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Nonlinear Schrödinger wave equation with linear quantum behavior

Chris D. Richardson, Peter Schlagheck, John Martin, Nicolas Vandewalle, and Thierry Bastin
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We show that a nonlinear Schrödinger wave equation can reproduce all the features of linear quantum
mechanics. This nonlinear wave equation is obtained by exploring, in a uniform language, the transition from fully
classical theory governed by a nonlinear classical wave equation to quantum theory. The classical wave equation
includes a nonlinear classicality enforcing potential which when eliminated transforms the wave equation into
the linear Schrödinger equation. We show that it is not necessary to completely cancel this nonlinearity to
recover the linear behavior of quantum mechanics. Scaling the classicality enforcing potential is sufficient to
have quantumlike features appear and is equivalent to scaling Planck’s constant.
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I. INTRODUCTION

The boundary between where quantum mechanics ends and
classical mechanics begins is being pushed by experiments
operating far from the microscopic scale in which quantum
behavior is normally associated. For example, Arndt et al. [1]
observed interference between mesoscopic fullerenes and Lee
et al.’s [2] experiment entangled the vibrational modes of two
macroscopic diamonds. It is therefore important to be able to
describe the manner in which quantum theory transitions into
classical theory and to be able to define what fundamental
elements are responsible for the separation between the two
theories. There is no doubt that all the behavior of classical
mechanics is contained entirely within quantum theory but it is
also obvious that the two regimes must, for practical reasons,
be treated differently.

One of the main differences between the two theories is
the linearity of the governing equations. The linearity inherent
in quantum mechanics is evident from the Schrödinger wave
equation and has been experimentally verified [3] to extreme
accuracy. In contrast, it is well known that classical mechanics
is intrinsically nonlinear. When expressed in the language of
quantum mechanics, classical mechanics is governed by a
nonlinear wave equation [4] similar in form to the Schrödinger
equation but which allows no quantum or wavelike features.
The switch from classical theory to quantum theory and to the
Schrödinger equation can then be brought about by eliminating
the nonlinearity from the classical wave equation [5], for
quantum mechanics is after all a linear theory.

Here we show that there is a subtle relationship between
the linear character of quantum mechanics and the linearity
of the governing wave equation. Linear behavior which we
associate with quantum mechanics, like superposition or
interference, resulting from the linear Schrödinger equation
can also come from a wave equation which is nonlinear,
a fact which may impact branches of physics reliant on
nonlinear governing equations such as hydrodynamics and
condensed matter physics. In this paper we construct this wave
equation and name it the transition equation as it can be tuned
to describe both classical and quantum behavior (Sec. II).
We demonstrate the quantumlike behavior of this transition
equation by revealing its equivalence to the linear Schrödinger
equation with a rescaled Planck’s constant (Sec. III). We
then reinforce this equivalence by numerically exploring

the standard single-particle interference problem (Sec. IV).
Finally, we draw conclusions in Sec. V.

II. THE TRANSITION EQUATION

Despite classical nonrelativistic mechanics being com-
pletely contained in nonrelativistic quantum mechanics, the
two regimes are discussed in quite different languages. To
develop a tool that smoothly transitions between the two
regimes we must be able to describe them both using the same
language. Wave functions, wave equations, and probability
densities are the language of quantum mechanics which is
governed by the Schrödinger wave equation,

i�
∂ψ(r,t)

∂t
= − �

2

2m
∇2ψ(r,t) + V (r,t)ψ(r,t), (1)

where ψ(r,t) is a wave function whose modulus squared
gives the probability density of finding a particle at position r
and time t , m is the mass of the particle, V is the potential
experienced by the particle, and � is the reduced Planck’s
constant. Classical mechanics on the other hand uses the
language of trajectories and is governed by Newton’s laws. We
can formulate classical mechanics so that it can be expressed
entirely by the Hamilton-Jacobi [6] equation,

∂Sc(r,t)
∂t

= − 1

2m
[∇Sc(r,t)]2 − V (r,t), (2)

where Sc is the classical action which defines a canonical trans-
formation between initial and final phase-space coordinates.
For a given initial condition the behavior of a classical particle
will be described by a trajectory derived wholly [6] from the
action via mṙ = ∇Sc.

