
inhomogeneity, the wave equation can be solved exactly, so it
just needs to be sampled on our given space-time grid. If we
abbreviate our notation below for time t as F1(z) ≡ A(z,t) and
F2(z) ≡ ∂tA(z,t), the Maxwell equation(

∂2
ct − ∂2

z

)
A(z,t) = 4πc−1κJ (z,t) (B2)

has an exact solution given by the sum of three terms. The first
two terms T1 and T2 are solutions to the homogeneous wave
equation, while the third term T3 depends on the source term:

A(z,t + �t) = T1 + T2 + T3, (B3)

T1 ≡ [F1(z + c�t) + F1(z − c�t)]/2, (B3a)

T2 ≡ 1/(2c)
∫ z+c�tz

z−c�tz

dz′F2(z′), (B3b)

T3 ≡ (c/2)
∫ t+�t

t

dt ′

×
∫ z+c(t+�t−t ′)

z−c(t+�t−t ′)
dz′4πc−1κJ (z′,t ′). (B3c)

We need to implement this analytical solution for one
time step �t on the same space-time grid as used for the
wave-function calculations. In order to obtain the correct
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second time derivative of F1, we need to update F1(z + c�t)
from F1(z) accurately to at least O(�t2). Below we use
the usual (three-point) quadratic interpolation approximation
f (z) ≈ �3

i=1f (zi) �3
j=1(z − zj )/(zi − zj ), where the factor

(z − zi)/(zi − zi) associated with the special index j = i

is omitted in the product. For the first term in Eq. (B3)
[F1(z + c�t) + F1(z − c�t)]/2, we obtain

T1 = (c�t)2/(2�z2)F1(z − �z)

+ [1 − (c�t)2/�z2]F1(z) + (c�t)2/(2�z2)F1(z + �z)

+O(�t3). (B4)

For the second term, use the same interpolation for the
integrand F2(z′), based on our grid points z−�z, z, and z+�z,

F2(z′) = F2(z − �z)[z′ − z][z′ − (z + �z)]/(2�z2)

+F2(z)[z′ − (z − �z)][z′ − (z + �z)]/(−�z2)

+F2(z + �z)[z′ − (z − �z)][z′ − z]/(2�z2)

+O(�z3). (B5)

We obtain

T2 = 1/(2c)
∫ z+c�t

z−c�t

dz′F2(z′)

= c2�t3/(6�z2)F2(z − �z)

+ [�t − c2�t3/(3�z2)]F2(z)

+ c2�t3/(6�z2)F2(z + �z) + O(�z3). (B6)

Finally, the first integrand in the third term T3 and abbreviated
as I3(t,t ′) = ∫z+c(t+�t−t ′)

z−c(t+�t−t ′) dz′ 4πc−1κJ (z′,t ′) can be interpo-
lated using the grid points at z−�z, z, and z+�z,

I3(t ′) =
∫ z+c(t+�t−t ′)

z−c(t+�t−t ′)
dz′4πc−1κJ (z′,t ′)

= 4πc−1κ{[c(t + �t) − ct ′]3/(3�z2)J (z − �z,t ′)

+ 2[c(t + �t) − ct ′]J (z,t ′)

− 2[c(t + �t) − ct ′]3/(3�z2)J (z,t ′)

+ [c(t + �t) − ct ′]3/(3�z2)J (z + �z,t ′)}. (B7)

In order to force the remaining temporal integral (c/2)
∫t+�t

t dt ′I3(t ′) onto our temporal grid, we approximate the
current density in the integrand at each spatial grid point by a
two-point formula, J (t ′) = J (t + �t)(t ′ − t)/�t + J (t)(t ′ −
t − �t)/(−�t) + O(�t2). Finally we obtain the six terms

T3 = (c/2)
∫ t+�t

t

dt ′I3(t ′)

= 2αJ (z − �z,t) + (2β − 4α)J (z,t) + 2αJ (z + �z,t)

+ (α/2)J (z − �z,t + �t) + (β − α)J (z,t + �t)

+ (α/2)J (z + �z,t + �t) + O(�t3) + O(�z3),

(B8)

where α ≡ κπc3�t4/(15�z2) and β ≡ 2κπc�t2/3.
In total, we have the sum of the results from Eqs. (B4), (B6),

and (B8), giving us the final algorithm to evolve the potential
a time step forward from t to t+�t :

A(z,t + �t) ≈ (c�t)2/(2�z2)F1(z − �z) + [1 − (c�t)2/�z2]F1(z) + (c�t)2/(2�z2)F1(z + �z)

+ c2�t3/(6�z2)F2(z − �z) + [�t − c2�t3/(3�z2)]F2(z) + c2�t3/(6�z2)F2(z + �z)

+ 2αJ (z − �z,t) + (2β − 4α)J (z,t) + 2αJ (z + �z,t)

+ (α/2)J (z − �z,t + �t) + (β − α)J (z,t + �t) + (α/2)J (z + �z,t + �t) + O(�t3) + O(�z3). (B9)

We also need to update F2(z)[ = ∂tA(z,t)] to F2(z,t +
�t) where we can use the already calculated values for
∂tA(z,t), A(z,t), A(z,t + �t). We construct the Taylor ex-
pansions around t for A(z,t+�t) and ∂tA(z,t + �t) up to
O(�t3). If we multiply the expansion for ∂tA(z,t + �t) with
−�t/2 and add it to the one for A(z,t+�t), the common term
containing the second derivative ∂2

t A(z,t + �t) cancels out.
If we solve the resulting single equation for ∂tA(z,t + �t) we
obtain

∂tA(z,t + �t) = −∂tA(z,t) + A(z,t + �t)2/�t

−A(z,t)2/�t + ∂3
t A(z,t)�t2/6 + O(�t3).