The description of quantum mechanics using classical
language or the hydrodynamic form of quantum mechanics
has been well known since Madelung [7] in 1926 and was
revived by Bohm [8] in 1952. It begins by expressing the
complex-valued wave function in its polar form,

ψ(r,t) = A(r,t)eiS(r,t)/�, (3)

where A is the real-valued amplitude and S/� is the real-valued
phase. Plugging this into the Schrödinger equation, Eq. (1), we
obtain two equations. The first is the continuity equation which
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expresses the conservation of probability,

∂A(r,t)
∂t

= − 1

m
[∇A(r,t)] · [∇S(r,t)] − 1

2m
A(r,t)∇2S(r,t),

(4)

which is equivalent to ∂ρ

∂t
+ ∇ · j = 0, where ρ = |ψ |2 = A2

and j = �

2im
(ψ∗∇ψ − ψ∇ψ∗) = 1

m
A2∇S is the probability

density current. The second is a Hamilton-Jacobi-like equa-
tion:

∂S(r,t)
∂t

= − 1

2m
[∇S(r,t)]2 − [V (r,t) + U (r,t)] . (5)

This equation differs in form from the Hamilton-Jacobi
equation, Eq. (2), by an extra potential,

U (r,t) = − �
2

2m

∇2A(r,t)
A(r,t)

= − �
2

2m

∇2 |ψ(r,t)|
|ψ(r,t)| , (6)

which Bohm called the quantum-mechanical potential.
Adding this potential to the classical Hamilton-Jacobi, Eq. (2),
allows us to derive an action which in turn gives a trajectory.
However, unlike a classical trajectory this one can have
quantum behavior and non-Newtonian motion.

The description of classical mechanics using quantum
language is less well known but has been derived recently
by Oriols and Mompart [4]. If a particle’s initial position is
only known through a probability distribution, A2

c(r,0)d3r ,
the classical trajectories resulting from each of these initial
positions r will evolve according to the Hamilton-Jacobi
equation and give at any time t > 0 the probability distribution
A2

c(r,t)d3r . A classical wave function similar to Eq. (3),
ψc(r,t) = Ac(r,t) exp [iSc(r,t)/�], can be constructed where
� is used to provide a dimensionless argument and Sc is again
the classical action from the Hamilton-Jacobi equation, Eq. (2).
Using this form of the wave function Oriols and Mompart [4]
derive a wave equation, similar in form to the Schrödinger
equation, that describes the evolution of a classical particle.
We call it the classical Schrödinger-like equation and it is
given by

i�
∂ψc(r,t)

∂t
= − �

2

2m
∇2ψc(r,t) + V (r,t)ψc(r,t)

+ �
2

2m

∇2 |ψc(r,t)|
|ψc(r,t)| ψc(r,t), (7)

where the probability density is given from the modulus
squared of the wave function, ρc = A2

c = |ψc|2, in analogy
to quantum mechanics. Equation (7) while having completely
classical behavior is similar in form to the Schrödinger
equation except for an extra nonlinear term which has the
effect of canceling out all quantum and wavelike effects. It is
of course Bohm’s quantum-mechanical potential, Eq. (6), with
the opposite sign, −U (r,t).

While exploring the origin of the Schrödinger equa-
tion Schleich et al. [5] also derive the nonlinear classical
Schrödinger-like equation, Eq. (7), and label the nonlinear
term the classicality-enforcing potential. They transfer from
Eq. (7) to the linear Schrödinger equation, Eq. (1), by first
making the ansatz ψc ≡ ψ . They then define a quantum
action which includes the classicality-enforcing potential.
This leads to the cancellation of the classicality-enforcing

potential in Eq. (7) and recovery of the Schrödinger equation
and quantum mechanics. Schleich et al. [5] claim that to
recover quantum mechanics Eq. (7) must become linear by the
complete elimination of the classicality-enforcing potential.
We find that by scaling and not necessarily eliminating the
classicality-enforcing potential we can reproduce quantum
behavior and recover the linear Schrödinger equation with a
rescaled Planck’s constant. We insert a degree of quantumness
ε, where 0 � ε � 1, into Eq. (7) which scales the classicality-
enforcing potential and gives

i�
∂ψε(r,t)

∂t
= − �

2

2m
∇2ψε(r,t) + V (r,t)ψε(r,t)

+ (1 − ε)
�

2

2m

∇2 |ψε(r,t)|
|ψε(r,t)| ψε(r,t). (8)

We call this the transition equation. For ε = 1 it is equal to the
Schrödinger equation and ψε ≡ ψ . For ε = 0 it is equal to the
nonlinear classical Schrödinger-like equation and ψε ≡ ψc.
For all other values 0 < ε < 1 we show that this nonlinear
equation exhibits quantum behavior despite the continued
presence of the classicality-enforcing potential.

III. EQUIVALENCE TO SCALING PLANCK’S CONSTANT

Indeed, the nonlinear transition equation can be shown to
be equivalent to the linear Schrödinger equation with Planck’s
constant scaled by the degree of quantumness according to

�̃ = �
√

ε. (9)

To this end, we define the polar form of the wave function that
satisfies the transition equation to be

ψε(r,t) = Aε(r,t)eiSε (r,t)/�. (10)

Inserting this into the transition equation, Eq. (8), and finding
the individual elements gives

∇2ψε(r,t) =
{
∇2Aε(r,t) + 2

i

�
[∇Aε(r,t)] · [∇Sε(r,t)]

+ i

�
Aε(r,t)∇2Sε(r,t) − 1

�2
Aε(r,t)[∇Sε(r,t)]2

}

× eiSε (r,t)/�, (11)

i�
∂ψε(r,t)

∂t
=

[
i�

∂Aε(r,t)
∂t

− Aε

∂Sε(r,t)
∂t

]
eiSε (r,t)/�, (12)

and

∇2 |ψε(r,t)|
|ψε(r,t)| ψε(r,t) = [∇2Aε(r,t)]eiSε (r,t)/�, (13)

where Eq. (11) is the Laplacian, Eq. (12) is the time derivative
of the polar wave function, and Eq. (13) is the contribution
from the classicality-enforcing potential.

Gathering the real and imaginary terms we obtain the
continuity equation, Eq. (4), with A and S replaced by Aε

and Sε , and an equation very similar to the Hamilton-Jacobi
equation, Eq. (2). It differs by the addition of Bohm’s
quantum-mechanical potential scaled by the degree
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of quantumness,

∂Sε(r,t)
∂t

= − 1

2m
[∇Sε(r,t)]2 −

[
V (r,t) − ε

�
2

2m

∇2Aε(r,t)
Aε(r,t)

]
.

(14)

This equation can be made to have the appearance of the
Schrödinger equation by making the substitution �̃ = �

√
ε.

Performing this substitution yields

∂Sε(r,t)
∂t

= − 1

2m
[∇Sε(r,t)]2 −

[
V (r,t) − �̃

2

2m

∇2Aε(r,t)
Aε(r,t)

]
,

(15)

by which means the degree of quantumness is removed.
Equation (4) with A and S replaced by Aε and Sε and Eq. (15)
are now completely equivalent to the Schrödinger equation
with a rescaled � and we can write a scaled Schrödinger-like
equation and the associated wave function,

ψ̃(r,t) ≡ Aε(r,t)eiSε (r,t)/�̃ (16)

= ψε(r,t)eiSε (r,t)(1/
√

ε−1)/�, (17)

i�̃
∂ψ̃(r,t)

∂t
= − �̃

2

2m
∇2ψ̃(r,t) + V (r,t)ψ̃(r,t), (18)

and note that |ψ̃(r,t)|2 = |ψε(r,t)|2. We also note that as
�̃ → 0 the phase of Eq. (16) will begin to vary rapidly
compared to its amplitude. This is a necessary assumption
of the WKB approximation [9] which leads to accurate results
in the semiclassical regime away from the classical turning
points.