We then truncate the third derivative term and obtain

F2(z,t + �t) = 2[A(z,t + �t) − A(z,t)]/�t − F2(z).

(B10)

This equation allows us to update F2 to F2(z,t + �t) after we
have first updated to A(z,t+�t) using Eq. (B9). As the terms

containing F2 in Eq. (B9) are each multiplied with a factor at
least linear in �t , the truncation ∂3

t A(z,t) = 0 has no impact
on the overall accuracy of the code for A. The corresponding
solution technique to the equation for the potential V , (c−2∂2

t −
∂2
z )V = 4πκQ(z,t), is, of course, identical except that we have

to replace J by cQ. We also note that, using the Lorenz gauge,
∂zA = −c−1∂tV , the two potentials can be converted directly
into each other.

As a final remark, we should mention that a computationally
more elegant, but also more cpu-time consuming algorithm
to solve the Maxwell-wave equations can be obtained by
Fourier transforming the field and the source term S(z,t) =
4πc−1κJ (z,t) or 4πcρ(z,t) into momentum space,

(
∂2
ct + k2

)
F (k,t) = S(k,t). (B11)

We can use quadratic interpolation for the source term
S(k,t) ≡ S(t) at the three temporal grid points s− ≡ S(tn−1),
s0 ≡ S(tn) and s+ ≡ S(tn+1) and obtain for the inside interval
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tn � t � tn+1,

S(t) = s−(tn − t)(tn+1 − t)/(2�t2)

− s0(tn−1 − t)(tn+1 − t)/�t2

+ s+(tn − t)(tn−1 − t)/(2�t2) + O(�t3)

= g0 + g1(t − tn) + g2(t − tn)2 + O(�t3) (B12a)

with the coefficients [gi reflecting the corresponding finite-
difference formulas gi ≡ diS(tn)/dt in]

g0 ≡ s0, g1 ≡ (s+ − s−)/(2�t),
(B12b)

g2 ≡ (s+ − 2s0 + s−)/(2�t2).

It turns out that for a quadratic source term S(t) = g0 + g1(t −
tn) + g2(t − tn)2 the wave equation can be solved exactly and
we obtain for time tn+1 the solution (for k � 0)

F (tn+1) = F (tn) cos[ck�t] + dF (tn)/dtn sin[ck�t]/(ck)

− 2g2/(c2k4) + (g0 + g1�t + g2�t2)/k2

+ 2g2 cos[ck�t]/(c2k4)

− g0 cos[ck�t]/k2 − g1 sin[ck�t]/(ck3) + O(�t3)

(B13a)

and for the special case of k = 0, we obtain

F (tn+1) = F (tn) + dF (tn)/dtn�t

+ (g0/2 + g1�t/6 + g2�t2/12)c2�t2 + O(�t3).

(B13b)

APPENDIX C: ENERGETIC CONSIDERATIONS FOR
FINITE HILBERT SPACES

When the spatial axis is sampled by a finite number Nz

of equidistant points separated by �z, the corresponding
momentum lattice covers values from (−Nz/2+1) �k to the
Nyquist momentum kmax ≡ Nz�k/2 with �k = 2π/(Nz�z).
If the Dirac Hamiltonian describes a free particle, this would
correspond to discrete relativistic energies in the range −[c4 +
k2

maxc
2]1/2 to −c2 and c2 to [c4 + k2

maxc
2]1/2. The question that

we will address in this appendix is whether a quantum field
theoretical modeling of a continuous and spatially infinitely
extended system permits us to take all available discrete states
in this energy range into account. The data discussed below
suggest that states with energies close to the largest value on
our energy grid are potentially unphysical, lead to possible
violations of causality, and therefore might be omitted in order
to obtain physically meaningful results.

The necessity of a required truncation (within the already
finite Hilbert space) of discrete energy states to those with
lower momentum is already well established for the simplest
case of a free nonrelativistic particle with a Hamiltonian
h = p2/2. If we were to approximate the second spatial
derivative by a three-point finite-difference formula, the corre-
sponding tridiagonal Hamiltonian matrix can be diagonalized
analytically and it turns out [60,61] that only the lower-lying
energies have the same density ρ(E) as the corresponding
continuous system [which is ρ(E) ∼ E−1/2]. In fact, for larger
energies, the numerical density increases with energy again,
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FIG. 8. The number of created particle pairs at time t = 0.1/c as
a function of the maximum energy Ecut of the discrete Hilbert space
states. The second graph is the area under the polarization charge
density between z = −L/2 and −L/4. (Parameters are t = 0.05/c,
V0 = 3c2, W = 0.5/c, d = 0.2 a.u., L = 0.4 a.u., Nz = 256, Nt =
1000, κ = 0, q = −1.)

which is unphysical and requires the omission of these states
for dynamical calculations.