Note that what we have just done does not correspond to a
linearization of an intrinsically nonlinear equation insofar as
we have performed no linear approximation. In contrast, recent
work performed by Sbitnev [10], while leading to an equivalent
scaled Schrödinger equation, Eq. (18), involves a linearization
of the nonlinear Navier-Stokes equation. He did this in order to
obtain a theoretical model of a bouncing droplet system [11],
a macroscopic system which mimics linear quantum behavior.
He manipulates the classical Navier-Stokes equation to derive
an equation similar in form to the classical Schrödinger-like
equation, Eq. (7). He then makes an approximation that
removes the nonlinear term, as did Schleich et al. [5] with
their nonlinear classical wave equation, and ends up with a
governing equation equivalent to the Schrödinger equation
with Planck’s constant replaced by a macroscopic equivalent.
This equivalent Planck’s constant of Sbitnev’s is comparable
to Planck’s constant scaled by an appropriate degree of
quantumness, ε, and as such, even though Sbitnev’s governing
equation is obtained through a linearization, it is comparable
to the scaled Schrödinger equation, Eq. (18), and therefore to
the transition equation, Eq. (8).

IV. THE INTERFERENCE OF TWO WAVE PACKETS

To further demonstrate the quantum and linear behavior
of the nonlinear transition equation, Eq. (8), we solve it
numerically in the context of the standard single-particle
interference problem. Interference is not necessarily a uniquely
quantum phenomenon. It can happen with any kind of wave.

However, in the limit of the transition equation becoming
classical all wave behavior is suppressed. Therefore, while
not being unique to quantum mechanics, interference can be
used as a measure of the quantumness between the two regimes
in question. Using quantum mechanics we would expect two
wave packets to spread with time and be represented by the
standard Young interference pattern. For classical particles
with no wave nature we expect the packets to maintain
their shape and not interfere for all time. We first solve the
system using the scaled linear Schrödinger equation, Eq. (18),
and then compare the results to numerical solutions of the
nonlinear transition equation, Eq. (8). Thus along with the
analytic equivalence previously shown we also numerically
demonstrate the equivalence of the two equations in this
particular context.

A. Scaled quantum wave packet behavior

We start the scaled quantum analysis with two Gaussians
in one dimension with V = 0 and the initial condition

ψ̃(x,0) =
√

N0[e−(x−d)2/4σ 2 + e−(x+d)2/4σ 2
], (19)

where d is the distance from the origin to the centers of the
Gaussians and σ is the root-mean-square (rms) width. The
normalization is

N0 = [2
√

2πσ (e−d2/2σ 2 + 1)]−1. (20)

Using this initial condition to solve the scaled one-dimensional
time-dependent Schrödinger equation,

i�̃
∂ψ̃

∂t
= − �̃

2

2m

∂2ψ̃

∂x2
, (21)

the time-dependent wave function is found to be

ψ̃(x,t) =
√

N0

ãt

(e−(x−d)2/4ã2
t + e−(x+d)2/4ã2

t ). (22)

where ã2
t = σ 2 + 1

2 i�̃t/m. When the modulus is squared the
interference term becomes obvious,

|ψ̃(x,t)|2 = N0

σ̃t

[
(e−(x−d)2/4σ̃ 2

t + e−(x+d)2/4σ̃ 2
t )2

− 4e−(x2+d2)/2σ̃ 2
t sin2

(
�̃txd

4mσ 2σ̃ 2
t

)]
, (23)

where σ̃ 2
t = �̃

2t2/(4m2σ 2) + σ 2 is the time-dependent rms
width. This is the expected Young interference pattern.