Let us obtain a rough energy estimate for our relativistic
parameters. Using the simplest case of a single supercritical
barrier of height V0 (>2c2), it is known [61] that the energy
range of the created particles in the (long-time) steady state
is given by c2 < E < V0 − c2. In our specific simulations
above (V0 = 3c2), this corresponds to a maximum kinetic
energy of c2. If we estimate the dressing of the potential
for the true energy eigenstates and include the possibility of
higher energetic particles (created at times when the barrier
was turned on) we might expect that states above energies
Ecut = 6c2 or 10c2 play dynamically no role and must be
discarded in the computation of the final total polarization
charge density ρ(z,t).

In Fig. 8 we show the total number of created particle pairs
N as a function of the energy cutoff Ecut. It is clear that there
is no need to take higher energetic states than Ecut = 5c2 into
account. This makes sense as N is only nonzero if there is a
transition from a negative to positive energy state and states
with higher energy are not coupled as strongly as those close
to the mass gap between ±c2.

For comparison, the second graph is the area under the total
charge density between z = −L/2 and −L/4. In contrast to
the number of created particles, which occur only if V0 > 2c2,
this density is linearly proportional to V0 (even for κ = 0 and
V0  2c2) and is seriously affected by higher energetic states
close to the unphysical maximum grid energy (here about
14.7c2 for L = 0.4 a.u. and Nz = 256).

In Fig. 9 we display the polarization charge density for
various cutoff energies, which can be computed for κ = 0
from the time-evolved states as

ρ(z,t) = q�p[Wp(d; z,t)†Wp(d; z,t)

−Wp(u; z,t)†Wp(u; z,t)]/2, (C1a)

J (z,t) = qc�p[Wp(d; z,t)†σ1Wp(d; z,t)

−Wp(u; z,t)†σ1Wp(u; z,t)]/2, (C1b)
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FIG. 9. The final total charge density Q(z,t) at time t = 0.1/c

computed for various discrete Hilbert spaces, characterized by several
cutoff energies Ecut. Ecut = 2.3c2, 6.5c2 < Ecut < 10.5c2 and Ecut =
14.6c2 (Parameters are t = 0.1/c, V0 = 3c2, w = 0.5/c, d = 0.2 a.u.,
L = 0.4 a.u., Nz = 256, Nt = 1000, κ = 0, q = −1.)

where each state was evolved under the Dirac Hamiltonian
cσ1p + σ3c

2 + qVext(z). We used q = −1 in our simulations
and studied an external potential [given in Eq. (4.2) with
Vext(z) > 0] that is therefore attractive for created electrons
and should repel positrons to ±�. The resulting polarization
charge computed according to Eqs. (C1) with q = −1 is
negative for z > zc. As expected, the density above a cutoff of
about Ecut = 5c2 seems to be converged. In the entire range
from Ecut = 5c2 to Ecut = 10c2 the densities are basically
graphically indistinguishable, nicely suggesting that the results
are converged independently of the number of included high-
energy states. As a side note, we should mention that this
behavior is different from the use of regulators in perturbative

quantum field calculations, where the corresponding diverging
integrals do depend on the particular choice of the momentum
cutoff.

However, we have also included in the figure the charge
density for a very high cutoff Ecut = 14.6c2. In fact, this energy
is close to the largest possible energy of our chosen grid Emax =
14.7c2. The presence of the three spatial maxima between
−0.04 a.u. < z < 0.04 a.u. clearly shows some unphysical
noncausal behavior. The right force field (for z > 0) is centered
at zc = 0.1 a.u. with an effective extension of W = 0.5/c. The
front edge (of the left-traveling) light cone at time t = 0.05/c

would be at location z = zc − W ± ct , which is z � 0.05 a.u.
In other words, even if the particles created at zc were to travel
with a velocity close to −c, they could not have reached the
region −0.04 a.u. < z < 0.04 a.u. where the charge density
apparently has been modified from its initial value of zero.

In finishing, we should also point out that on a grid
with an even number of momentum states that contains
k = 0, the presence of the Nyquist momentum breaks the
required symmetry of positive and negative momenta in our
system. In other words, if all available Hilbert states were
initially populated (as required in any quantum field theoretical
calculation), the total current density of the vacuum would
not vanish as the contribution due to the positive Nyquist
momentum kmax cannot be cancelled out by a corresponding
negative momentum as we showed at the beginning of this
appendix. In the case of the total charge density, however,
this asymmetry is not so crucial, as states of positive and
negative energies contribute to the densities with opposite sign,
while [as we have argued below Eq. (2.2)] equal momentum
states with positive and negative energies move in opposite
directions, such that the required cancellation of the initial
current densities has to occur within each energy manifold.
The latter would require an equal number of states of positive
and negative momentum for each energy subspace.
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