B. Simulation in the framework of the transition equation

We now numerically solve this standard problem using the
nonlinear transition equation, Eq. (8), which in one dimension
and with V = 0 is

i�
∂ψε(x,t)

∂t
= − �

2

2m

∂2ψε(x,t)

∂x2

+ �
2

2m

1 − ε

|ψε(x,t)|
∂2 |ψε(x,t)|

∂x2
ψε(x,t). (24)

The equation is solved using the explicit finite difference
method. The asymptotic behavior is as expected. For the case
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FIG. 1. (Color online) Interference patterns for various degrees
of quantumness, ε. The (red) solid line is the analytic probability
density using the Schrödinger equation with a scaled �̃ = �

√
ε,

Eq. (18), and the (black) dotted line is the simulated probability
density using the transition equation, Eq. (8). All plots are evaluated
at the same time t = 20mσ 2/� and the initial distance from the origin
to the center of the two initial Gaussians is d = 3σ . Plot (a) is the fully
classical case with ε = 0. (b) ε = 0.02. (c) ε = 0.05. (d) ε = 0.2.
(e) ε = 0.6. Plot (f) is the fully quantum case with ε = 1 and �̃ = �.

in which the degree of quantumness ε = 1 and �̃ = � the
interference pattern that forms, Fig. 1(f), is identical to the
standard quantum case in which the transition equation reduces
to the Schrödinger equation. For the case in which ε = 0 and
�̃ = 0 the probability density that forms, Fig. 1(a), is that of
the initial distribution, Eq. (19), and is equal to the classical
case. As can be seen in all the frames of Fig. 1 for all values
of ε the plots from the numerically solved nonlinear transition
equation overlap the plots derived from the scaled Schrödinger
equation.

Figure 1 demonstrates the equivalence between the non-
linear transition equation, Eq. (8), and the linear Schrödinger
equation with a scaled Planck’s constant, Eq. (18). For all
values of 0 < ε � 1 an interference pattern develops, but the
degree of quantumness corresponds to a retardation of the rate
in which the interference pattern forms. Given enough time the

pattern will develop into the usual far-field Young interference
pattern with a visibility of one for all 0 < ε � 1. As can be
deduced from Fig. 1 the time for a diffraction pattern to develop
increases to infinity as the degree of quantumness diminishes.
The only value in which no interference is observed is that for
ε = 0. When using the transition equation classical mechanics
is a special singular case.

V. CONCLUSION

In summary, we have demonstrated both analytically and
numerically that it is not necessary to get rid of the classicality-
enforcing potential appearing in Oriols and Mompart’s [4]
classical Schrödinger-like equation to recover behavior similar
to that of quantum mechanics. We have found that by
using a degree of quantumness to scale but not necessarily
eliminate the nonlinear classicality-enforcing potential we can
construct a transition equation, Eq. (8), which we showed to
be equivalent to the linear Schrödinger equation but with a
rescaled Planck’s constant, Eq. (18).

It is interesting that the special behavior observed in the
linear theory of quantum mechanics can be reproduced with a
nonlinear wave equation such as the transition equation. This
linear quantum behavior is obvious in the transition equation
when the degree of quantumness is equal to one; however,
when the degree of quantumness is anywhere between zero
and one, where nonlinearity is introduced, quantum behavior
is still observed. The nonlinear transition equation mimics
the linear Schrödinger equation and pure classical mechanics
is only observed for the singular case when the degree of
quantumness vanishes completely.

In general, it may not be necessary to explicitly eliminate a
nonlinearity (e.g., through a linearization procedure) in order
to encounter linear behavior, such as wave interference or the
superposition principle, in the framework of a nonlinear theory.
This insight might be of interest to other fields of physics that
are governed by an intrinsically nonlinear equation, such as
fluid dynamics.
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